Skip to main content

Abstract

This chapter examines crucial processes in the aquatic cycling of mercury (Hg) that may lead to microbial production of neurotoxic and bioaccumulative methylmercury (MeHg), and highlights environmental conditions in the Everglades that make it ideal for MeHg production and bioaccumulation. The role of complexation of Hg2+ in surface water, especially by dissolved organic matter (DOM), in the transport of mercury to sites of microbial methylation are discussed. Photochemical reactions important in Hg cycling in surface water are also discussed. A principal focus of the chapter is on the environmental conditions that promote MeHg production, especially the role of sulfide and DOM in transport of inorganic Hg into bacteria for methylation, and the types of bacteria that have the ability to methylate Hg. Finally, perturbations to the ecosystem (e.g., fire and drought) that have important effects on Hg cycling are discussed.

Author “George R. Aiken” is deceased at the time of publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpers CN, Hunerlach MP, May JT, Hothem RL, Taylor HE, Antweiler RC, De Wild JF, Lawler DA (2005) Geochemical characterization of water, sediment, and biota affected by mercury contamination and acidic drainage from historical gold mining, Greenhorn Creek, Nevada County, CA, 1999–2001. U.S. Geological Survey Scientific Investigations Report 2004-5251, 278 p. https://pubs.usgs.gov/sir/2004-5251/

  • Axelrad DA, Bellinger DC, Ryan LM, Woodruff TJ (2007) Dose-response relationship of prenatal mercury exposure and IQ: an integrative analysis of epidemiologic data. Environ Health Perspect 115:609–615

    Article  Google Scholar 

  • Benoit JM, Mason RP, Gilmour CC (1999) Estimation of mercury-sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria. Environ Toxicol Chem 18:2138–2141

    CAS  PubMed  Google Scholar 

  • Bloom NS, Gill GA, Cappellino S, Dobbs C, McShea L, Driscoll C, Mason R, Rudd J (1999) Speciation and cycling of mercury in Lavaca Bay, Texas, sediments. Environ Sci Technol 33:7–13

    Article  CAS  Google Scholar 

  • Christensen GA, Wymore AM, King AJ, Podar M, Hurt R Jr, Santillan EU, Soren A, Brandt CC, Brown SD, Palumbo AV, Wall JD, Gilmour CC, Elias DA (2016) Development and validation of broad-range qualitative and clade-specific quantitative molecular probes for assessing mercury methylation in the environment. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01271-16

    Article  CAS  Google Scholar 

  • Coquery M, Welbourn PM (1994) Mercury uptake from contaminated water and sediment by the rooted and submerged aquatic macrophyte Eriocaulon septangulare. Arch Environ Contam Toxicol 26:335–341

    Article  CAS  Google Scholar 

  • Drexel RT, Ushaitzer M, Ryan J, Aiken G, Nagy K (2002) Mercury(II) sorption to two Florida Everglades peats: evidence for strong and weak binding and competition by dissolved organic matter released from the peat. Environ Sci Technol 36:4058–4064

    Article  CAS  Google Scholar 

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47(10):4967–4983. https://doi.org/10.1021/es305071v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ericksen JA, Gustin MS, Schorran DE, Johnson DW, Lindberg SE, Coleman JS (2003) Accumulation of atmospheric mercury in forest foliage. Atmos Environ 37:1613–1622

    Article  CAS  Google Scholar 

  • Fleck JA, Grigal DF, Nater EA (1999) Mercury uptake by trees: an observational experiment. Water Air Soil Pollut 115:513–523

    Article  CAS  Google Scholar 

  • Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol 26:2281–2287

    Article  CAS  Google Scholar 

  • Gilmour CC, Krabbenhoft DP, Orem WO (2004) Appendix 2B-3: mesocosm studies to quantify how methylmercury in the Everglades responds to changes in mercury, sulfur, and nutrient loading. In: Redfield G (ed) 2004 Everglades consolidated report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, Johs A, Hurt RA Jr, Bailey KL, Elias DA (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol 47:11810–11820

    Article  CAS  Google Scholar 

  • Graham AM, Cameron-Burr KT, Hajic HA, Lee C, Msekela D, Gilmour CC (2017) Sulfurization of dissolved organic matter increases Hg–sulfide–dissolved organic matter bioavailability to a Hg-methylating bacterium. Environ Sci Technol 51(16):9080–9088. https://doi.org/10.1021/acs.est.7b02781

    Article  CAS  PubMed  Google Scholar 

  • Grandjean P, Herz KT (2011) Methylmercury and brain development: imprecision and underestimation of developmental neurotoxicity in humans. Mt Sinai J Med: J Transl Pers Med 78(1):107–118

    Article  Google Scholar 

  • Grandjean P, Satoh H, Murata K, Eto K (2010) Adverse effects of methylmercury: environmental health research implications. Environ Health Perspect 118(8):1137–1145

    Article  CAS  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24. https://doi.org/10.3109/10408449509089885

    Article  CAS  PubMed  Google Scholar 

  • Horvat M (1996) Mercury analysis and speciation in environmental samples. In: Baeyens W, Ebinghaus R, Vasiliev O (eds) Global and regional mercury cycles: sources, fluxes and mass balances. Kluwer Academic, Dordrecht. In cooperation with NATO Scientific Affairs Division, NATO ASI series (ASEN2, vol 21), pp 1–31

    Google Scholar 

  • Jay JA, Morel FM, Hemond HF (2000) Mercury speciation in the presence of polysulfides. Environ Sci Technol 34:2196–2200

    Article  CAS  Google Scholar 

  • Jayasenaa N, Frederick PC, Larkinb IL (2011) Endocrine disruption in white ibises (Eudocimus albus) caused by exposure to environmentally relevant levels of methylmercury. Aquat Toxicol 105:321–327

    Article  Google Scholar 

  • Jiang P, Liu G, Cui W, Cai Y (2018) Geochemical modeling of mercury speciation in surface water and implications on mercury cycling in the everglades wetland. Sci Total Environ 640–641:454–465

    Article  Google Scholar 

  • Kajiwara Y, Yasutake A, Adachi T, Hirayama K (1996) Methylmercury transport across the placenta via neutral amino acid carrier. Arch Toxicol 70(5):310–314

    Article  CAS  Google Scholar 

  • Kerper IE, Ballatori N, Clarkson TW (1992) Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am J Phys 262(5 Pt 2):R761–R765

    CAS  Google Scholar 

  • Krabbenhoft DP, Fink L (2001) Appendix 7–8: The effect of dry down and natural fires on mercury methylation in the Florida Everglades. In: Redfield G (ed) 2001 Everglades consolidated report. South Florida Water Management District, West Palm Beach, FL, 14 p

    Google Scholar 

  • Krabbenhoft DP, Sunderland EM (2013) Global change and mercury. Science 341:1457–1458. https://doi.org/10.1126/science.1242838

    Article  CAS  PubMed  Google Scholar 

  • Lindberg S, Bullock R, Ebinghaus R, Engstrom D, Feng X, Fitzgerald W, Pirrone N, Prestbo E, Seigneur CA (2007) Synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 36:19–32

    Article  CAS  Google Scholar 

  • Lu X, Liu Y, Johs A, Zhao L, Wang T, Yang Z, Lin H, Elias DA, Pierce EM, Liang L, Barkay T, Gu B (2016) Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis Bem. Environ Sci Technol 50(8):4366–4373. https://doi.org/10.1021/acs.est.6b00401

    Article  CAS  PubMed  Google Scholar 

  • Luo H-W, Yin X, Jubb AM et al (2017) Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation. Environ Pollut. 220: 1359-1365. https://doi.org/10.1016/j.envpol.2016.10.099

    Article  CAS  Google Scholar 

  • Maqbool F, Niaz K, Hassan FI, Khan F, Abdollahi M (2017) Immunotoxicity of mercury: pathological and toxicological effects. J Environ Sci Health C 35(1):29–46. https://doi.org/10.1080/10590501.2016.1278299

    Article  CAS  Google Scholar 

  • Marvin-DiPasquale MC, Oremland RS (1998) Bacterial methylmercury degradation in Florida Everglades peat sediment. Environ Sci Technol 32(17):2556–2563. https://doi.org/10.1021/es971099l

    Article  CAS  Google Scholar 

  • Marvin-DiPasquale M, Agee J, McGowan C, Oremland RS, Thomas M, Krabbenhoft D, Gilmour CC (2000) Methyl-mercury degradation pathways: a comparison among three mercury-impacted ecosystems. Environ Sci Technol 34(23):4908–4916. https://doi.org/10.1021/es0013125

    Article  CAS  Google Scholar 

  • May JT, Hothem RL, Alpers CN, Law MA (2000) Mercury bioaccumulation in fish in a region affected by historic gold mining: the South Yuba River, Deer Creek, and Bear River watersheds, California, 1999. U.S. Geological Survey Open-File Report 00-367, 30 p. https://pubs.water.usgs.gov/ofr00-367/

  • Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566

    Article  Google Scholar 

  • Motts JA, Shirley DL, Silbergeld EK, Nyland JF (2014) Novel biomarkers of mercury-induced autoimmune dysfunction: a cross-sectional study in Amazonian Brazil. Environ Res 132:12–18. https://doi.org/10.1016/j.envres.2014.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers GJ, Davidson PW (1998) Prenatal methylmercury exposure and children: neurologic, developmental, and behavioral research. Environ Health Perspect 106(Suppl 3):841–847

    Article  Google Scholar 

  • Orem W, Newman S, Osborne TZ, Reddy KR (2015) Projecting changes in Everglades soil biogeochemistry for carbon and other key elements, to possible 2060 climate and hydrologic scenarios. Environ Manag 55:776–798

    Article  Google Scholar 

  • Ortiz VL, Mason RP, Ward JE (2015) An examination of the factors influencing mercury and methylmercury particulate distributions, methylation and demethylation rates in laboratory-generated marine snow. Mar Chem 177:753–762

    Article  CAS  Google Scholar 

  • Pichery C, Bellanger M, Zmirou-Navier D, Fréry N, Cordier S, Roue-LeGall A, Hartemann P, Grandjean P (2012) Economic evaluation of health consequences of prenatal methylmercury exposure in France. Environ Health (Open Access) 11(1):53. https://doi.org/10.1186/1476-069X-11-53

  • Poulin BA, Ryan JN, Nagy KI, Stubbins A, Dittmar T, Orem W, Krabbenhoft DP, Aiken GR (2017) Spatial dependence of reduced sulfur in everglades dissolved organic matter controlled by sulfate enrichment. Environ Sci Technol 51:3630–3639

    Article  CAS  Google Scholar 

  • Qian Y, Yin X, Lin H, Rao B, Brooks SC, Liang L, Gu B (2014) Why dissolved organic matter enhances photodegradation of methylmercury. Environ Sci Technol Lett 1(10):426–431

    Article  CAS  Google Scholar 

  • Roman HA, Walsh TL, Coull BA, Dewailly E, Guallar E, Hattis D, Mariën K, Schwartz J, Stern AH, Virtanen JK, Rice G (2011) Evaluation of the cardiovascular effects of methylmercury exposures: current evidence supports development of a dose–response function for regulatory benefits analysis. Environ Health Perspect 119(5):607–614. https://doi.org/10.1289/ehp.1003012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto M, Itai T, Murata K (2017) Effects of prenatal methylmercury exposure: from Minamata disease to environmental health studies. Nihon Eiseigaku Zasshi 72(3):140–148. https://doi.org/10.1265/jjh.72.140

    Article  CAS  PubMed  Google Scholar 

  • Schroeder WH, Munthe J, Lindqvist O (1989) Cycling of mercury between water, air, and soil compartments of the environment. Water Air Soil Pollut 48(3–4):337–347

    CAS  Google Scholar 

  • Science for Environment Policy (2017) Tackling mercury pollution in the EU and worldwide. In-depth report 15 produced for the European Commission, DG Environment by the Science Communication Unit, UWE, Bristol. http://ec.europa.eu/science-environment-policy

  • Selin N (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34:43–63

    Article  Google Scholar 

  • Seller P, Kelly CA, Rudd JWM, MacHutchon AR (1996) Photodegradation of methylmercury in lakes. Nature 380:694–697

    Article  Google Scholar 

  • Stamenkovic J, Gustin MS (2009) Nonstomatal versus stomatal uptake of atmospheric mercury. Environ Sci Technol 43(5):1367–1372. https://doi.org/10.1021/es801583a

    Article  CAS  PubMed  Google Scholar 

  • Tan SW, Meiller JC, Mahaffey KR (2009) The endocrine effects of mercury in humans and wildlife. Crit Rev Toxicol 39(3):228–269. https://doi.org/10.1080/10408440802233259

    Article  CAS  PubMed  Google Scholar 

  • Wängberg I, Moldanová J, Munthe J (2010) Mercury cycling in the environment—effects of climate change. IVL Swedish Environmental Research Institute. Report B1921, 23 p. https://www.ivl.se/download/18.4b1c947d15125e72dda163c/1449751893676/B1921.pdf

Download references

Acknowledgments

This work was supported by the USGS Priority Ecosystems Studies Program for South Florida—Nick Aumen, Program Executive. Any use of trade, firm, or product names in this report is for descriptive purposes only and does not imply endorsement by the USGS or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Orem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orem, W.H., Krabbenhoft, D.P., Poulin, B.A., Aiken, G.R. (2019). Aquatic Cycling of Mercury. In: Rumbold, D., Pollman, C., Axelrad, D. (eds) Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration. Springer, Cham. https://doi.org/10.1007/978-3-030-32057-7_1

Download citation

Publish with us

Policies and ethics