Skip to main content

Abstract

The increase in global population has resulted in increased demand for stationary and portable energy, as well as increases in carbon dioxide emissions. The increases in greenhouse gases at the present trajectory will increase the global warming potential above the 2° threshold. At this threshold, it is anticipated that climate changes will adversely affect the land and sea masses. To minimize the potential of global warming and meet the increased energy demands, high-energy capacity lithium-ion (Li-ion) batteries in portable electronics and electric vehicles offer one potential solution. Current Li-ion chemistries focus on lithium cobalt oxide (LCO), lithium nickel cobalt manganese oxide (NCM), lithium nickel cobalt aluminum oxide (NCA), lithium iron phosphate (LFP), and lithium titanium oxide (LTO) as cathodes and lithium metal (Li-metal) as an anode. Other semiconductor materials are used as alloying anodes (Si, Sn) that also include chalcogenides (S), metal halides (Br), and polymers. These materials enable the cell to maintain a high charge density through enhanced Li and electron transport, lesser volumetric expansion, material dissolution, and surface reactions between electrode and electrolyte generating heat. In part, battery thermal management is controlled using passive cooling in addition to liquid cooling. However, the widespread usage of Li-ion batteries in electric vehicles also presents a problem in end-of-life disposal and adverse effects on leaching of active materials into the water table. A life cycle assessment of Li material extraction and usage indicates that every watt-hour (Wh) of storage capacity utilizes 328 Wh of energy and generates 110 g carbon dioxide equivalent (CO2-eq.) emissions. The other components in the cathode, such as Ni and Co, may also pose toxicological adverse effects if released prematurely into the environment. The trend in battery design and evolution appears to indicate size and cost reduction; increased power density; recycling and transition to Li-S, Li-Air, or organic polymers to meet the anticipated energy demands; lower CO2-eq emissions; and electric vehicle demand by 2030.

Author Contribution: The first draft was written by LL. The data in the figures and charts was supplied by SB and LL. The final draft was reviewed and edited by NK and LL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Skodvin, S. Andresen, An agenda for change in US climate policies? Presidential ambitions and congressional powers. Int. Environ. Agreements: Politics, Law Econ. 9(3), 263–280 (2009)

    Article  Google Scholar 

  2. M.F. Sherlock, J.M. Stupak, Energy tax incentives: measuring value across different types of energy resources. Curr. Politics Econ. United States, Canada, Mexico 18(1), 1–29 (2016)

    Google Scholar 

  3. J. Meckling, T. Sterner, G. Wagner, Policy sequencing toward decarbonization. Nat. Energy 2(12), 918–923 (2017)

    Article  Google Scholar 

  4. F.N. Laird, Avoiding Transitions, Layering Change: The Evolution of American Energy Policy in Germany’s Energy Transition (Palgrave Macmillan, New York, 2016), pp. 111–131

    Google Scholar 

  5. S. Mittlefehldt, From appropriate technology to the clean energy economy: renewable energy and environmental politics since the 1970s. J. Environ. Stud. Sci. 8(2), 212–219 (2018)

    Article  Google Scholar 

  6. A.C. Fisher, M.H. Rothkopf, Market failure and energy policy. A rationale for selective conservation. Energy Policy 17(4), 397–406 (1989)

    Article  Google Scholar 

  7. S. Carley, The era of state energy policy innovation: a review of policy instruments. Rev. Policy Res. 28(3), 265–294 (2011)

    Article  Google Scholar 

  8. A. Park, A. Kroll, D. Gilson, B. Hansen-Bundy, Triumph of the Drill: How Big Oil Clings to Billions in Government Giveaways – Mother Jones (2014, Apr), https://www.motherjones.com/politics/2014/04/oil-subsidies-renewable-energy-tax-breaks/

  9. M. Graff, S. Carley, D.M. Konisky, Stakeholder perceptions of the United States energy transition: local-level dynamics and community responses to national politics and policy. Energy Res. Soc. Sci. (2018). https://doi.org/10.1016/j.erss.2018.05.017

    Article  Google Scholar 

  10. G. Blackburn, C. Magee, V. Rai, Solar valuation and the modern utility’s expansion into distributed generation. Electr. J. 27(1), 18–32 (2014)

    Article  Google Scholar 

  11. N.F. Crafts, P. Hudson, The industrial revolution. Econ. Hist. Rev. 47, 414–414 (1994)

    Article  Google Scholar 

  12. J. Mokyr, The Enlightened Economy an Economic History of Britain 1700–1850 (Yale University Press, New Haven, 2010)

    Google Scholar 

  13. S. Pollard, Factory discipline in the industrial revolution. Econ. Hist. Rev. 16(2), 254–271 (1963)

    Google Scholar 

  14. K.K. Goldewijk, Estimating global land use change over the past 300 years: the HYDE database. Glob. Biogeochem. Cycles 15(2), 417–433 (2001)

    Article  Google Scholar 

  15. M. Roser, E. Ortiz-Ospina, World Population Growth. OurWorldInData.Org (2018), https://ourworldindata.org/world-population-growth

  16. Energy Information Administration (EIA), Natural Gas-fired Electricity Generation Expected to Reach Record Level in 2016, (2016), https://www.eia.gov/todayinenergy/detail.php?id=27072

  17. M. Diesendorf, B. Elliston, The feasibility of 100% renewable electricity systems: a response to critics. Renew. Sust. Energ. Rev. 93, 318–330 (2018)

    Article  Google Scholar 

  18. J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J.T. Turnure, L. Westfall, International Energy Outlook 2016 with Projections to 2040 (No DOE/EIA-0484 (2016)) USDOE Energy Information Administration (EIA) (Office of Energy Analysis, Washington, DC, 2016)

    Google Scholar 

  19. R. Andrews, Emissions reductions and world energy demand growth. Energy Matters: Energy, Environment and Policy (2016, Sept), http://euanmearns.com/emissions-reductions-and-world-energy-demand-growth/

  20. H. Ritchie, M. Roser, Energy Production and Changing Energy Sources. OurWorldinData.Org. (2018), https://ourworldindata.org/energy-production-and-changing-energy-sources

  21. Global, British Petroleum (BP), BP Statistical Review of World Energy 2017 (2017), https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf

  22. US Energy Information Administration (EIA), International Energy Outlook Tables (2017), https://www.eia.gov/outlooks/ieo/ieo_tables.php

  23. US Energy Information Administration (EIA), International Energy Outlook 2017 (2017), https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf

  24. M. L. Bacci, The space and strategy of demographic growth. In A Concise History of World Population. (Wiley, 2017), 1–32; ISBN:9781119406822.

    Google Scholar 

  25. P.Y. Chen, S.T. Chen, C.S. Hsu, C.C. Chen, Modeling the global relationships among economic growth, energy consumption, and CO2 emissions. Renew. Sust. Energ. Rev. 65, 420–431 (2016)

    Article  CAS  Google Scholar 

  26. T. Qi, Y. Weng, Economic impacts of an international carbon market in achieving the INDC targets. Energy 109, 886–893 (2016)

    Article  Google Scholar 

  27. P. Smith, S.J. Davis, F. Creutzig, S. Fuss, J. Minx, B. Gabrielle, D.P. Van Vuuren, Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 6(1), 42–68 (2016)

    Article  CAS  Google Scholar 

  28. I. C. Halalay, T. J. Fuller, L. Zou, T. C. Jackson, U.S. Patent 9,077,038 (U.S. Patent and Trademark Office, Washington, DC, 2015).

    Google Scholar 

  29. J. Rogelj, M. Den Elzen, N. Höhne, T. Fransen, H. Fekete, H. Winkler, M. Meinshausen, Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534(7609), 631–641 (2016)

    Article  CAS  Google Scholar 

  30. M. den Elzen, N. Höhne, K. Jiang, J. Cantzler, P. Drost, T. Fransen, J. Rogelj, The methodology of national and global studies-The Emissions Gap Report 2017–Chapter 3–Appendix A, in The Emissions Gap Report 2017: A UN Environment Synthesis Report United Nations Environment Programme (2017)

    Google Scholar 

  31. H.W. Schiffer, T. Kober, E. Panos, (2018). World Energy Council’s Global Energy Scenarios to 2060. Zeitschrift für Energiewirtschaft, 42(2), 91–102.

    Article  Google Scholar 

  32. United States Environmental Protection Agency (EPA), Global Emissions by Gas (2017), https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data

  33. Research Institute of Innovative Technology for the Earth (RITE), Global Scenario for CO2 and GHG Emissions (2011), https://www.rite.or.jp/English/lab/syslab/research/alps/baselinescenario_co2ghg/E-ScenarioOutline_CO2GHG_20110815.pdf

  34. International Energy Agency (IAE), Energy and Climate Change World Energy Outlook Special Report (2015), https://www.iea.org/publications/freepublications/publication/WEO2015SpecialReportonEnergyandClimateChange.pdf

  35. M.R. Raupach, G. Marland, P. Ciais, C. Le Quéré, J.G. Canadell, G. Klepper, C.B. Field, Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. 104(24), 10288–10293 (2007)

    Article  CAS  Google Scholar 

  36. United States Environmental Protection Agency (EPA), Sources of Greenhouse Gas Emissions (2018), https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions

  37. United States Environmental Protection Agency (EPA), How much is carbon dioxide produced when different fuels are burned? (2018), https://www.eia.gov/tools/faqs/faq.php?id=73andt=11

  38. Statista, Energy-related carbon dioxide emissions worldwide from 1990 to 2050, by fuel (in billion metric tons) (2018), https://www.statista.com/statistics/242204/energy-related-global-co2-emissions-by-fuel/

  39. Carbon Dioxide Information Analysis Center (CDIAC), CO2 Emissions Data Browser (2017), http://cdiac.ornl.gov/CO2_Emission/

  40. H. Ritchie, M. Roser, CO2 and Other Greenhouse Gas Emissions. Our World in Data.Org (2018), https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions

  41. E.J. Dlugokencky, K.A. Masarie, P.M. Lang, P.P. Tans, Continuing decline in the growth rate of the atmospheric methane burden. Nature 393(6684), 447–450 (1998)

    Article  CAS  Google Scholar 

  42. Earth Systems Research Laboratory (ESRL), Trends in Atmospheric Carbon Dioxide (2018), https://www.esrl.noaa.gov/gmd/ccgg/trends/

  43. S.A. Marcott, J.D. Shakun, P.U. Clark, A.C. Mix, A reconstruction of regional and global temperature for the past 11,300 years. Science 339(6124), 1198–1201 (2013)

    Article  CAS  Google Scholar 

  44. Intergovernmental Panel on Climate Change (IPCC), Working Group I: The Scientific Basis (2001), http://ipcc.ch/ipccreports/tar/wg1/029htm

  45. E.G. Hertwich, G.P. Peters, The carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43(16), 6414–6420 (2009)

    Article  CAS  Google Scholar 

  46. A. Malik, J. Lan, M. Lenzen, Trends in global greenhouse gas emissions from 1990 to 2010. Environ. Sci. Technol. 50(9), 4722–4730 (2016)

    Article  CAS  Google Scholar 

  47. International Energy Agency (IEA), Global Energy and CO2 Status Report (2017), http://www.iea.org/publications/freepublications/publication/GECO2017.pdf

  48. (Dutch: Planbureau voor de Leefomgeving – abbr PBL) Netherlands Environment Assessment Agency, Trends in Global CO2 Emissions – 2015 Report (2015), http://edgar.jrc.ec.europa.eu/news_docs/jrc-2015-trends-in-global-co2-emissions-2015-report-98184.pdf

  49. M. Su, C. Chen, Z. Yang, Urban energy structure optimization at the sector scale: considering environmental impact based on life cycle assessment. J. Clean. Prod. 112, 1464–1474 (2016)

    Article  Google Scholar 

  50. L.W. Cheah, Cars on a diet: the material and energy impacts of passenger vehicle weight reduction in the US, Doctoral dissertation, Massachusetts Institute of Technology, 2010

    Google Scholar 

  51. R. Modaresi, S. Pauliuk, A.N. Løvik, D.B. Muller, Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries. Environ. Sci. Technol. 48(18), 10776–10784 (2014)

    Article  CAS  Google Scholar 

  52. T.S. Turrentine, K.S. Kurani, Car buyers and fuel economy? Energy Policy 35(2), 1213–1223 (2007)

    Article  Google Scholar 

  53. M. Åhman, Primary energy efficiency of alternative powertrains in vehicles. Energy 26(11), 973–989 (2001)

    Article  Google Scholar 

  54. K. Holmberg, P. Andersson, N.O. Nylund, K. Mäkelä, A. Erdemir, Global energy consumption because of friction in trucks and buses. Tribol. Int. 78, 94–114 (2014)

    Article  Google Scholar 

  55. A. Schäfer, J.B. Heywood, M.A. Weiss, Future fuel cell and internal combustion engine automobile technologies: a 25-year life cycle and fleet impact assessment. Energy 31(12), 2064–2087 (2006)

    Article  CAS  Google Scholar 

  56. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, L. Chen, Multiple-filled skutterudites: a high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133(20), 7837–7846 (2011)

    Article  CAS  Google Scholar 

  57. C.C. Chan, The state of the art of electric and hybrid vehicles. Proc. IEEE 90(2), 247–275 (2002)

    Article  Google Scholar 

  58. M.W. Verbrugge, C.W. Wampler, On the optimal sizing of batteries for electric vehicles and the influence of fast charge. J. Power Sources 384, 312–317 (2018)

    Article  CAS  Google Scholar 

  59. M. Ehsani, Y. Gao, S. Longo, K. Ebrahimi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles (CRC Press, Boca Raton, 2018)

    Google Scholar 

  60. Alternative Fuels Data Center (AFDC), How Do All-Electric Cars Work? (2018), https://www.afdc.energy.gov/vehicles/how-do-all-electric-cars-work

  61. (Verband Deutscher Maschinen- und Anlagenbau e) VVDMA, Roadmap-Battery Production Equipment by 2030 (2016), https://battprod.vdma.org/documents/7411591/15357859/VDMA+Battery+Production_Roadmap_2016_update_English.pdf/cb2fd37b-348f-467d-a39e-2a3180bb8b5e

  62. Mckinsey and Company, Electrifying insights: how automakers can drive electrified vehicle sales and profitability (2017), https://www.mckinsey.com/~/media/McKinsey/Industries/Automotive-and-Assembly/Our-Insights/Electrifying-insights-How-automakers-can-drive-electrified-vehicle-sales-and-profitability_vF.ashx

  63. S. Koller, H. Kren, M. Schmuck, B. Fuchsbichler, C. Stangl, C. God, J. Garche, Next-generation materials for electrochemical energy storage–silicon and magnesium. AIP Conf. Proc. 1765(1), 020007 (2016). AIP Publishing

    Article  CAS  Google Scholar 

  64. A.A. Pesaran, T. Markel, H.S. Tataria, D. Howell, Battery Requirements for Plug-in Hybrid Electric Vehicles – Analysis and Rationale (No NREL/CP-540-42240) (National Renewable Energy Lab (NREL), Golden, 2009)

    Google Scholar 

  65. B.D. McCloskey, Attainable gravimetric and volumetric energy density of Li–S, and Li-ion battery cells with solid separator-protected Li metal anodes. J. Phys. Chem. Lett. 6(22), 4581–4588 (2015)

    Article  CAS  Google Scholar 

  66. The European Spallation Source (ESS), Battery Technology (2017), https://europeanspallationsource.se/sites/default/files/styles/landscape/public/images/media/2017-08/battery%20technology_440.png?itok=RB1NlkEp

  67. US Advanced Battery Consortium (USCAR), News: Energy Storage System Goals (2016), http://www.uscar.org/commands/files_download.php?files_id=472

  68. W. Xue, L. Miao, L. Qie, C. Wang, S. Li, J. Wang, J. Li, Gravimetric and volumetric energy densities of lithium-sulfur batteries. Curr. Opin. Electrochem. 6(1), 92–99 (2017)

    Article  CAS  Google Scholar 

  69. X. Zhang, H. Xie, C.S. Kim, K. Zaghib, A. Mauger, C.M. Julien, Advances in lithium-sulfur batteries. Mater. Sci. Eng. R. Rep. 121, 1–29 (2017)

    Article  Google Scholar 

  70. J.S. Yeoh, C.F. Armer, A. Lowe, Transition metal oxalates as energy storage materials. A review. Mater. Today Energy 9, 198–222 (2018)

    Article  Google Scholar 

  71. J. Neubauer, A. Pesaran, C. Bae, R. Elder, B. Cunningham, Updating the United States Advanced Battery Consortium and Department of Energy battery technology targets for battery electric vehicles. J. Power Sources 271, 614–621 (2014)

    Article  CAS  Google Scholar 

  72. D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19 (2015)

    Article  CAS  Google Scholar 

  73. K. Young, C. Wang, L.Y. Wang, K. Strunz, Electric Vehicle Battery Technologies in Electric Vehicle Integration into Modern Power Networks (Springer, New York, 2013), pp. 15–56

    Book  Google Scholar 

  74. M. Dimitrijevic, Lithium-Ion Battery Assembly Challenges Electronic Component News Magazine (2011), https://www.ecnmag.com/article/2011/01/lithium-ion-battery-assembly-challenges

  75. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the environment, in Molecular, Clinical and Environmental Toxicology, (Springer, Basel, 2012), pp. 133–164

    Chapter  Google Scholar 

  76. A. Mardani, A. Jusoh, E.K. Zavadskas, F. Cavallaro, Z. Khalifah, Sustainable and renewable energy: an overview of the application of multiple criteria decision making techniques and approaches. Sustainability 7(10), 13947–13984 (2015)

    Article  Google Scholar 

  77. E. Helmers, P. Marx, Electric cars: technical characteristics and environmental impacts. Environ. Sci. Eur. 24(1), 14–21 (2012)

    Article  Google Scholar 

  78. K.B. Hueso, M. Armand, T. Rojo, High temperature sodium batteries: status, challenges and future trends. Energy Environ. Sci. 6(3), 734–749 (2013)

    Article  CAS  Google Scholar 

  79. National Petroleum Council (NPC), Advancing Technology for America’s Transportation Future: Electric Analysis (NPC, Washington, DC, 2012), http://www.npc.org/reports/trans-future_fuels_summary-2012-lowres.pdf

  80. Element Energy, Cost and Performance of EV Batteries (Element Energy, Cambridge, 2012), http://www.element-energy.co.uk/wordpress/wp-content/uploads/2012/06/CCC-battery-cost_-Element-Energy-report_March2012_Finalbis.pdf

  81. P.G. Bruce, Energy storage beyond the horizon: rechargeable lithium batteries. Solid State Ionics 179(21–26), 752–760 (2008)

    Article  CAS  Google Scholar 

  82. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4(9), 3243–3262 (2011)

    Article  CAS  Google Scholar 

  83. M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for Li-ion batteries. Chem. Rev. 113(7), 5364–5457 (2013)

    Article  CAS  Google Scholar 

  84. C.S. Kim, K.M. Jeong, K. Kim, C.W. Yi, Effects of capacity ratios between anode and cathode on electrochemical properties for lithium polymer batteries. Electrochim. Acta 155, 431–436 (2015)

    Article  CAS  Google Scholar 

  85. M. Majima, S. Ujiie, E. Yagasaki, K. Koyama, S. Inazawa, Development of long life lithium-ion battery for power storage. J. Power Sources 101(1), 53–59 (2001)

    Article  CAS  Google Scholar 

  86. L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4(8), 2682–2699 (2011)

    Article  CAS  Google Scholar 

  87. Y. Mekonnen, A. Sundararajan, A.I. Sarwat, A review of cathode and anode materials for lithium-ion batteries. IEEE SoutheastCon 2016, 1–6 (2016, March)

    Google Scholar 

  88. J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013)

    Article  CAS  Google Scholar 

  89. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015)

    Article  CAS  Google Scholar 

  90. K. Zaghib, M. Dontigny, A. Guerfi, P. Charest, I. Rodrigues, A. Mauger, C.M. Julien, Safe and fast-charging Li-ion battery with long shelf life for power applications. J. Power Sources 196(8), 3949–3954 (2011)

    Article  CAS  Google Scholar 

  91. K. Adachi, H. Tajima, T. Hashimoto, K. Kobayashi, Development of 16 kWh power storage system applying Li-ion batteries. J. Power Sources 119, 897–901 (2003)

    Article  CAS  Google Scholar 

  92. W.F. Pickard, A.Q. Shen, N.J. Hansing, Parking the power: strategies and physical limitations for bulk energy storage in supply-demand matching on a grid whose input power is provided by intermittent sources. Renew. Sust. Energ. Rev. 13(8), 1934–1945 (2009)

    Article  Google Scholar 

  93. C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19(2), 109–123 (2016)

    Article  CAS  Google Scholar 

  94. I. Cowie, All About Batteries, Part 12: Lithium Titanate (LTO) Electronic Engineering Times (2015), https://www.eetimes.com/author.asp?section_id=36anddoc_id=1325358

  95. Battery University (BU), BU-204: How do Lithium Batteries Work? (2018), http://batteryuniversity.com/learn/article/lithium_based_batteries

  96. M. Lowe, S. Tokuoka, T. Trigg, G. Gereffi, Lithium-ion batteries for electric vehicles Duke University Center on Globalization, Governance, and Competitiveness, Tech Rep (2010)

    Google Scholar 

  97. B. Molina, This again: lithium-ion batteries behind HP recall USA Today (2017), https://www.usatoday.com/story/tech/news/2017/01/25/hp-expands-recall-laptop-batteries/97042680/

  98. A. Opitz, P. Badami, L. Shen, K. Vignarooban, A.M. Kannan, Can Li-Ion batteries be the panacea for automotive applications? Renew. Sust. Energ. Rev. 68, 685–692 (2017)

    Article  CAS  Google Scholar 

  99. M.S. Kumar, S.T. Revankar, Development scheme and key technology of an electric vehicle: an overview. Renew. Sust. Energ. Rev. 70, 1266–1285 (2017)

    Article  Google Scholar 

  100. Q. Ren, D.A. Crolla, A. Morris, Effect of transmission design on electric vehicle (EV) performance, in Vehicle Power and Propulsion Conference, 2009 VPPC’09 IEEE (IEEE, 2009, Sept), pp. 1260–1265

    Google Scholar 

  101. Green Car Congress, BNEF forecasts EVs to hit 54% of new car sales by 2040; decreasing importance of PHEVs (2017), http://www.greencarcongress.com/2017/07/20170706-bnef.html

  102. InsideEVs, June Plug-In 2018 EV Sales Scorecard (2018), https://insideevs.com/monthly-plug-in-sales-scorecard/

  103. EV-Volumes, Global Plug-in Sales for Q1-2018 (2018), http://www.ev-volumes.com/country/total-world-plug-in-vehicle-volumes/

  104. Global, EV (2016). Outlook 2016: Beyond One Million Electric Cars (International Energy Agency, 2016). https://www.ieaorg/publications/freepublications/publication/Global_EV_Outlook_2016.pdf

  105. C. McKerracher, Bloomberg New Energy Finance (BNEF) Electric Vehicle Outlook 2018 (2018), https://about.bnef.com/blog/electric-vehicles-accelerate-54-new-car-sales-2040/

  106. J. Moradi, H. Shahinzadeh, A. Khandan, M. Moazzami, A profitability investigation into the collaborative operation of wind and underwater compressed air energy storage units in the spot market. Energy 141, 1779–1794 (2017)

    Article  Google Scholar 

  107. I.G. Mason, S.C. Page, A.G. Williamson, A 100% renewable electricity generation system for New Zealand utilizing hydro, wind, geothermal and biomass resources. Energy Policy 38(8), 3973–3984 (2010)

    Article  Google Scholar 

  108. G. Zubi, R. Dufo-López, G. Pasaoglu, N. Pardo, Techno-economic assessment of an off-grid PV system for developing regions to provide electricity for basic domestic needs: a 2020–2040 scenario. Appl. Energy 176, 309–319 (2016)

    Article  Google Scholar 

  109. H. Lund, A.N. Andersen, P.A. Østergaard, B.V. Mathiesen, D. Connolly, From electricity smart grids to smart energy systems–a market operation based approach and understanding. Energy 42(1), 96–102 (2012)

    Article  Google Scholar 

  110. I. Pakere, D. Lauka, D. Blumberga, Solar power and heat production via photovoltaic thermal panels for district heating and industrial plant. Energy 154, 424–432 (2018)

    Article  Google Scholar 

  111. B. Zakeri, S. Syri, Electrical energy storage systems: a comparative life cycle cost analysis. Renew. Sust. Energ. Rev. 42, 569–596 (2015)

    Article  Google Scholar 

  112. J.P. Barton, D.G. Infield, Energy storage and its use with intermittent renewable energy. IEEE Trans. Energy Convers. 19(2), 441–448 (2004)

    Article  Google Scholar 

  113. E. Telaretti, L. Dusonchet, Stationary battery systems in the main world markets: part 2: main trends and prospects, in Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/IandCPS Europe), 2017 IEEE International Conference on (IEEE (2017, June), pp. 1–6

    Google Scholar 

  114. A. Foley, B. Tyther, P. Calnan, B.Ó. Gallachóir, Impacts of electric vehicle charging under electricity market operations. Appl. Energy 101, 93–102 (2013)

    Article  Google Scholar 

  115. A. Jaiswal, Lithium-ion battery-based renewable energy solution for off-grid electricity: a techno-economic analysis. Renew. Sust. Energ. Rev. 72, 922–934 (2017)

    Article  CAS  Google Scholar 

  116. S.P. Ayeng’o, T. Schirmer, K.P. Kairies, H. Axelsen, D.U. Sauer, Comparison of off-grid power supply systems using lead-acid and lithium-ion batteries. Sol. Energy 162, 140–152 (2018)

    Article  Google Scholar 

  117. G. Bekele, G. Tadesse, Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia. Appl. Energy 97, 5–15 (2012)

    Article  Google Scholar 

  118. B. Nykvist, M. Nilsson, Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Chang. 5(4), 329–332 (2015)

    Article  Google Scholar 

  119. C. Pillot, Battery Market Development for Consumer Electronics, Automotive, and Industrial (2014), http://www.rechargebatteries.org/wp-content/uploads/2015/01/Avicenne-market-review-Nive-2014.pdf

  120. X. Zeng, J. Li, N. Singh, Recycling of spent lithium-ion battery: a critical review. Crit. Rev. Environ. Sci. Technol. 44(10), 1129–1165 (2014)

    Article  CAS  Google Scholar 

  121. S.B. Peterson, J.J. Michalek, Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption. Energy Policy 52, 429–438 (2013)

    Article  Google Scholar 

  122. R. Faria, P. Marques, P. Moura, F. Freire, J. Delgado, A.T. de Almeida, Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles. Renew. Sust. Energ. Rev. 24, 271–287 (2013)

    Article  Google Scholar 

  123. T.R. Hawkins, B. Singh, G. Majeau-Bettez, A.H. Strømman, Comparative environmental life cycle assessment of conventional and electric vehicles. J. Ind. Ecol. 17(1), 53–64 (2013)

    Article  CAS  Google Scholar 

  124. F.S. Boureima, M. Messagie, J. Matheys, V. Wynen, N. Sergeant, J. Van Mierlo, B. De Caevel, Comparative LCA of electric, hybrid, LPG and gasoline cars in Belgian context. World Electric Veh. J. 3(3), 469–476 (2009)

    Article  Google Scholar 

  125. J. Van Mierlo, F. Boureima, M. Messagie, N. Sergeant, L. Govaerts, T. Denys, C. Macharis, Clean Vehicle Research: LCA and Policy Measures (CLEVER) final report of the project funded by the Belgian science policy (2011), http://etec.vub.ac.be/clever/docs/clever-PUB-003.pdf

  126. S.K. Shahi, G.G. Wang, Plug-In Hybrid Electric Vehicle Battery Selection for Optimum Economic and Environmental Benefits Using Pareto Set Points and PSAT™, in ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2010, Jan), pp. 701–713

    Google Scholar 

  127. Q. Song, J. Li, Environmental effects of heavy metals derived from the e-waste recycling activities in China: a systematic review. Waste Manag. 34(12), 2587–2594 (2014)

    Article  CAS  Google Scholar 

  128. G. Cooney, T.R. Hawkins, J. Marriott, Life cycle assessment of diesel and electric public transportation buses. J. Ind. Ecol. 17(5), 689–699 (2013)

    CAS  Google Scholar 

  129. R.L. Moss, E. Tzimas, H. Kara, P. Willis, J. Kooroshy, Critical Metals in Strategic Energy Technologies, JRC-Scientific and Strategic Reports (European Commission Joint Research Centre Institute for Energy and Transport, Luxembourg, 2011)

    Google Scholar 

  130. B. Cosic, G. Krajacic, N. Duic, A 100% renewable energy system in the year 2050: the case of Macedonia. Energy 48(1), 80–87 (2012)

    Article  Google Scholar 

  131. W.M. Haynes, D.R. Lide, Geophysics, astronomy, and acoustics; abundance of elements in the Earth’s crust and in the sea, in CRC Handbook of Chemistry and Physics, ed. by D. R. Lide, 85th edn., (CRC Press, Boca Raton, 2005)

    Google Scholar 

  132. C. Grosjean, P.H. Miranda, M. Perrin, P. Poggi, Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sust. Energ. Rev. 16(3), 1735–1744 (2012)

    Article  Google Scholar 

  133. J. Speirs, M. Contestabile, The future of lithium availability for electric vehicle batteries, in Behaviour of Lithium-Ion Batteries in Electric Vehicles, (Springer, Cham, 2018), pp. 35–57

    Chapter  Google Scholar 

  134. H. Vikström, S. Davidsson, M. Höök, Lithium availability and future production outlooks. Appl. Energy 110, 252–266 (2013)

    Article  CAS  Google Scholar 

  135. P.W. Gruber, P.A. Medina, G.A. Keoleian, S.E. Kesler, M.P. Everson, T.J. Wallington, Global lithium availability. J. Ind. Ecol. 15(5), 760–775 (2011)

    Article  Google Scholar 

  136. J.A. Ober, Mineral commodity summaries 2018 US Geological Survey (2018), https://minerals.usgs.gov/minerals/pubs/mcs/2018/mcs2018.pdf

  137. J. Hykawy, T. Chudnovsky, Global consumption of lithium from 2008 to 2016, by battery and non-battery use (in metric tons of lithium carbonate equivalent) (2015), http://static1.squarespace.com/static/535e7e2de4b088f0b623c597/t/55689238e4b09f7c8dacebf1/1432916536166/Stormcrow-Lithium+Industry+Report-May2015-Final.pdf and https://asia.minesandmoney.com/wp-content/uploads/sites/13/2017/04/5Apr17-FEaF-1515-Jon-Hykawy-Stormcrow-1.pdf

  138. A. Mancha, A look at some international lithium-ion battery recycling initiatives. J. Undergrad. Res. Univ. Ill. Chic. 9(1), 1–5 (2016). http://journals.uic.edu/ojs/index.php/JUR/article/download/7546/6038

    Google Scholar 

  139. T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, M. Rutz, Development of a recycling process for Li-ion batteries. J. Power Sources 207, 173–182 (2012)

    Article  CAS  Google Scholar 

  140. M. Asari, S.I. Sakai, Li-ion battery recycling and cobalt flow analysis in Japan. Resour. Conserv. Recycl. 81, 52–59 (2013)

    Article  Google Scholar 

  141. J. Heelan, E. Gratz, Z. Zheng, Q. Wang, M. Chen, D. Apelian, Y. Wang, Current and prospective Li-ion battery recycling and recovery processes. JOM 68(10), 2632–2638 (2016)

    Article  CAS  Google Scholar 

  142. G. Leblanc, The mechanism of lithium accumulation in the isolated frog skin epithelium. Pflugers Arch. 337(1), 1–18 (1972)

    Article  CAS  Google Scholar 

  143. G.E. Gillaspy, J.S. Keddie, K. Oda, W. Gruissem, Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family. Plant Cell 7(12), 2175–2185 (1995)

    CAS  Google Scholar 

  144. R.J. Baldessarini, L. Tondo, Recurrence risk in bipolar manic-depressive disorders after discontinuing lithium maintenance treatment: an overview. Clin. Drug Investig. 15(4), 337–351 (1998)

    Article  CAS  Google Scholar 

  145. H. Aral, A. Vecchio-Sadus, Toxicity of lithium to humans and the environment-a literature review. Ecotoxicol. Environ. Saf. 70(3), 349–356 (2008)

    Article  CAS  Google Scholar 

  146. A.W. Jones, P. Holmgren, Urine/blood ratios of ethanol in deaths attributed to acute alcohol poisoning and chronic alcoholism. Forensic Sci. Int. 135(3), 206–212 (2003)

    Article  CAS  Google Scholar 

  147. J. Pessoa, C. Grande, Thermoanalytical and kinetic study of lubricating lithium greases. J. Eng. Appl. Sci. 2(4), 718–721 (2007)

    Google Scholar 

  148. K.B. Shedd, Cobalt Statistics and Information (2018), https://minerals.usgs.gov/minerals/pubs/commodity/cobalt/

  149. C. Perks, The role of cobalt in battery supply industrial minerals (2016), http://www.indmin.com/Article/3586106/The-role-of-cobalt-in-battery-supply.html

  150. J. Dewulf, G. Van der Vorst, K. Denturck, H. Van Langenhove, W. Ghyoot, J. Tytgat, K. Vandeputte, Recycling rechargeable lithium-ion batteries: a critical analysis of natural resource savings. Resour. Conserv. Recycl. 54(4), 229–234 (2010)

    Article  Google Scholar 

  151. M.J. Deng, F.L. Huang, I.W. Sun, W.T. Tsai, J.K. Chang, An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity. Nanotechnology 20(17), 175602–175621 (2009)

    Article  CAS  Google Scholar 

  152. J. Deign, Why lithium isn’t the big worry for lithium-ion batteries (2015), https://www.greentechmedia.com/articles/read/Why-Lithium-Isnt-the-Big-Worry-for-Li-ion

  153. D.H.P. Kang, M. Chen, O.A. Ogunseitan, Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ. Sci. Technol. 47(10), 5495–5503 (2013)

    Article  CAS  Google Scholar 

  154. K. Ishihara, N. Kihira, N. Terada, T. Iwahori, K. Nishimura, Life cycle analysis of large-size lithium-ion secondary batteries developed in the Japanese national project, in Proceedings from 5th Ecobalance Conference (Tsukuba, 2002, Nov), http://www.gbv.de/dms/tib-ub-hannover/494638826.pdf

  155. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005)

    Article  CAS  Google Scholar 

  156. P.L.S.G. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496–499 (2000)

    Article  CAS  Google Scholar 

  157. S. Bashir, J. Liu, H. Zhang, X. Sun, J. Guo, Bandgap evaluations of metal-inserted titania nanomaterials. J. Nanopart. Res. 15(4), 1572–1582 (2013)

    Article  CAS  Google Scholar 

  158. G.G. Amatucci, N. Pereira, Fluoride-based electrode materials for advanced energy storage devices. J. Fluor. Chem. 128(4), 243–262 (2007)

    Article  CAS  Google Scholar 

  159. D.R. Sadoway, B. Huang, P.E. Trapa, P.P. Soo, P. Bannerjee, A.M. Mayes, Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries. J. Power Sources 97, 621–623 (2001)

    Article  Google Scholar 

  160. K.T. Nam, D.W. Kim, P.J. Yoo, C.Y. Chiang, N. Meethong, P.T. Hammond, A.M. Belcher, Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312(5775), 885–888 (2006)

    Article  CAS  Google Scholar 

  161. R.J. Hoare, P.M. Harrison, T.G. Hoy, Structure of horse-spleen apoferritin at 6 Å resolution. Nature 255(5510), 653–654 (1975)

    Article  CAS  Google Scholar 

  162. A.G. MacDiarmid, L.S. Yang, W.S. Huang, B.D. Humphrey, Polyaniline: electrochemistry and application to rechargeable batteries. Synth. Met. 18(1–3), 393–398 (1987)

    Article  CAS  Google Scholar 

  163. P. Novák, K. Müller, K.S.V. Santhanam, O. Haas, Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97(1), 207–282 (1997)

    Article  Google Scholar 

  164. P. Novák, O. Inganäs, R. Bjorklund Composite polymer positive electrodes in solid - state lithium secondary batteries. J. Electrochem. Soc. 134(6), 1341–1345 (1987).

    Article  Google Scholar 

  165. H. Chen, M. Armand, G. Demailly, F. Dolhem, P. Poizot, J.M. Tarascon, From biomass to a renewable LiXC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1(4), 348–355 (2008)

    Article  CAS  Google Scholar 

  166. P. Raveendran, J. Fu, S.L. Wallen, Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125(46), 13940–13941 (2003)

    Article  CAS  Google Scholar 

  167. T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P.G. Bruce, Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128(4), 1390–1393 (2006)

    Article  CAS  Google Scholar 

  168. M. Rosso, C. Brissot, A. Teyssot, M. Dollé, L. Sannier, J.M. Tarascon, S. Lascaud, Dendrite short-circuits and fuse effect on Li/polymer/Li cells. Electrochim. Acta 51(25), 5334–5340 (2006)

    Article  CAS  Google Scholar 

  169. F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, X. Liu, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135(11), 4450–4456 (2013)

    Article  CAS  Google Scholar 

  170. J. Qian, W. Xu, P. Bhattacharya, M. Engelhard, W.A. Henderson, Y. Zhang, J.G. Zhang, Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy 15, 135–144 (2015)

    Article  CAS  Google Scholar 

  171. X. Ren, Y. Zhang, M.H. Engelhard, Q. Li, J.G. Zhang, W. Xu, Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives. ACS Energy Lett. 3, 14–19 (2017)

    Article  CAS  Google Scholar 

  172. X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27(10) (2017). https://doi.org/10.1002/adfm.201605989

    Article  CAS  Google Scholar 

  173. J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.G. Zhang, High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362–6371 (2015)

    Article  CAS  Google Scholar 

  174. H. Yoon, P.C. Howlett, A.S. Best, M. Forsyth, D.R. MacFarlane, Fast charge/discharge of Li metal batteries using an ionic liquid electrolyte. J. Electrochem. Soc. 160(10), A1629–A1637 (2013)

    Article  CAS  Google Scholar 

  175. Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 136(13), 5039–5046 (2014)

    Article  CAS  Google Scholar 

  176. N. Togasaki, T. Momma, T. Osaka, Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium-oxygen battery. J. Power Sources 307, 98–104 (2016)

    Article  CAS  Google Scholar 

  177. B. Liu, W. Xu, P. Yan, S.T. Kim, M.H. Engelhard, X. Sun, J.G. Zhang, Stabilization of Li metal anode in DMSO-based electrolytes via optimization of salt–solvent coordination for Li–O2 batteries. Adv. Energy Mater. 7(14) (2017). https://doi.org/10.1002/aenm.201602605

    Article  CAS  Google Scholar 

  178. B. Liu, W. Xu, P. Yan, X. Sun, M.E. Bowden, J. Read, J.G. Zhang, Enhanced cycling stability of rechargeable Li–O2 batteries using high-concentration electrolytes. Adv. Funct. Mater. 26(4), 605–613 (2016)

    Article  CAS  Google Scholar 

  179. J. Zheng, J.A. Lochala, A. Kwok, Z.D. Deng, J. Xiao, Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Adv. Sci. (2017). https://doi.org/10.1002/advs.201700032

    Article  CAS  Google Scholar 

  180. Y. Yamada, A. Yamada, Superconcentrated electrolytes for lithium batteries. J. Electrochem. Soc. 162(14), A2406–A2423 (2015)

    Article  CAS  Google Scholar 

  181. J. Zheng, M.H. Engelhard, D. Mei, S. Jiao, B.J. Polzin, J.G. Zhang, W. Xu, Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2(3), 17012–17015 (2017)

    Article  CAS  Google Scholar 

  182. S. Jiao, J. Zheng, Q. Li, X. Li, M.H. Engelhard, R. Cao, W. Xu, Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries. Joule 2(1), 110–124 (2018)

    Article  CAS  Google Scholar 

  183. J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, J.G. Zhang, Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26(39), 7094–7102 (2016)

    Article  CAS  Google Scholar 

  184. J.W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195(15), 4554–4569 (2010)

    Article  CAS  Google Scholar 

  185. R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J.P. Bonnet, R. Denoyel, Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12(5), 452–457 (2013)

    Article  CAS  Google Scholar 

  186. S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, T. Asaoka, All-solid-state lithium-ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53–56 (2013)

    Article  CAS  Google Scholar 

  187. A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2(4), 16103–16107 (2017)

    Article  CAS  Google Scholar 

  188. M. Kotobuki, H. Munakata, K. Kanamura, Y. Sato, T. Yoshida, Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode. J. Electrochem. Soc. 157(10), A1076–A1079 (2010)

    Article  CAS  Google Scholar 

  189. L. Cheng, E.J. Crumlin, W. Chen, R. Qiao, H. Hou, S.F. Lux, K. Persson, The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet-type solid electrolytes. Phys. Chem. Chem. Phys. 16(34), 18294–18300 (2014)

    Article  CAS  Google Scholar 

  190. X. Han, Y. Gong, K.K. Fu, X. He, G.T. Hitz, J. Dai, Y. Mo, Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16(5), 572–579 (2017)

    Article  CAS  Google Scholar 

  191. W. Luo, Y. Gong, Y. Zhu, Y. Li, Y. Yao, Y. Zhang, E.D. Wachsman, Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater. 29(22) (2017). https://doi.org/10.1002/adma.201606042

    Article  CAS  Google Scholar 

  192. K.K. Fu, Y. Gong, J. Dai, A. Gong, X. Han, Y. Yao, Y. Li, Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. 113(26), 7094–7099 (2016)

    Article  CAS  Google Scholar 

  193. Y. Li, W. Zhou, X. Chen, X. Lü, Z. Cui, S. Xin, J.B. Goodenough, Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc. Natl. Acad. Sci. 113(47), 13313–13317 (2016)

    Article  CAS  Google Scholar 

  194. Z. Guo, J. Zhu, J. Feng, S. Du, Direct in situ observation and explanation of lithium dendrite of commercial graphite electrodes. RSC Adv. 5(85), 69514–69521 (2015)

    Article  CAS  Google Scholar 

  195. A.C. Kozen, C.F. Lin, O. Zhao, S.B. Lee, G.W. Rubloff, M. Noked, Stabilization of Lithium metal anodes by hybrid artificial solid electrolyte interphase. Chem. Mater. 29(15), 6298–6307 (2017)

    Article  CAS  Google Scholar 

  196. G. Zheng, S.W. Lee, Z. Liang, H.W. Lee, K. Yan, H. Yao, Y. Cui, Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9(8), 618–623 (2014)

    Article  CAS  Google Scholar 

  197. H. Ye, S. Xin, Y.X. Yin, J.Y. Li, Y.G. Guo, L.J. Wan, Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J. Am. Chem. Soc. 139(16), 5916–5922 (2017)

    Article  CAS  Google Scholar 

  198. Z. Tu, M.J. Zachman, S. Choudhury, S. Wei, L. Ma, Y. Yang, L.A. Archer, Nanoporous hybrid electrolytes for high-energy batteries based on reactive metal anodes. Adv. Energy Mater. 7(8) (2017). https://doi.org/10.1002/aenm.201602367

    Article  CAS  Google Scholar 

  199. K. Miyahara, Y. Jin, H. Munakata, K. Kanamura, 3DOM Polyimide Separator for Rechargeable Lithium Batteries with High Rate Performance in Meeting Abstracts (No. 2) (The Electrochemical Society, 2012, June), pp. 107–107

    Google Scholar 

  200. Z. Liang, G. Zheng, C. Liu, N. Liu, W. Li, K. Yan, Y. Cui, Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 15(5), 2910–2916 (2015)

    Article  CAS  Google Scholar 

  201. Q. Yun, Y.B. He, W. Lv, Y. Zhao, B. Li, F. Kang, Q.H. Yang, Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 28(32), 6932–6939 (2016)

    Article  CAS  Google Scholar 

  202. L. Yu, N.L. Canfield, S. Chen, H. Lee, X. Ren, M.H. Engelhard, J.G. Zhang, Enhanced stability of lithium metal anode by using a 3D porous nickel substrate. ChemElectroChem 5(5), 761–769 (2018)

    Article  CAS  Google Scholar 

  203. A. Zhamu, G. Chen, C. Liu, D. Neff, Q. Fang, Z. Yu, B.Z. Jang, Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Environ. Sci. 5(2), 5701–5707 (2012)

    Article  CAS  Google Scholar 

  204. X. Ji, D.Y. Liu, D.G. Prendiville, Y. Zhang, X. Liu, G.D. Stucky, Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today 7(1), 10–20 (2012)

    Article  CAS  Google Scholar 

  205. C.P. Yang, Y.X. Yin, S.F. Zhang, N.W. Li, Y.G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058–8067 (2015)

    Article  CAS  Google Scholar 

  206. L.L. Lu, J. Ge, J.N. Yang, S.M. Chen, H.B. Yao, F. Zhou, S.H. Yu, Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 16(7), 4431–4437 (2016)

    Article  CAS  Google Scholar 

  207. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)

    Article  CAS  Google Scholar 

  208. E. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8(8), 2277–2282 (2008)

    Article  CAS  Google Scholar 

  209. X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4), 3333–3338 (2011)

    Article  CAS  Google Scholar 

  210. D. Lin, Y. Liu, Z. Liang, H.W. Lee, J. Sun, H. Wang, Y. Cui, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11(7), 626–632 (2016)

    Article  CAS  Google Scholar 

  211. W. Liu, D. Lin, A. Pei, Y. Cui, Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J. Am. Chem. Soc. 138(47), 15443–15450 (2016)

    Article  CAS  Google Scholar 

  212. H. Wu, Y. Cao, L. Geng, C. Wang, In situ formation of stable interfacial coating for high performance lithium metal anodes. Chem. Mater. 29(8), 3572–3579 (2017)

    Article  CAS  Google Scholar 

  213. W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y.M. Chiang, Y. Cui, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436–7444 (2015)

    Article  CAS  Google Scholar 

  214. Y. Zhang, J. Qian, W. Xu, S.M. Russell, X. Chen, E. Nasybulin, F. Ding, Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 14(12), 6889–6896 (2014)

    Article  CAS  Google Scholar 

  215. S.M. Wood, C.H. Pham, R. Rodriguez, S.S. Nathan, A.D. Dolocan, H. Celio, C.B. Mullins, K+ reduces lithium dendrite growth by forming a thin, less-resistive solid electrolyte interphase. ACS Energy Lett. 1(2), 414–419 (2016)

    Article  CAS  Google Scholar 

  216. C. Yan, X.B. Cheng, C.Z. Zhao, J.Q. Huang, S.T. Yang, Q. Zhang, Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: the role of polysulfides on lithium anode. J. Power Sources 327, 212–220 (2016)

    Article  CAS  Google Scholar 

  217. S. Xiong, K. Xie, Y. Diao, X. Hong, On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium-sulfur batteries. J. Power Sources 236, 181–187 (2013)

    Article  CAS  Google Scholar 

  218. L.A.W. Ellingsen, G. Majeau-Bettez, B. Singh, A.K. Srivastava, L.O. Valøen, A.H. Strømman, Life cycle assessment of a lithium-ion battery vehicle pack. J. Ind. Ecol. 18(1), 113–124 (2014)

    Article  CAS  Google Scholar 

  219. US Energy Information Administration (EIA), How much electricity is used for lighting in the United States? (2017), https://www.eia.gov/tools/faqs/faq.php?id=307andt=10

  220. J.F. Peters, M. Baumann, B. Zimmermann, J. Braun, M. Weil, The environmental impact of Li-Ion batteries and the role of key parameters–a review. Renew. Sust. Energ. Rev. 67, 491–506 (2017)

    Article  CAS  Google Scholar 

  221. J. Das, A.P. Abraham, P.C. Ghosh, R. Banerjee, Life cycle energy and carbon footprint analysis of photovoltaic battery microgrid system in India. Clean Techn. Environ. Policy, 1–16 (2017)

    Google Scholar 

  222. P. Yodovard, J. Khedari, J. Hirunlabh, The potential of waste heat thermoelectric power generation from diesel cycle and gas turbine cogeneration plants. Energy Sources 23(3), 213–224 (2001)

    Article  Google Scholar 

  223. J.P. Barton, D.G. Infield, Energy storage and its use with wind power, in Power Engineering Society General Meeting, 2005. IEEE, (IEEE, Piscataway, 2005), pp. 1934–1938

    Google Scholar 

  224. Y.S. Mohammed, M.W. Mustafa, N. Bashir, Hybrid renewable energy systems for off-grid electric power: review of substantial issues. Renew. Sust. Energ. Rev. 35, 527–539 (2014)

    Article  Google Scholar 

  225. W. Kempton, J. Tomic, Vehicle-to-grid power implementation: from stabilizing the grid to supporting large-scale renewable energy. J. Power Sources 144(1), 280–294 (2005)

    Article  CAS  Google Scholar 

  226. A.M. Bernardes, D.C.R. Espinosa, J.S. Tenório, Recycling of batteries: a review of current processes and technologies. J. Power Sources 130(1–2), 291–298 (2004)

    Article  CAS  Google Scholar 

  227. K. McDermott, Cost of service regulation in the investor-owned electric utility industry Edison Electric Institute June (2012), http://www.ourenergypolicy.org/wp-content/uploads/2012/09/COSR_history_final.pdf

  228. J.D. Hamilton, Oil and the macroeconomy since World War II. J. Polit. Econ. 91(2), 228–248 (1983)

    Article  Google Scholar 

  229. M.A. Delucchi, M.Z. Jacobson, Providing all global energy with wind, water, and solar power, part II: reliability, system and transmission costs, and policies. Energy Policy 39(3), 1170–1190 (2011)

    Article  Google Scholar 

  230. J.P. Tomain, The dominant model of United States energy policy. Univ. Colo. Law Rev. 61, 355–394 (1990). http://www.ourenergypolicy.org/wp-content/uploads/2013/08/The-Dominant-Model-of-United-States-Energy-Policy.pdf

    Google Scholar 

  231. J. Kassakian, R. Schmalensee, G. Desgroseilliers, T. Heidel, K. Afridi, A. Farid, H. Michaels, The Future of the Electric Grid: An Interdisciplinary MIT Study (Massachusetts Institute of Technology, Cambridge, MA, 2011)

    Google Scholar 

  232. M.S. Dorsi, Piedmont environmental council v Ferc. Harv. Environ. Law Rev. 34, 593 (2010). http://paceeenvironmentalnotes.blogspot.com/2010/11/recent-law-review-articles-november.html

    Google Scholar 

  233. P.Z. Grossman, Energy shocks, crises and the policy process: a review of theory and application. Energy Policy 77, 56–69 (2015)

    Article  Google Scholar 

  234. K. Schneider, New York Times “Bush’s Energy Plan Emphasizes Gains in Output Over Efficiency”, Feb 9 1991 (1991), https://www.nytimes.com/1991/02/09/business/bush-s-energy-plan-emphasizes-gains-in-output-over-efficiency.html

  235. R.F. Hirsh, Power loss: the origins of deregulation and restructuring in the American electric utility system. J. Energy Lit. 9, 77–79 (2003)

    Google Scholar 

  236. G. Barbose, US Renewables Portfolio Standards: 2016 Annual Status Report, (2016), https://emp.lbl.gov/sites/all/files/lbnl-1005057.pdf

  237. J.W. Stoutenborough, M. Beverlin, Encouraging pollution-free energy: the diffusion of state net metering policies. Soc. Sci. Q. 89(5), 1230–1251 (2008)

    Article  Google Scholar 

  238. The US Internal Revenue Service (IRS), Residential Energy Credits (2017), https://www.irs.gov/pub/irs-pdf/f5695.pdf

  239. H. Bernton, W. Kovarik, S. Sklar, B. Griffin, R.J. Woolsey, The Forbidden Fuel a History of Power Alcohol (University of Nebraska Press, Lincoln/London, 2010)

    Google Scholar 

  240. W.R. Hartley, A.J. Englande, D.J. Harrington, Health risk assessment of groundwater contaminated with methyl tertiary butyl ether (MTBE). Water Sci. Technol. 39(10–11), 305–310 (1999)

    Article  CAS  Google Scholar 

  241. K.N. Rask, Clean air and renewable fuels: the market for fuel ethanol in the US from 1984 to 1993. Energy Econ. 20(3), 325–345 (1998)

    Article  Google Scholar 

  242. H. De Gorter, D.R. Just, The economics of a blend mandate for biofuels. Am. J. Agric. Econ. 91(3), 738–750 (2009)

    Article  Google Scholar 

  243. J. Meadowcroft, What about the politics? Sustainable development, transition management, and long-term energy transitions. Policy. Sci. 42(4), 323–340 (2009)

    Article  Google Scholar 

  244. A.J. Pahnke, W.E. Bettoney, Role of Lead Antiknocks in Modern Gasolines (No 710842) SAE Technical Paper (1971), https://www.sae.org/publications/technical-papers/content/710842/

  245. V. Thomas, A. Kwong, Ethanol as a lead replacement: phasing out leaded gasoline in Africa. Energy Policy 29(13), 1133–1143 (2001)

    Article  Google Scholar 

  246. R.L. Boeckx, B. Postl, F.J. Coodin, Gasoline sniffing and tetraethyl lead poisoning in children. Pediatrics 60(2), 140–145 (1977)

    CAS  Google Scholar 

  247. L. Partzsch, Biofuel research: perceptions of power and transition energy. Sustain. Soc. 7(1), 14–24 (2017)

    Article  Google Scholar 

  248. M. Mondou, G. Skogstad, D. Houle, Policy image resilience, multidimensionality, and policy image management: a study of US biofuel policy. J. Publ. Policy 34(1), 155–180 (2014)

    Article  Google Scholar 

  249. M.E. Kahn, Smog reduction’s impact on California county growth. J. Reg. Sci. 40(3), 565–582 (2000)

    Article  Google Scholar 

  250. G. Collantes, D. Sperling, The origin of California’s zero-emission vehicle mandate. Transp. Res. A Policy Pract. 42(10), 1302–1313 (2008)

    Article  Google Scholar 

  251. R.J.F. Hoogma, Exploiting technological niches: strategies for experimental introduction of electric vehicles (2000), https://research.utwente.nl/en/publications/exploiting-technological-niches-strategies-for-experimental-intro

  252. L.C. Stokes, H.L. Breetz, Politics in the US energy transition: case studies of solar, wind, biofuels and electric vehicles policy. Energy Policy 113, 76–86 (2018)

    Article  Google Scholar 

  253. C. E. Ciocirlan, B. Yandle The political economy of green taxation in OECD countries. Eur. J. Law Econ. 15(3), 203–218 (2003).

    Article  Google Scholar 

  254. M.J. Richards, Regulating automakers for climate change: US reforms in global context. Environ. Policy Gov. 26(6), 498–509 (2016)

    Article  Google Scholar 

  255. The US Internal Revenue Service (IRS), Plug-In Electric Drive Vehicle Credit (IRC 30D) (2014), https://www.irs.gov/businesses/plug-in-electric-vehicle-credit-irc-30-and-irc-30d

  256. L.C. Stokes, C. Warshaw, Renewable energy policy design and framing influence public support in the United States. Nat. Energy 2(8), 17107–17117 (2017)

    Article  Google Scholar 

  257. M. Fletcher, Obama leaves DC to sign stimulus bill Washington Post (2009, Feb), http://www.washingtonpost.com/wp-dyn/content/article/2009/02/17/AR2009021700221.html

  258. S.L. Sutherland, US Energy Policy in the Trump Administration and 115th Congress (2017, Jan), https://www.ey.com/Publication/vwLUAssets/EY-us-energy-policy-in-the-trump-administration/$File/EY-us-energy-policy-in-the-trump-administration.pdf

  259. D. Trump, Executive Order Expediting Environmental Reviews and Approvals for High Priority Infrastructure Projects (2017), https://www.whitehouse.gov/presidential-actions/executive-order-expediting-environmental-reviews-approvals-high-priority-infrastructure-projects/

  260. R. Priebus, Memorandum for the Heads of Executive Departments and Agencies (2017), https://www.whitehouse.gov/presidential-actions/memorandum-heads-executive-departments-agencies/

  261. D. Trump, President Trump Takes Action to Expedite Priority Energy and Infrastructure Projects (2017), https://www.whitehouse.gov/briefings-statements/president-trump-takes-action-expedite-priority-energy-infrastructure-projects/

  262. M. Mulvaney, Presidential Executive Order on Reducing Regulation and Controlling Regulatory Costs (2017), https://www.whitehouse.gov/presidential-actions/presidential-executive-order-reducing-regulation-controlling-regulatory-costs/

  263. W. Ross, Presidential Memorandum Regarding Construction of American Pipelines (2017), https://www.whitehouse.gov/presidential-actions/presidential-memorandum-regarding-construction-american-pipelines/

  264. W. Ross, Investigating the impact of steel imports (2017), http://thehill.com/policy/finance/329743-trump-administration-investigating-effect-of-steel-imports-on-us

  265. S.T. Mnuchin, Reducing tax regulatory burdens (2017), https://www.whitehouse.gov/presidential-actions/presidential-executive-order-identifying-reducing-tax-regulatory-burdens/

  266. W. Ross, Investigating the impact of aluminum imports (2017), https://www.whitehouse.gov/the-press-office/2017/04/27/presidential-memorandum-secretary-commerce

  267. W. Ross, Reducing the US trade deficit (2017), https://www.federalregister.gov/documents/2017/04/17/2017-07827/public-comments-and-hearing-regarding-administration-report-on-significant-trade-deficits

  268. W. Ross, Reviewing domestic manufacturing regulation (2017), https://www.federalregister.gov/documents/2017/03/07/2017-04516/impact-of-federal-regulations-on-domestic-manufacturing

  269. D. Trump, Presidential Executive Order on Buy American and Hire American (2017), https://www.whitehouse.gov/presidential-actions/presidential-executive-order-buy-american-hire-american/

Download references

Acknowledgments

The authors wish to thank the College of Arts and Sciences (CoA&S, Dr. Bashir, 160336-00002), ACS-PRF (Liu), SFFP (Bashir) and Welch Departmental Grant (AC-0006, Dr. Hahn), NSF-MRI acquisition (Liu), URA (160315-00015, Liu), and RDF grants (160345-00005, Liu), at Texas A&M University-Kingsville (TAMUK), for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajid Bashir .

Editor information

Editors and Affiliations

Additional information

This chapter is dedicated to Professor Peter J. Derrick who passed away in March 2017 during the writing of this chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bashir, S., KingSanders, N., Liu, J.L. (2019). Technology Policy and Road Map of Battery. In: Zhen, Q., Bashir, S., Liu, J. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58675-4_1

Download citation

Publish with us

Policies and ethics