Skip to main content

Turbine Fatigue Reliability and Life Assessment Using Ultrasonic Inspection: Data Acquisition, Interpretation, and Probabilistic Modeling

  • Chapter
  • First Online:
Quality and Reliability Management and Its Applications

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

  • 1462 Accesses

Abstract

A general method and procedure of fatigue reliability and life assessment of steam turbines using ultrasonic inspections is presented in this chapter. The basic structure of an automated ultrasonic inspection system using in turbine surface engineering is briefly introduced. Using the inspection information, a probabilistic model is developed to quantify uncertainties from flaw sizing and model parameters. The uncertainty from flaw sizing is described using a probability of detection model which is based on a classical log-linear model coupling the actual flaw size with the ultrasonic inspection reported size. The uncertainty from model parameters is characterized using Bayesian parameter estimation from fatigue testing data. A steam turbine rotor example with realistic ultrasonic inspection data is presented to demonstrate the overall method. Calculations and interpretations of assessment results based on risk recommendations for industrial applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi, W., & Metala, M. (2008). Recent advances in NDE technologies for turbines and generators. In 17th World Conference on Nondestructive Testing.

    Google Scholar 

  • Achenbach, J. (2000). Quantitative nondestructive evaluation. International Journal of Solids and Structures, 37(1), 13–27.

    Article  MathSciNet  MATH  Google Scholar 

  • Adams, R., & Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641–647.

    Article  Google Scholar 

  • Berens, A. P. (1989). NDE reliability data analysis. In: ASM Handbook (vol. 17, 9th edn., pp. 689–701). ASM International.

    Google Scholar 

  • Billinton, R., & Allan, R. (1983). Reliability evaluation of engineering systems: concepts and techniques. New York: Plenum Press.

    Book  MATH  Google Scholar 

  • Deng, W., Shark, L., Matuszewski, B., Smith, J., & Cavaccini, G. (2004). CAD model-based inspection and visualisation for 3D non-destructive testing of complex aerostructures. Insight-Non-Destructive Testing and Condition Monitoring, 46(3), 157–161.

    Article  Google Scholar 

  • Drinkwater, B., & Wilcox, P. (2006). Ultrasonic arrays for non-destructive evaluation: a review. NDT and E International, 39(7), 525–541.

    Article  Google Scholar 

  • Freudenthal, A. (1977). The scatter factor in the reliability assessment of aircraft structures. Journal of aircraft, 14(2), 202–208.

    Article  Google Scholar 

  • Geng, R. (2006). Modern acoustic emission technique and its application in aviation industry. Ultrasonics, 44, e1025–e1029.

    Article  Google Scholar 

  • Georgiou, G. (2006). Probability of Detection (POD) curves: derivation, applications and limitations. Technical Report 454, Jacobi Consulting Limited, London, UK.

    Google Scholar 

  • Guan, X., Zhang, J., Kadau, K., & Zhou, S. K. (2013). Probabilistic fatigue life prediction using ultrasonic inspection data considering equivalent initial flaw size uncertainty. In D. O. Thompson, & D. E. Chimenti (Eds.), AIP Conference Proceedings (vol. 1511, pp. 620–627). AIP.

    Google Scholar 

  • Guan, X., Zhang, J., Rasselkorde, E. M., Abbasi, W. A., & Kevin Zhou, S. (2014). Material damage diagnosis and characterization for turbine rotors using three-dimensional adaptive ultrasonic NDE data reconstruction techniques. Ultrasonics, 54(2), 516–525.

    Article  Google Scholar 

  • Kern, T., Ewald, J., & Maile, K. (1998). Evaluation of NDT-signals for use in the fracture mechanics safety analysis. Materials at High Temperatures, 15(2), 107–110.

    Article  Google Scholar 

  • Krautkrämer, J. (1959). Determination of the size of defects by the ultrasonic impulse echo method. British Journal of Applied Physics, 10(6), 240–245.

    Article  Google Scholar 

  • Rubinstein, R., & Kroese, D. (2007). Simulation and the Monte Carlo method (vol. 707). Wiley-interscience.

    Google Scholar 

  • Schneider, C., & Rudlin, J. (2004). Review of statistical methods used in quantifying NDT reliability. Insight-Non-Destructive Testing and Condition Monitoring, 46(2), 77–79.

    Article  Google Scholar 

  • Schwant, R., & Timo, D. (1985). Life assessment of general electric large steam turbine rotors. In Life assessment and improvement of turbo-generator rotors for fossil plants (pp. 1–8). New York: Pergamon Press.

    Google Scholar 

  • Shih, T., & Clarke, G. (1979). Effects of temperature and frequency on the fatigue crack growth rate properties of a 1950 vintage CrMoV rotor material. In Fracture Mechanics: Proceedings of the Eleventh National Symposium on Fracture Mechanics (vol. 700, p. 125). ASTM International.

    Google Scholar 

  • Simola, K., & Pulkkinen, U. (1998). Models for non-destructive inspection data. Reliability Engineering & System Safety, 60(1), 1–12.

    Article  Google Scholar 

  • Sposito, G., Ward, C., Cawley, P., Nagy, P., & Scruby, C. (2010). A review of non-destructive techniques for the detection of creep damage in power plant steels. NDT and E International, 43(7), 555–567.

    Article  Google Scholar 

  • Tang, W. (1973). Probabilistic updating of flaw information(flaw prediction and control in welds). Journal of Testing and Evaluation, 1, 459–467.

    Article  Google Scholar 

  • U.S. Energy Information Administration. (2013). Annual energy outlook 2013. Retrieved from http://www.eia.gov.

  • U.S. Nuclear Regulatory Commission. (1987). Standard review plan for the review of safety analysis reports for nuclear power plants, LWR edn. Washington, D.C.: US Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation.

    Google Scholar 

  • Zheng, R., & Ellingwood, B. (1998). Role of non-destructive evaluation in time-dependent reliability analysis. Structural Safety, 20(4), 325–339.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefei Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Guan, X., Rasselkorde, E.M., Abbasi, W.A., Zhou, S.K. (2016). Turbine Fatigue Reliability and Life Assessment Using Ultrasonic Inspection: Data Acquisition, Interpretation, and Probabilistic Modeling. In: Pham, H. (eds) Quality and Reliability Management and Its Applications. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-6778-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6778-5_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6776-1

  • Online ISBN: 978-1-4471-6778-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics