Skip to main content

Porous Nanomaterials for Heavy Metal Removal

  • Living reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Water pollution by heavy metals from industries is a serious environmental problem. The toxicity of heavy metals constitutes a great risk to the environment and human health. Due to the simplicity, flexibility, and cost-effectiveness of the remediation process, adsorption has been widely exercised in heavy metal wastewater treatment. Recent advances in nanotechnology offer considerable advantages in wastewater treatment via the introduction of porous nanomaterials, namely, metal oxide nanoparticles, carbon nanomaterials, and nanocomposites as adsorbents. This chapter highlights the current research trends on the applications of porous nanomaterials for the removal of heavy metals. The advantages of using nanomaterials in the removal of heavy metals are highlighted. The discussion is then focused on the preparation techniques and characterization of nanomaterials, target heavy metals as the pollutant, factors affecting the adsorption, and the removal mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bhattacharya K, Parasar D, Mondal B, Ded P (2015) Mesoporous magnetic secondary nanostructures as versatile adsorbent for efficient scavenging of heavy metals. Sci Rep 5:17072. https://doi.org/10.1038/srep17072

    Article  Google Scholar 

  2. Olanipekun O, Oyefusi A, Neelgunf GM, Oki A (2014) Adsorption of lead over graphite oxide. Spectrochim Acta A Mol Biomol Spectrosc 118:857–856

    Article  Google Scholar 

  3. Moazeni M, Ebrahimi A, Rafiei N, Pourzamani HR (2016) Removal of lead ions from aqueous solution by nano zero-valent iron (nZVI). Heath Scope. 10.17795/jhealthscope-40240

  4. Manjuladevi M, Oviyaa SM (2017) Heavy metal removal from industrial wastewater by nano adsorbent prepared from cucumis melopeel activated carbon. J Nanomed Res 5(1):00102. 10.15406/jnmr.2017.05.0102

    Google Scholar 

  5. Yadav DK, Srivastava S (2017) Carbon nanotubes as adsorbent to remove heavy metal ion (Mn+7) in wastewater treatment. Mater Today 4:4089–4094

    Article  Google Scholar 

  6. Dargahi A, Golestanifar H, Darvishi P, Karami A, Hasan SH, Poormohammadi A, Behzadnia A (2016) An investigation and comparison of removing heavy metals (lead and chromium) from aqueous solutions using magnesium oxide nanoparticles. Pol J Environ Stud 25(2):557–562

    Article  Google Scholar 

  7. Poursani AS, Nilchi A, Hassani A, Shariat SM, Nouri J (2016) The synthesis of nano TiO2 and its use for removal of lead ions from aqueous solution. J Water Resour Prot 8:438–448

    Article  Google Scholar 

  8. Zhou L, Huang Y, Qiu W, Sun Z, Liu Z, Song Z (2017) Adsorption properties of nano-MnO2–biochar composites for copper in aqueous solution. Molecules 22:173. https://doi.org/10.3390/molecules22010173

    Article  Google Scholar 

  9. Lee LZ (2016) Adsorption of rhodamine B by metals chloride-activated castor bean residue carbon. Dissertation, Universiti Teknologi Malaysia

    Google Scholar 

  10. Lasheen MR, Iman YES, Shaimaa TEW, Dina YS, El-Shahat MF (2017) Heavy metals removal from aqueous solution using magnetite Dowex 50WX4 resin nanocomposite. J Mater Environ Sci 8(2):503–511

    Google Scholar 

  11. Onundi YB, Mamun AA, Al Khatib MF, Al Saadi MA, Suleyman AM (2011) Heavy metals removal from synthetic wastewater by a novel nano-size composite adsorbent. Int J Environ Sci Technol 8(4):799–806

    Article  Google Scholar 

  12. Wang X, Guo Y, Yang L, Ham M, Zhao J, Cheng X (2012) Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J Environ Anal Toxicol 2(7):154–158

    Article  Google Scholar 

  13. Ray PC, Yu H, PP F (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(1):1–35

    Article  Google Scholar 

  14. Gupta VK, Tyagi I, Sadegh H, Shahryari-Ghoshekandi R, Makhlouf ASH, Maazinejad B (2015) Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Sci Technol Dev 34(3):195–214

    Article  Google Scholar 

  15. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  Google Scholar 

  16. Ruparelia JP, Duttagupta SP, Chatterjee AK, Mukherji S (2008) Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232(1–3):145–156

    Article  Google Scholar 

  17. Varghese LR, Das N (2015) Application of nano-biocomposites for remediation of heavy metals from aqueous environment: an overview. Int J ChemTech Res 8(2):566–571

    Google Scholar 

  18. Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol. https://doi.org/10.1155/2014/398569

  19. Sheet I, Kabbani A, Holail H (2014) Removal of heavy metals using nanostructured graphite oxide, silica nanoparticles and silica/graphite oxide composite. Energy Procedia 50:130–138

    Article  Google Scholar 

  20. Carlos L, Einschlag FSG, Gonzalez MC, Martire DO (2013) Application of magnetite nanoparticles for heavy metal removal from wastewater. In: Einschlag FSG, Carlos L (eds) Waste water – treatment technologies and recent analytical developments. InTech. https://doi.org/10.5772/3443

    Google Scholar 

  21. Ahmed NM, Yousef NS (2015) Synthesis and characterization of zinc oxide nano particles for the removal of Cr (VI). Int J Sci Eng Res 6(7):1235–1243

    Google Scholar 

  22. Taman R, Ossman ME, Mansour MS, Farag HA (2015) Metal oxide nano-particles as an adsorbent for removal of heavy metals. J Adv Chem Eng 5(3):125–132

    Google Scholar 

  23. Youssef AM, Malhat FM (2014) Selective removal of heavy metals from drinking water using titanium dioxide nanowire. Macromol Symp 337:96–101

    Article  Google Scholar 

  24. Song K, Kim W, Suh CY, Shin D, Ko KS, Ha K (2013) Magnetic iron oxide nanoparticles prepared by electrical wire explosion for arsenic removal. Powder Technol 246:572–574

    Article  Google Scholar 

  25. Kumar M (2011) Carbon nanotube synthesis and growth mechanism, In: Yellampalli S (Ed.) Carbon nanotubes - Synthesis, characterization, applications. InTech. DOI: 10.5772/19331

    Google Scholar 

  26. Alam SN, Sharma N, Kumar L (2017) Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6:1–18

    Article  Google Scholar 

  27. Zaaba NI, Foo KL, Hashim U, Tan SJ, Liu WW, Voon CH (2017) Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng 184:469–477

    Article  Google Scholar 

  28. Tang W, Li Q, Gao S, Shang JK (2011) Arsenic (III,V) removal from aqueous solution by ultrafine-Fe2O3 nanoparticles synthesized from solvent thermal method. J Hazard Mater 192:131–138

    Google Scholar 

  29. Lin S, Lu D, Liu Z (2012) Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles. Chem Eng J 211–212:46–52

    Article  Google Scholar 

  30. Luther S, Borgfeld N, Kim J, Parsons JG (2012) Removal of arsenic from aqueous solution: a study of the effects of ph and interfering ions using iron oxide nanomaterials. Microchem J 101:30–36

    Article  Google Scholar 

  31. Kilianova M, Prucek R, Filip J, Kolarik J, Kvitek L, Panacek A, Tucek J, Zboril R (2013) Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment. Chemosphere 93:2690–2697

    Article  Google Scholar 

  32. Ma X, Yang ST, Tang H, Liu Y, Wang H (2015) Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids. J Colloid Interface Sci 448:347–355

    Article  Google Scholar 

  33. Zhang Q, Jiao T (2013) Polymer-supported organic-inorganic nanomaterials: fabrication, characterization and environmental application. In: Mendez-Vilas A (ed) Materials and processes for energy: communicating current research and technological developments. Formatex Research Center, Badajoz, pp 903–912

    Google Scholar 

  34. EPA United States Environmental Protection Agency (2009) National primary drinking water regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Accessed 19 July 2017

  35. WHO World Health Organization (2006) Guidelines for drinking-water quality: incorporating first addendum, vol 1, recommendations, 3rd edn. http://www.who.int/water_sanitation_health/dwq/gdwq0506.pdf. Accessed 19 July 2017

  36. ScienceLab.com (2013) Mercury MSDS. http://www.sciencelab.com/msds.php?msdsId=9927224. Accessed 19 July 2017

  37. ScienceLab.com (2013) Cadmium MSDS. http://www.sciencelab.com/msds.php?msdsId=9923223. Accessed 19 July 2017

  38. ScienceLab.com (2013) Arsenic MSDS. http://www.sciencelab.com/msds.php?msdsId=9922970. Accessed 19 July 2017

  39. ScienceLab.com (2013) Chromium MSDS. https://www.sciencelab.com/msds.php?msdsId=9927136. Accessed 19 July 2017

  40. ScienceLab.com (2013) Lead MSDS. http://www.sciencelab.com/msds.php?msdsId=9927204. Accessed 19 July 2017

  41. ScienceLab.com (2013) Nickel MSDS. http://www.sciencelab.com/msds.php?msdsId=9927372. Accessed 19 July 2017

  42. ScienceLab.com (2013) Copper MSDS. https://www.sciencelab.com/msds.php?msdsId=9923549. Accessed 19 July 2017

  43. ScienceLab.com (2013) Zinc MSDS. http://www.sciencelab.com/msds.php?msdsId=9925476. Accessed 19 July 2017

  44. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallogr A32(5):751–767

    Article  Google Scholar 

  45. Silva RHS, Virginia S, Granados LD, Manuel SJ (2010) Adsorption of mercury (II) from liquid solutions using modified activated carbons. J Mater Res 13(2):129–134

    Article  Google Scholar 

  46. Arias FEA, Beneduci A, Chidichimo F, Furia E, Straface S (2017) Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions. Chemosphere 180:11–23

    Article  Google Scholar 

  47. Kumar R, Chawla J (2014) Removal of cadmium ion from water/wastewater by nano-metal oxides: a review. Water Qual Expo Health 5:215–226

    Article  Google Scholar 

  48. Muthulakshmi AN, Anuradha J (2015) Removal of cadmium ions from water/waste water using chitosan – a review. Res Rev J Ecol Environ Sci S1:9–14

    Google Scholar 

  49. Nithya R, Sudha PN (2016) Removal of heavy metals from tannery effluent using chitosan-g-poly(butyl acrylate)/bentonite nanocomposite as an adsorbent. Textiles Clothing Sustain 2(7). https://doi.org/10.1186/s40689-016-0018-1

  50. Ebadi M, Shagholani H, Jahangiri H (2016) High efficient nanocomposite for removal of heavy metals (Hg2+ and Pb2+) from aqueous solution. J Nanostruct 6(1):23–27

    Google Scholar 

  51. Zenasni MA, Benfarhi S, Merlin A, Molina S, George B, Meroufel B (2013) Adsorption of nickel in aqueous solution onto natural maghnite. Mater Sci Appl 4:153–161

    Google Scholar 

  52. Lakherwal D, Rattan VK, Singh HP (2016) Studies on adsorption of nickel by activated carbon in a liquid fluidised bed reactor. Can Chem Trans 4(1):121–132

    Google Scholar 

  53. Zhang X, Wang X (2015) Adsorption and desorption of nickel(ii) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. PLoS One 10(2):1–21

    Google Scholar 

  54. Solomon F (2009) Impacts of copper on aquatic ecosystems and human health. http://www.ushydrotech.com/files/6714/1409/9604/Impacts_of_Copper_on_Aquatic_Ecosystems_and_human_Health.pdf. Accessed 19 July 2017

  55. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377

    Article  Google Scholar 

  56. Benzaoui T, Selatnia A, Diabali D (2017) Adsorption of copper (II) ions from aqueous solution using bottom ash of expired drugs incineration. Adsorpt Sci Technol. https://doi.org/10.1177/0263617416685099

  57. Sen TK, Khoo C (2013) Adsorption characteristics of zinc (Zn2+) from aqueous solution by natural bentonite and kaolin clay minerals: a comparative study. Comp Water Energy Environ Eng 2:1–6

    Google Scholar 

  58. Kounou GN, Nsami JN, Belibi DPB, Kouotou D, Tagne GM, Joh DDD, Mbadcam JK (2015) Adsorption of zinc(II) ions from aqueous solution onto kaolinite and metakaolinite. Der Pharma Chemica 7(3):51–58

    Google Scholar 

  59. Levenson R (2001) More modern chemical techniques. The Royal Society of Chemistry, London

    Google Scholar 

  60. Radulescu C, Dulama ID, Stihi C, Ionita I, Chilian A, Necula C, Chelarescu ED (2014) Determination of heavy metal levels in water and therapeutic mud by atomic absorption spectrometry. Rom J Phys 59(9–10):1057–1066

    Google Scholar 

  61. Wolf RE (2005) What is ICP-MS? … and more importantly, what can it do? https://crustal.usgs.gov/laboratories/icpms/What_is_ICPMS.pdf. Accessed 19 July 2017

  62. Velez G (2009) Inductively coupled plasma: the future of heavy metals testing. http://www.sgs.co.ao/~/media/Global/Documents/Technical%20Documents/sgs-regulatory-heavy%20metals-en-09.pdf. Accessed 19 July 2017

  63. Russo RE, Mao XL, Liu HC, Yoo JH, Mao SS (1999) Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation. Appl Phys A Mater Sci Process 69(1):S887–S894

    Article  Google Scholar 

  64. Ali S, Jamil H, Imran M (2014) Measuring heavy metals content in wastewater using laser induced breakdown spectroscopy. Int Lett Chem Phys Astron 2:69–75

    Google Scholar 

  65. Holmberg JP (2006) Competitive adsorption and displacement behavior of heavy metals on peat. Dissertation, Chalmes University of Technology

    Google Scholar 

  66. Flores-Cano JV, Leyva-Ramos R, Padilla-Ortega E, Mendoza-Barron J (2013) Adsorption of heavy metals on diatomite: mechanism and effect of operating variables. Adsorpt Sci Technol 31(2/3):275–291

    Article  Google Scholar 

  67. Lu H, Zhang W, Yang Y, Huang X, Qiu R (2011) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46(3):854–862

    Article  Google Scholar 

  68. Al-Saad KA, Amr MA, Hadi DT, Arar RS, Al-Sulaiti MM, Abdulmalik TA, Alsahamary NM, Kwak JC (2012) Iron oxide nanoparticles: applicability for heavy metal removal from contaminated water. Arab J Nucl Sci Appl 45(2):335–346

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Abbas Ahmad Zaini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Lee, L.Z., Zaini, M.A.A., Tang, S.H. (2017). Porous Nanomaterials for Heavy Metal Removal. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics