Skip to main content

Chapter 9 Nanomaterials and Nanotechnologies for Photon Radiation Enhanced Cancer Treatment

  • Conference paper
  • First Online:
Quantum Nano-Photonics (NATO 2017)

Included in the following conference series:

  • 1794 Accesses

Abstract

Nanotechnology plays an increasingly important role in the diagnostics, prognostics, theranostic and management of targeted cancer treatments. Radiotherapy is a golden standard for cancer treatment: it requires high accuracy in delivering treatment to cancer patients to reduce toxicity to surrounding tissues and relies on both adequate imaging technologies and precise treatment dose calculations. Since the positive outcome of cancer treatment depends on a proper radiation dose delivery to the target, theoretical dose planning for each patient verified by experimental dose assessment is absolutely necessary. Introduction of the innovative nanotechnologies requires new improved dose delivery concepts that relay on utilization of new nanoscale materials. Materials on the nanoscale such as quantum dots, metal nanoparticles, combined core-shell nanoparticles, drug carriers provide many unique properties and are emerging with promising applications for their implementation in the development of the new cancer treatment strategies.

A quantum physical approach on how nanotechnology and nanomaterials are contributing to the improvement of cancer treatment and monitoring including some development tendencies of nanomaterials for radiation detection and imaging are discussed in this paper with the aim of providing some insights and ideas on future development of photon radiation based nanomedical applications for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. COMA (2007) Publicly available specification 136: terminology for nanomaterials. British Standards Institute, London

    Google Scholar 

  2. Freitas RA (1999) Nanomedicine, Volume 1: Basic capabilities. Landes Bioscience, Austin

    Google Scholar 

  3. Yao C, Lu J (2012) Introduction to nanomedicine. In: Webster T (ed) Nanomedicine: technologies and applications. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  4. Adlienė D (2017) Radiation interaction with condensed matter. In: Sun Y, Chmielewski AG (eds) Applications of ionizing radiation in materials processing, vol 1. Institute of Nuclear Chemistry and Technology, Warsaw, pp 33–54

    Google Scholar 

  5. Bethe H, Ashkin J (1953) In: Segré E (ed) Experimental nuclear physics. Wiley, New York, p 253

    Google Scholar 

  6. Report 90: Key data for ionizing-radiation dosimetry: measurement standards and applications. J Int Comm Radiat Unit Measure 14(1), 21–30 (2014)

    Google Scholar 

  7. Podgorsak EB (2010) Radiation physics for medical physicists. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  8. Miglierini M (2017) Detectors of radiation. Lecture for the E. Wigner course. http://www.nuc.elf.stuba.sk/bruno/presentations/detectors/htm. Last accessed 2017/10/05

  9. Behjati S et al (2016) Mutational signatures of ionizing radiation in second malignancies. Nat Commun 7:12605. https://doi.org/10.1038/ncomms12605

    Article  ADS  Google Scholar 

  10. Lukšienė Ž (2003) Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. Medicina 39(12):1137–1150

    Google Scholar 

  11. Hu Z, Oleinick N, Hamblin MR (2014) Photodynamic therapy as an emerging treatment modality for cancer and non-cancer diseases. J Anal Bioanal Tech S1(e001). https://doi.org/10.4172/2155-9872.S1-e001

  12. Debele TA, Peng S, Tsai H-C (2015) Drug carrier for photodynamic cancer therapy. Int J Mol Sci 16(9):22094–22136

    Article  Google Scholar 

  13. Majumdar P, Nomula R, Zhao J (2014) Activatable triplet photosensitizers: magic bullets for targeted photodynamic therapy. J Mater Chem C 2:5982–5997

    Article  Google Scholar 

  14. Agostinis P et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281

    Article  Google Scholar 

  15. Food and Drug Administration (FDA) – Center for Drug Evaluation and Research. Approved Drug Products. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm. Last accessed 2017/09/30

  16. European Medicines Agency (EMA). Human Medicines. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/landing/epar_search.jsp&mid=WC0b01ac058001d124. Last accessed 2017/09/30

  17. Retif P et al (2015) Nanoparticles for radiation therapy enhancement: the key parameters. Theranostics 5(9):1030–1044

    Article  Google Scholar 

  18. Bera D et al (2010) Quantum dots and their multimodal applications: a review. Materials 3:2260–2345

    Article  ADS  Google Scholar 

  19. Juzenas P et al (2008) Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 60(15):1600–1614

    Article  Google Scholar 

  20. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  Google Scholar 

  21. Hollingsworth JA, Klimov VI (2004) Soft chemical synthesis and manipulation of semiconductor nanocrystals. In: Klimov VI (ed) Semiconductor and metal nanocrystals: synthesis and electronic and optical properties. Marcel Dekker, New York, pp 1–64

    Google Scholar 

  22. Kippeny T, Swafford LA, Rosenthal SJ (2002) Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box. J Chem Educ 79:1094–1100

    Article  Google Scholar 

  23. Norris DJ (2004) Electronic structure in semiconductor nanocrystals. In: Klimov VI (ed) Semiconductor and metal nanocrystals: synthesis and electronic and optical properties. Marcel Dekker, New York, pp 65–102

    Google Scholar 

  24. Lakowicz JR (2006) Introduction to fluorescence, principles of fluorescence spectroscopy. Springer, New York, pp 1–26

    Google Scholar 

  25. Juzeniene A, Nielsen KP, Moan J (2006) Biophysical aspects of photodynamic therapy. J Environ Pathol Toxicol Oncol 25:7–28

    Article  Google Scholar 

  26. Bawendi MG et al (1992) Luminescence properties of CdSe quantum crystallites: resonance between interior and surface localized states. J Chem Phys 96:946–954

    Article  ADS  Google Scholar 

  27. Samia AC, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125:15736–15737

    Article  Google Scholar 

  28. Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1757

    Article  Google Scholar 

  29. Krasnovsky AA (2007) Primary mechanisms of photoactivation of molecular oxygen. History of development and the modern status of research. Biochemistry (Mosc) 72:1065–1080

    Article  Google Scholar 

  30. Petryayeva E et al (2013) Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 67(3):215–252

    Article  ADS  Google Scholar 

  31. Bakalova R et al (2004) Quantum dots as photosensitizers? Nat Biotechnol 22:1360–1361

    Article  Google Scholar 

  32. Park YS et al (2006) X-ray absorption of gold nanoparticles with thin silica shell. J Nanosci Nanotechnol 6:3503–3506

    Article  Google Scholar 

  33. Diamond I et al (1972) Photodynamic therapy of malignant tumours. Lancet 2:1175–1177

    Article  Google Scholar 

  34. Kochevar IE (2004) Singlet oxygen signaling: from intimate to global. Sci STKE 2004:e7

    Google Scholar 

  35. Moan J (1990) On the diffusion length of singlet oxygen in cells and tissues. J Photochem Photobiol B Biol 6:343–344

    Article  Google Scholar 

  36. Clo E et al (2007) Control and selectivity of photosensitized singlet oxygen production: challenges in complex biological systems. Chembiochem 8:475–481

    Article  Google Scholar 

  37. Starkey JR et al (2008) New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse. Clin Cancer Res 14:6564–6573

    Article  Google Scholar 

  38. Collins HA et al (2008) Blood vessel closure using photosensitisers engineered for two-photon excitation. Nat Photonics 2:420–424

    Article  Google Scholar 

  39. Lilge L, Portnoy M, Wilson BC (2000) Apoptosis induced in vivo by photodynamic therapy in normal brain and intracranial tumour tissue. Br J Cancer 83:1110–1117

    Article  Google Scholar 

  40. Luo D et al (2017) Chemophototherapy: an emerging treatment option for solid tumors review. Adv Sci 4:24

    ADS  Google Scholar 

  41. Wilson BC (2006) Photonic and non-photonic based nanoparticles in cancer imaging and therapeutics. In: Dubowski J, Tanev S (eds) Photon-based nanoscience and nanobiotechnology. Springer, Dordrecht, pp 121–151

    Chapter  Google Scholar 

  42. Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60:1627–1637

    Article  Google Scholar 

  43. Kim S et al (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 129:2669–2675

    Article  Google Scholar 

  44. Valentin J (2003) Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (Wr). International Commission on Radiological Protection

    Google Scholar 

  45. Starkewolf ZB et al (2013) X-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy. Chem Commun 49:2545–2547

    Article  Google Scholar 

  46. Carter JD et al (2007) Nanoscale energy deposition by X-ray absorbing nanostructures. J Phys Chem B 111:11622–11625

    Article  Google Scholar 

  47. Chen W, Zhang J (2006) Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J Nanosci Nanotechnol 6:1159–1166

    Article  Google Scholar 

  48. Herold DM et al (2000) Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol 76:1357–1364

    Article  Google Scholar 

  49. Guo T. Nanoparticle radiosensitizers. 2006WO2006037081

    Google Scholar 

  50. Praetorius NP, Mandal TK (2007) Engineered nanoparticles in cancer therapy. Rec Pat Drug Deliv Formul 1:37–51

    Article  Google Scholar 

  51. Chen W (2008) Nanoparticle fluorescence based technology for biological applications. J Nanosci Nanotechnol 8:1019–1051

    Article  Google Scholar 

  52. O’Donoghue JA, Wheldon TE (1996) Targeted radiotherapy using Auger electron emitters. Phys Med Biol 41:1973–1992

    Article  Google Scholar 

  53. Hainfeld JF et al (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60:977–985

    Article  Google Scholar 

  54. Townley HE, Kim J, Dobson PJ (2012) In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles. Nanoscale 4:5043–5050

    Article  ADS  Google Scholar 

  55. Mirjolet C et al (2013) The radiosensitization effect of titanate nanotubes as a new tool in radiation therapy for glioblastoma: a proof-of-concept. Radiother Oncol 108:136–142

    Article  Google Scholar 

  56. Takahashi J, Misawa M (2007) Analysis of potential radiosensitizing materials for X-ray-induced photodynamic therapy. Nanobiotechnol 3:116–126

    Article  Google Scholar 

  57. Yang W et al (2008) Semiconductor nanoparticles as energy mediators for photosensitizer-enhanced radiotherapy. Int J Radiat Oncol Biol Phys 72:633–635

    Article  Google Scholar 

  58. Fukumori Y, Ichikawa H (2006) Nanoparticles for cancer therapy and diagnosis. Adv Powder Technol 17:1–28

    Article  Google Scholar 

  59. Butterworth KT et al (2012) Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 4:4830–4838

    Article  ADS  Google Scholar 

  60. Martin JE (2013) Physics for radiation protection. Wiley, Chichester

    Book  Google Scholar 

  61. Klein S et al (2013) Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells. Biochem Biophys Res Commun 434:217–222

    Article  Google Scholar 

  62. Klein S et al (2012) Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem Biophys Res Commun 425:393–397

    Article  Google Scholar 

  63. Xing H et al (2013) Computed tomography imaging-guided radiotherapy by targeting upconversion nanocubes with significant imaging and radiosensitization enhancements. Sci Rep 3:1751

    Article  Google Scholar 

  64. Zhou M et al (2015) Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model. Nanoscale 7(46):19438–19447

    Article  ADS  Google Scholar 

  65. Lawrence TS, Haffty BG, Harris JR (2014) Milestones in the use of combined-modality radiation therapy and chemotherapy. J Clin Oncol 32(12):1173

    Article  Google Scholar 

  66. Jung J et al (2012) Polymeric nanoparticles containing taxanes enhance chemoradiotherapeutic efficacy in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 84(1):e77–e83

    Article  Google Scholar 

  67. Werner ME et al (2013) Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int J Radiat Oncol Biol Phys 86(3):463–468

    Article  Google Scholar 

  68. Xiong H et al (2015) Doxorubicin-loaded carborane-conjugated polymeric nanoparticles as delivery system for combination cancer therapy. Biomacromolecules 16(12):3980–3988

    Article  Google Scholar 

  69. Mi Y et al (2016) Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol 7(11):1–16

    Google Scholar 

  70. Chen W (2008) Nanoparticle self-lighting photodynamic therapy for cancer treatment. J Biomed Nanotechnol 4:369–376

    Article  ADS  Google Scholar 

  71. Liu Y et al (2008) Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation. Appl Phys Lett 92(4):043901

    Article  ADS  Google Scholar 

  72. Zhang C et al (2015) Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angew Chem Int Ed 54:1770–1774

    Article  Google Scholar 

  73. Zhang H et al (2011) A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials 32(7):1906–1914

    Article  Google Scholar 

  74. Chen Z et al (2014) A multi-synergistic platform for sequential irradiation-activated high-performance apoptotic cancer therapy. Adv Funct Mater 24(4):522–529

    Article  Google Scholar 

  75. Li W et al (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6:5164–5173

    Article  Google Scholar 

  76. Allison RR, Sibata CH (2010) Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagn Photodyn Ther 7:61–75

    Article  Google Scholar 

  77. Fuchs J, Thiele J (1998) The role of oxygen in cutaneous photodynamic therapy. Free Radic Biol Med 24:835–847

    Article  Google Scholar 

  78. Tsuji JS et al (2006) Research strategies for safety evaluation of nanomaterials. Part IV: Risk assessment of nanoparticles. Toxicol Sci 89(1):42–50

    Article  Google Scholar 

  79. Fu PP et al (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64–75

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Adliene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adliene, D. (2018). Chapter 9 Nanomaterials and Nanotechnologies for Photon Radiation Enhanced Cancer Treatment. In: Di Bartolo, B., Silvestri, L., Cesaria, M., Collins, J. (eds) Quantum Nano-Photonics. NATO 2017. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1544-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-1544-5_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-1543-8

  • Online ISBN: 978-94-024-1544-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics