Skip to main content

Management of Advanced Endometrial Cancer and Inhibitors of the PI3K/AKT/mTOR Pathway

  • Chapter
  • First Online:
Pelvic Cancer Surgery

Abstract

Endometrial cancer is the most common gynaecological malignancy in industrialised countries and is increasing in incidence and prevalence (Colombo et al., Ann Oncol 22:vi35–9, 2011; Jemal et al., CA Cancer J Clin 61:69–90, 2011; Bray et al., Cancer Epidemiol Biomark Prev 14:1132–42, 2005; Evans et al., Br J Cancer 104:1505–10, 2011; National Cancer Institute: Surveillance Epidemiology and End Results. SEER cancer statistics review 1975–2009 (Vintage 2009 populations) 2012 Apr (updated 20 Aug 2012; cited 2 Dec 2012). Available from: http://seer.cancer.gov/csr/1975_2009_pops09/). Most patients with endometrial cancer are diagnosed with early stage disease that can be surgically resected (Jemal et al., CA Cancer J Clin 61:69–90, 2011; National Cancer Institute: Surveillance Epidemiology and End Results. SEER cancer statistics review 1975–2009 (Vintage 2009 populations) 2012 Apr (updated 20 Aug 2012; cited 2 Dec 2012). Available from: http://seer.cancer.gov/csr/1975_2009_pops09/). However, a significant proportion of patients relapse following surgery or present de novo with inoperable advanced or metastatic disease (Colombo et al., Ann Oncol 22:vi35–9, 2011; Jemal et al., CA Cancer J Clin 61:69–90, 2011; National Cancer Institute: Surveillance Epidemiology and End Results. SEER cancer statistics review 1975–2009 (Vintage 2009 populations) 2012 Apr (updated 20 Aug 2012; cited 2 Dec 2012). Available from: http://seer.cancer.gov/csr/1975_2009_pops09/; Lindahl et al., Anticancer Res 32:3391–5, 2012; Greer et al., J Natl Compr Canc Netw 7:498–531, 2009). There is no standard management for advanced endometrial cancer although chemotherapy or endocrine therapy is frequently used despite limited efficacy or overall survival (OS) benefit (Vale et al., Cochrane Database Syst Rev (15):CD003915, 2012; Kokka et al., Cochrane Database Syst Rev (8):CD007926, 2010; Pectasides et al., Cancer Treat Rev 33:177–90, 2007). Chemotherapeutic regimens for advanced disease most commonly include taxanes, platinums, anthracyclines as monotherapy or in combination with response rates (RR) ranging from 25 to 60 % (Vale et al., Cochrane Database Syst Rev 15:CD003915, 2012; Pectasides et al., Cancer Treat Rev 33:177–90, 2007; Dizon Gynecol Oncol 2:373–81, 2010; Dellinger et al., Expert Rev Anticancer Ther 9:905–16, 2009; Ray and Fleming, Semin Oncol 36:145–54, 2009; Hill and Dizon, Drugs 72:705–13, 2012; Tsoref and Oza, Curr Opin Oncol 23:494–500, 2011). Survival rates have failed to improve over the last 25 years (Jemal et al., CA Cancer J Clin 58:71–96, 2008). There are no novel targeted therapies licensed for the treatment of endometrial cancer despite investigation of several different classes of molecule in clinical trials. The rapid advances in biotechnology platforms and initiatives such as The Cancer Genome Project (National Cancer Institute: The Cancer Genome Atlas. Uterine corpus endometrial cancer. [Internet] 2012 (updated 14 May 2012; cited 2 Dec 2012). Available from: http://cancergenome.nih.gov/cancersselected/endometrial), to identify and characterize aberrant molecular pathways (Liang et al., Genome Res 22:2120–9, 2012), is enabling a more patient-selective approach for the development of novel agents and an opportunity to improve treatment efficacy. One such example is PTEN-PI3K-AKT-mTor signalling which is commonly disrupted in endometrial malignancy (Slomovitz and Coleman, Clin Cancer Res 18:5856–64, 2012; Oda et al., Cancer Res 65:10669–73, 2005). Several molecular lesions have been identified in this pathway that can be targeted with novel therapeutics. A number of these agents have been and continue to be explored in the management of advanced endometrial cancer (Dedes et al., Nat Rev Clin Oncol 8:261–71, 2011). The rationale, classes of novel therapeutics, clinical experience, limitations and future considerations of targeting the PTEN-PI3K-AKT-mTor pathway in endometrial cancer will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colombo N, Preti E, Landoni F, Carinelli S, Colombo A, Marini C, Sessa C, ESMO Guidelines Working Group. Endometrial cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2011;22(Supp 6):vi35–9.

    PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    PubMed  Google Scholar 

  3. Bray F, Dos Santos SI, Moller H, Weiderpass E. Endometrial cancer incidence trends in Europe: underlying determinants and prospects for prevention. Cancer Epidemiol Biomarkers Prev. 2005;14(5):1132–42.

    PubMed  Google Scholar 

  4. Evans T, Sany O, Pearmain P, Ganesan R, Blann A, Sundar S. Trends in the rising incidence of endometrial cancer by type: data from a UK population-based registry from 1994 to 2006. Br J Cancer. 2011;104(9):1505–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. National Cancer Institute: Surveillance Epidemiology and End Results. SEER cancer statistics review 1975–2009 (Vintage 2009 populations) 2012 Apr (updated 20 Aug 2012; cited 2 Dec 2012). Available from: http://seer.cancer.gov/csr/1975_2009_pops09/.

  6. Lindahl B, Ranstam J, Willén R. Relapse of endometrial carcinoma: follow-up of 272 patients with relapse. Anticancer Res. 2012;32(8):3391–5.

    PubMed  Google Scholar 

  7. Greer BE, Koh WJ, Abu-Rustum N, Bookman MA, Bristow RE, Campos SM, Cho KR, Copeland L, Crispens MA, Eifel PJ, Huh WK, Jaggernauth W, Kapp DS, Kavanagh JJ, Lurain 3rd JR, Morgan M, Morgan RJ, Powell CB, Remmenga SW, Reynolds RK, Alvarez Secord A, Small Jr W, Teng N. Uterine neoplasms. Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2009;7(5):498–531.

    CAS  PubMed  Google Scholar 

  8. Vale CL, Tierney J, Bull SJ, Symonds PR. Chemotherapy for advanced, recurrent or metastatic endometrial carcinoma. Cochrane Database Syst Rev. 2012;(8):CD003915.

    Google Scholar 

  9. Kokka F, Brockbank E, Oram D, Gallagher C, Bryant A. Hormonal therapy in advanced or recurrent endometrial cancer. Cochrane Database Syst Rev. 2010;(12):CD007926.

    Google Scholar 

  10. Pectasides D, Pectasides E, Economopoulos T. Systemic therapy in metastatic or recurrent endometrial cancer. Cancer Treat Rev. 2007;33(2):177–90.

    CAS  PubMed  Google Scholar 

  11. Dizon DS. Treatment options for advanced endometrial carcinoma. Gynecol Oncol. 2010;117(2):373–81.

    CAS  PubMed  Google Scholar 

  12. Dellinger TH, Monk BJ. Systemic therapy for recurrent endometrial cancer: a review of North American trials. Expert Rev Anticancer Ther. 2009;9(7):905–16.

    PubMed  Google Scholar 

  13. Ray M, Fleming G. Management of advanced-stage and recurrent endometrial cancer. Semin Oncol. 2009;36(2):145–54.

    PubMed  Google Scholar 

  14. Hill EK, Dizon DS. Medical therapy of endometrial cancer: current status and promising novel treatments. Drugs. 2012;72(5):705–13.

    PubMed  Google Scholar 

  15. Tsoref D, Oza AM. Recent advances in systemic therapy for advanced endometrial cancer. Curr Opin Oncol. 2011;23(5):494–500.

    CAS  PubMed  Google Scholar 

  16. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics. CA Cancer J Clin. 2008;58(2):71–96.

    PubMed  Google Scholar 

  17. National Cancer Institute: The Cancer Genome Atlas. Uterine Corpus Endometrial Cancer. [Internet] 2012 (updated 14 May 2012; cited 2 Dec 2012). Available from: http://cancergenome.nih.gov/cancersselected/endometrial.

  18. Liang H, Cheung LW, Li J, Ju Z, Yu S, Stemke-Hale K, Dogruluk T, Lu Y, Liu X, Gu C, Guo W, Scherer SE, Carter H, Westin SN, Dyer MD, Verhaak RG, Zhang F, Karchin R, Liu CG, Lu KH, Broaddus RR, Scott KL, Hennessy BT, Mills GB. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res. 2012;22(11):2120–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Slomovitz BM, Coleman RL. The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res. 2012;18(21):5856–64.

    CAS  PubMed  Google Scholar 

  20. Oda K, Stokoe D, Taketani Y, McCormick F. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res. 2005;65(23):10669–73.

    CAS  PubMed  Google Scholar 

  21. Dedes KJ, Wetterskog D, Ashworth A, Kaye SB, Reis-Filho JS. Emerging therapeutic targets in endometrial cancer. Nat Rev Clin Oncol. 2011;8(5):261–71.

    CAS  PubMed  Google Scholar 

  22. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.

    CAS  PubMed  Google Scholar 

  23. Carlson MJ, Thiel KW, Yang S, Leslie KK. Catch it before it kills: progesterone, obesity, and the prevention of endometrial cancer. Discov Med. 2012;14(76):215–22.

    PubMed Central  PubMed  Google Scholar 

  24. Cramer DW. The epidemiology of endometrial and ovarian cancer. Hematol Oncol Clin North Am. 2012;26(1):1–12.

    PubMed Central  PubMed  Google Scholar 

  25. Hecht JL, Mutter GL. Molecular and pathologic aspects of endometrial carcinogenesis. J Clin Oncol. 2006;24(29):4783–91.

    CAS  PubMed  Google Scholar 

  26. Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I. Endometrial cancer. Lancet. 2005;366(9484):491–505.

    PubMed  Google Scholar 

  27. Gadduci A, Cosio S, Fabrini MG, Guerrieri ME, Greco C, Genazzani AR. Analysis of failures in patients with FIGO stage IIIc1-IIIc2 endometrial cancer. Anticancer Res. 2012;32(1):201–5.

    Google Scholar 

  28. Carey MS, Gawlik C, Fung-Kee-Fung M, Chambers A, Oliver T, Cancer Care Ontario Practice Guidelines Initiative Gynecology Cancer Disease Site Group. Systematic review of systemic therapy for advanced or recurrent endometrial cancer. Gynecol Oncol. 2006;101(1):158–67.

    CAS  PubMed  Google Scholar 

  29. Humber CE, Tierney JF, Symonds RP, Collingwood M, Kirwan J, Williams C, Green JA. Chemotherapy for advanced, recurrent or metastatic endometrial cancer: a systematic review of Cochrane collaboration. Ann Oncol. 2007;18(3):409–20.

    CAS  PubMed  Google Scholar 

  30. Truong PT, Kader HA, Lacy B, Lesperance M, MacNeil MV, Berthelet E, McMurtie E, Alexander S. The effects of age and comorbidity on treatment and outcomes in women with endometrial cancer. Am J Clin Oncol. 2005;28(2):157–64.

    PubMed  Google Scholar 

  31. Modesitt SC, Van Nagell Jr JR. The impact of obesity on the incidence and treatment of gynecologic cancers: a review. Obstet Gynecol Surv. 2005;60(10):683–92.

    PubMed  Google Scholar 

  32. Kitchener HC. Survival from endometrial cancer in England and Wales up to 2001. Br J Cancer. 2008;99 Suppl 1:S68–9.

    PubMed Central  PubMed  Google Scholar 

  33. Salvesen HB, Haldorsen IS, Trovik J. Markers for individualised therapy in endometrial carcinoma. Lancet Oncol. 2012;13(8):e353.

    PubMed  Google Scholar 

  34. McMeekin DS, Filiaci VL, Thigpen JT, Gallion HH, Fleming GF, Rogers WH, Gynecologic Oncology Study Group Study. The relationship between histology and outcome in advanced and recurrent endometrial cancer patients participating in first- line chemotherapy trials: a Gynecologic Oncology Group study. Gynecol Oncol. 2007;106(1):16–22.

    PubMed  Google Scholar 

  35. Levan K, Partheen K, Osterberg L, Olsson B, Delle U, Eklind S, Horvath G. Identification of a gene expression signature for survival prediction in type I endometrial carcinoma. Gene Expr. 2010;14:361–70.

    PubMed  Google Scholar 

  36. Samarnthai N, Hall K, Yeh IT. Molecular profiling of endometrial malignancies. Obstet Gynecol Int. 2010;2010:162363.

    PubMed Central  PubMed  Google Scholar 

  37. Fadare O, Parkash V, Dupont WD, Acs G, Atkins KA, Irving JA, Pirog EC, Quade BJ, Quddus MR, Rabban 3rd JT, Vang R, Hecht JL. The diagnosis of endometrial carcinomas with clear cells by gynecologic pathologists: an assessment of interobserver variability and associated morphologic features. Am J Surg Pathol. 2012;36(8):1107–18.

    PubMed  Google Scholar 

  38. Scholten AN, Smit VT, Beerman H, van Putten WL, Creutzberg CL. Prognostic significance and interobserver variability of histologic grading systems for endometrial carcinoma. Cancer. 2004;100(4):764–72.

    PubMed  Google Scholar 

  39. Kwon JS, Francis JA, Qiu F, Weir MM, Ettler HC. When is a pathology review indicated in endometrial cancer? Obstet Gynecol. 2007;110(6):1224–30.

    PubMed  Google Scholar 

  40. Wright JD, Barrena Medel NI, Sehouli J, Fujiwara K, Herzog TJ. Contemporary management of endometrial cancer. Lancet. 2012;379(9823):1352–60.

    PubMed  Google Scholar 

  41. Diaz-Padilla I, Duran I, Clarke BA, Oza AM. Biologic rationale and clinical activity of mTOR inhibitors in gynecological cancer. Cancer Treat Rev. 2012;38(6):767–75.

    CAS  PubMed  Google Scholar 

  42. Salvesen HB, Carter SL, Mannelqvist M, Dutt A, Getz G, Stefansson IM, Raeder MB, Sos ML, Engelsen IB, Trovik J, Wik E, Greulich H, Bø TH, Jonassen I, Thomas RK, Zander T, Garraway LA, Oyan AM, Sellers WR, Kalland KH, Meyerson M, Akslen LA, Beroukhim R. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc Natl Acad Sci U S A. 2009;106(12):4834–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Slomovitz BM, Lu KH, Johnston T, Coleman RL, Munsell M, Broaddus RR, Walker C, Ramondetta LM, Burke TW, Gershenson DM, Wolf J. A phase 2 study of the oral mammalian target of rapamycin inhibitor, everolimus, in patients with recurrent endometrial carcinoma. Cancer. 2010;116(23):5415–9.

    CAS  PubMed  Google Scholar 

  44. Oza A, Poveda A, Clamp R, Pignata S, Scambia G, Del Campo JM, McCormack M, Sevcik L, Schwartz BM, Guan S, Lee R, Cheng JD, Haluska FD. A randomized phase II (RP2) trial of ridaforolimus (R) compared with progestin (P) or chemotherapy (C) in female adult patients with advanced endometrial carcinoma [abstract 5009]. Proceedings of the ASCO annual meeting 3–7 Jun 2011, Chicago.

    Google Scholar 

  45. Lincoln S, Blessing JA, Lee RB, Roceroto TF. Activity of paclitaxel as second-line chemotherapy in endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2003;88(3):277–81.

    CAS  PubMed  Google Scholar 

  46. Homesley HD, Meltzer NP, Nieves L, Vaccarello L, Lowendowski GS, Elbendary AA. A phase II trial of weekly 1-hour paclitaxel as second-line therapy for endometrial and cervical cancer. Int J Clin Oncol. 2008;13(1):62–5.

    CAS  PubMed  Google Scholar 

  47. Vandenput I, Vergote I, Leunen K, Berteloot P, Neven P, Amant F. Leuven dose-dense paclitaxel/carboplatin regimen in patients with primary advanced or recurrent endometrial carcinoma. Int J Gynecol Cancer. 2009;19(6):1147–51.

    PubMed  Google Scholar 

  48. Secord AA, Havrilesky LJ, Carney ME, Soper JT, Clarke-Pearson DL, Rodriguez GC, Berchuck A. Weekly low-dose paclitaxel and carboplatin in the treatment of advanced or recurrent cervical and endometrial cancer. Int J Clin Oncol. 2007;12(1):31–6.

    CAS  PubMed  Google Scholar 

  49. Ito K, Tsubamoto H, Itani Y, Kuroboshi H, Fujita H, Nobunaga T, Coleman RL. A feasibility study of carboplatin and weekly paclitaxel combination chemotherapy in endometrial cancer: a Kansai Clinical Oncology Group study (KCOG0015 trial). Gynecol Oncol. 2011;120(2):193–7.

    CAS  PubMed  Google Scholar 

  50. Vandenput I, Vergote I, Neven P, Amant F. Weekly paclitaxel-carboplatin regimen in patients with primary advanced or recurrent endometrial carcinoma. Int J Gynecol Cancer. 2012;22(4):617–22.

    PubMed  Google Scholar 

  51. Fleming GF, Brunetto VL, Cella D, Look KY, Reid GC, Munkarah AR, Kline R, Burger RA, Goodman A, Burks RT. Phase III trial of doxorubicin plus cisplatin with or without paclitaxel plus filgrastim in advanced endometrial carcinoma: a Gynecologic Oncology Group Study. J Clin Oncol. 2004;22:2159–66.

    CAS  PubMed  Google Scholar 

  52. Fiorica VL, Hanjani P, Lentz SS, Mannel R, Andersen W, Gynecologic Oncology Group. Phase II trial of alternating courses of megestrol acetate and tamoxifen in advanced endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2004;92(1):10–4.

    CAS  PubMed  Google Scholar 

  53. Khalifa MA, Mannel RS, Haraway SD, Walker J, Min KW. Expression of EGFR, HER-2/neu, P53, and PCNA in endometrioid, serous papillary, and clear cell endometrial adenocarcinomas. Gynecol Oncol. 1994;53(1):84–92.

    CAS  PubMed  Google Scholar 

  54. Oza AM, Eisenhauer EA, Elit L, Cutz JC, Sakurada A, Tsao MS, Hoskins PJ, Biagi J, Ghatage P, Mazurka J, Provencher D, Dore N, Dancey J, Fyles A. Phase II study of erlotinib in recurrent or metastatic endometrial cancer: NCIC IND-148. J Clin Oncol. 2008;26(26):4319–25.

    CAS  PubMed  Google Scholar 

  55. Grushko TA, Filiaci VL, Mundt AJ, Ridderstrale K, Olopade OI, Fleming GF, Gynecologic Oncology Group. An exploratory analysis of HER-2 amplification and overexpression in advanced endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2008;108(1):3–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Fleming GF, Sill MW, Darcy KM, McMeekin DS, Thigpen JT, Adler LM, Berek JS, Chapman JA, DiSilvestro PA, Horowitz IR, Fiorica JV, Gynecologic Oncology Group. Phase II trial of trastuzumab in women with advanced or recurrent, HER2-positive endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2010;116(1):15–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Kamat AA, Merritt WM, Coffey D, Lin YG, Patel PR, Broaddus R, Nugent E, Han LY, Landen Jr CN, Spannuth WA, Lu C, Coleman RL, Gershenson DM, Sood AK. Clinical and biological significance of vascular endothelial growth factor in endometrial cancer. Clin Cancer Res. 2007;13(24):7487–95.

    CAS  PubMed  Google Scholar 

  58. Aghajanian C, Sill MW, Darcy KM, Greer B, McMeekin DS, Rose PG, Rotmensch J, Barnes MN, Hanjani P, Leslie KK, Gynecologic Oncology Group. Phase II trial of bevacizumab in recurrent or persistent endometrial cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2011;29(16):2259–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Wright JD, Powell MA, Rader JS, Mutch DG, Gibb RK. Bevacizumab therapy in patients with recurrent uterine neoplasms. Anticancer Res. 2007;27(5B):3525–8.

    CAS  PubMed  Google Scholar 

  60. Nimeiri HS, Oza AM, Morgan RJ, Huo D, Elit L, Knost JA, Wade 3rd JL, Agamah E, Vokes EE, Fleming GF. A phase II study of sorafenib in advanced uterine carcinoma/carcinosarcoma: a trial of the Chicago, PMH, and California Phase II Consortia. Gynecol Oncol. 2010;117(1):37–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Bunney TD, Katan M. Phosphoinositide signalling in cancer: beyond PI3K and PTEN. Nat Rev Cancer. 2010;10(5):342–52.

    CAS  PubMed  Google Scholar 

  62. Bartholomeusz C, Gonzalez-Angulo AM. Targeting the PI3K signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16(1):121–30.

    CAS  PubMed  Google Scholar 

  63. Naumann RW. The role of the phosphatidylinositol 3-kinase (PI3K) pathway in the development and treatment of uterine cancer. Gynecol Oncol. 2011;123(2):411–20.

    CAS  PubMed  Google Scholar 

  64. Grant S. Cotargeting survival signaling pathways in cancer. J Clin Invest. 2008;118(10):3003–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003;4(4):257–62.

    CAS  PubMed  Google Scholar 

  66. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19.

    CAS  PubMed  Google Scholar 

  67. Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010;28(6):1075–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates AKT. Cancer Res. 2006;66(3):1500–8.

    PubMed Central  PubMed  Google Scholar 

  69. Dibble CC, Asara JM, Manning BD. Characterization of rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol. 2009;29(21):5657–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Frodin M, Gammeltoft S. Role and regulation of 90kDa ribosomal S6 kinase (RSK) in signal transduction. MoI Cell Endocrinol. 1999;151(1–2):65–77.

    CAS  Google Scholar 

  71. Manning BD, Cantley LC. AKT/PKB signaling; navigating downstream. Cell. 2007;129(7):1261–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Tessier M, Woodgett JR. Serum and glucocorticoid-regulated protein kinases: variations on a theme. J Cell Biochem. 2006;98(6):1391–407.

    CAS  PubMed  Google Scholar 

  73. Mutter GL, Lin MC, Fitzgerald JT, Kum JB, Baak JP, Lees JA, Weng LP, Eng C. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst. 2000;92(11):924–30.

    CAS  PubMed  Google Scholar 

  74. Risinger JI, Hayes K, Maxwell GL, Carney ME, Dodge RK, Barrett JC, Berchuck A. PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Clin Cancer Res. 1998;4(12):3005–10.

    CAS  PubMed  Google Scholar 

  75. Mackay HJ, Gallinger S, Tsao MS, McLachlin CM, Tu D, Keiser K, Eisenhauer EA, Oza AM. Prognostic value of microsatellite instability (MSI) and PTEN expression in women with endometrial cancer: results from studies of the NCIC Clinical Trials Group (NCIC CTG). Eur J Cancer. 2010;46(8):1365–73.

    CAS  PubMed  Google Scholar 

  76. Cheung LW, Hennessy BT, Li J, Yu S, Myers AP, Djordjevic B, Lu Y, Stemke-Hale K, Dyer MD, Zhang F, Ju Z, Cantley LC, Scherer SE, Liang H, Lu KH, Broaddus RR, Mills GB. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 2011;1(2):170–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Sun H, Enomoto T, Fujita M, Wada H, Yoshino K, Ozaki K, Nakamura T, Murata Y. Mutational analysis of the PTEN gene in endometrial carcinoma and hyperplasia. Am J Clin Pathol. 2001;115(1):32–8.

    CAS  PubMed  Google Scholar 

  78. Kanamori Y, Kigawa J, Itamochi H, Shimada M, Takahashi M, Kamazawa S, Sato S, Akeshima R, Terakawa N. Correlation between loss of PTEN expression and Akt phosphorylation in endometrial carcinoma. Clin Cancer Res. 2001;7(4):892–5.

    CAS  PubMed  Google Scholar 

  79. Quddus MR, Ologun BA, Sung CJ, Steinhoff MM, Lawrence WD. Utility of PTEN expression of endometrial “surface epithelial changes” and underlying atypical endometrial hyperplasia. Int J Gynecol Pathol. 2009;28(5):471–6.

    PubMed  Google Scholar 

  80. Velasco A, Bussaglia E, Pallares J, Dolcet X, Llobet D, Encinas M, Llecha N, Palacios J, Prat J, Matias-Guiu X. PIK3CA gene mutations in endometrial carcinoma: correlation with PTEN and K-RAS alterations. Hum Pathol. 2006;37(11):1465–72.

    CAS  PubMed  Google Scholar 

  81. Hayes MP, Douglas W, Ellenson LH. Molecular alterations of EGFR and PIK3CA in uterine serous carcinoma. Gynecol Oncol. 2009;113(3):370–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Catasus L, Gallardo A, Cuatrecasas M, Prat J. Concomitant PI3K-AKT and p53 alterations in endometrial carcinomas are associated with poor prognosis. Mod Pathol. 2009;22(4):522–9.

    CAS  PubMed  Google Scholar 

  83. Catasus L, Gallardo A, Cuatrecasas M, Prat J. PIK3CA mutations in the kinase domain (exon 20) of uterine endometrial adenocarcinomas are associated with adverse prognostic parameters. Mod Pathol. 2008;21(2):131–9.

    CAS  PubMed  Google Scholar 

  84. Urick ME, Rudd ML, Godwin AK, Sgroi D, Merino M, Bell DW. PIK3R1 (p85alpha) is somatically mutated at high frequency in primary endometrial cancer. Cancer Res. 2011;71(12):4061–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Shoji K, Oda K, Nakagawa S, Hosokawa S, Nagae G, Uehara Y, Sone K, Miyamoto Y, Hiraike H, Hiraike-Wada O, Nei T, Kawana K, Kuramoto H, Aburatani H, Yano T, Taketani Y. The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas. Br J Cancer. 2009;101(1):145–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Tanwar PS, Kaneko-Tarui T, Zhang L, Tanaka Y, Crum CP, Teixeira JM. Stromal liver kinase B1 [STK11] signaling loss induces oviductal adenomas and endometrial cancer by activating mammalian target of rapamycin complex 1. PLoS Genet. 2012;8(8):1–14.

    Google Scholar 

  87. Zhang YJ, Duan Y, Zheng XF. Targeting the mTOR kinase domain: the second generation of mTOR inhibitors. Drug Discov Today. 2011;16(7–8):325–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Vilar E, Perez-Garcia J, Tabernero J. Pushing the envelope in the mTOR pathway: the second generation of inhibitors. Mol Cancer Ther. 2011;10(3):395–403.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Dancey J. mTOR signalling and drug development in cancer. Nat Rev Clin Oncol. 2010;7(4):209–19.

    CAS  PubMed  Google Scholar 

  90. Oza AM, Elit L, Tsao MS, Kamel-Reid S, Biagi J, Provencher DM, Gotlieb WH, Hoskins PJ, Ghatage P, Tonkin KS, Mackay HJ, Mazurka J, Sederias J, Ivy P, Dancey JE, Eisenhauer EA. Phase II study of temsirolimus in women with recurrent or metastatic endometrial cancer: a trial of the NCIC Clinical Trials Group. J Clin Oncol. 2011;29(24):3278–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Colombo N, McMeekin S, Schwartz P, Kostka J, Sessa C, Gehrig P, Holloway R, Braly P, Matei D, Einstein M. A phase II trial of the mTOR inhibitor AP23573 as a single agent in advanced endometrial cancer [abstract 5516]. 2007 ASCO annual meeting proceedings; 20 Jun 2007, Chicago.

    Google Scholar 

  92. Mackay H, Welch S, Tsao MS, Biagi JJ, Elit L, Ghatage P, Martin LA, Tonkin KS, Ellard S, Lau SK, McIntosh L, Eisenhauer EA, Oza AM. Phase II study of oral ridaforolimus in patients with metastatic and/or locally advanced recurrent endometrial cancer [abstract 5013]; 2011 ASCO annual meeting proceedings; 3–7 Jun 2011, Chicago.

    Google Scholar 

  93. Trédan O, Treilleux I, Wang Q, Gane N, Pissaloux D, Bonnin N, Petit T, Cretin J, Bonichon-Lamichhane N, Priou F, Lavau-Denes S, Mari V, Freyer G, Lebrun D, Alexandre J, Ray-Coquard I. Predicting everolimus treatment efficacy in patients with advanced endometrial carcinoma: a GINECO group study. Target Oncol. 2012;13:243.

    Google Scholar 

  94. Shoji K, Oda K, Kashiyama T, Ikeda Y, Nakagawa S, Sone K, Miyamoto Y, Hiraike H, Tanikawa M, Miyasaka A, Koso T, Matsumoto Y, Wada-Hiraike O, Kawana K, Kuramoto H, McCormick F, Aburatani H, Yano T, Kozuma S, Taketani Y. Genotype-dependent efficacy of a dual PI3K/mTOR inhibitor, NVP-BEZ235, and an mTOR inhibitor, RAD001, in endometrial carcinomas. PLoS One. 2012;7(5):1230.

    Google Scholar 

  95. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin- resistant functions of mTORC1. J Biol Chem. 2009;284(12):8023–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009;7(2):371.

    CAS  Google Scholar 

  97. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B. SIN1/MIP1 maintains rictor–mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127(1):125–37.

    CAS  PubMed  Google Scholar 

  98. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev. 2009;9(8):550–62.

    CAS  Google Scholar 

  99. Ni J, Liu Q, Xie S, Carlson C, Von T, Vogel K, Riddle S, Benes C, Eck M, Roberts T, Gray N, Zhao J. Functional characterization of an isoform-selective inhibitor of PI3K-p110β[beta] as a potential anticancer agent. Cancer Discov. 2012;2(5):425–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Jia S, Zhenning L, Zhang S, Liu P, Zhang L, Lee SH, Zhang J, Signoretti S, Loda M, Roberts TM, Zhao JJ. Essential roles of PI(3)K–p110 in cell growth, metabolism and tumorigenesis. Nature. 2008;454:776–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Wee S, Wiederschain D, Maira SM, Loo A, Miller C, de Beaumont R, Stegmeier F, Yao YM, Lengauer C. PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci U S A. 2008;105(35):13057–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Torbett NE, Luna-Moran A, Knight ZA, Houk A, Moasser M, Weiss W, Shokat KM, Stokoe D. A chemical screen in diverse breast cancer cell lines reveals genetic enhancers and suppressors of sensitivity to PI3K isoform-selective inhibition. Biochem J. 2008;415(1):97–110.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D, Demanse D, De Buck SS, Ru QC, Peters M, Goldbrunner M, Baselga J. Phase I, dose-escalation study of BKM120, an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2012;30(3):282–90.

    CAS  PubMed  Google Scholar 

  104. Edelman G, Bedell C, Shapiro G, Pandya SS, Kwak EL, Scheffold C,et al. A phase I dose-escalation study of XL147 (SAR245408), a PI3K inhibitor administered orally to patients (pts) with advanced malignancies [abstract 3004]. 2010 ASCO annual meeting proceedings; 4–8 Jun 2010, Chicago.

    Google Scholar 

  105. Maira SM, Pecchi S, Huang A, Burger M, Knapp M, Sterker D, Schnell C, Guthy D, Nagel T, Wiesmann M, Brachmann S, Fritsch C, Dorsch M, Chène P, Shoemaker K, De Pover A, Menezes D, Martiny-Baron G, Fabbro D, Wilson CJ, Schlegel R, Hofmann F, García-Echeverría C, Sellers WR, Voliva CF. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther. 2012;11(2):317–28.

    CAS  PubMed  Google Scholar 

  106. Fan QW, Cheng CK, Nicolaides TP, Hackett CS, Knight ZA, Shokat KM, Weiss WA. A dual phosphoinositide-3-kinase/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res. 2007;67(17):7960–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Yuan J, Mehta PP, Yin MJ, Sun S, Zou A, Chen J, Rafidi K, Feng Z, Nickel J, Engebretsen J, Hallin J, Blasina A, Zhang E, Nguyen L, Sun M, Vogt PK, McHarg A, Cheng H, Christensen JG, Kan JL, Bagrodia S. PF-04691502, a potent and selective oral inhibitor of PI3K and mTOR kinases with antitumor activity. Mol Cancer Ther. 2011;10(11):2189–99.

    CAS  PubMed  Google Scholar 

  108. Millham R, Houk B, Borzillo G, LoRusso P, Marburg L, Britten C, Wainberg Z, Adjei A, Dy G. Abstract B163: first-in-patient study of PF-04691502, a small molecule intravenous dual inhibitor of PI3K and mTOR in patients with advanced cancer: Update on safety, efficacy, and pharmacology. Proceedings of the AACR-NCI-EORTC international conference: Molecular Targets and Cancer Therapeutics; 12–16 Nov 2011, San Francisco.

    Google Scholar 

  109. Millham R, Houk B, Borzillo G, Tabernero J, Bell-McGuinn K, Bendell J, Molina J, Eunice Kwak E, Shapiro G. First-in-patient study of PF-05212384, a small molecule intravenous dual inhibitor of PI3K and mTOR in patients with advanced cancer: update on safety, efficacy, and pharmacology. Proceedings of the AACR-NCI-EORTC international conference: Molecular Targets and Cancer Therapeutics; 12–16 Nov 2011, San Francisco.

    Google Scholar 

  110. Wallin JJ, Edgar KA, Guan J, Berry M, Prior WW, Lee L, Lesnick JD, Lewis C, Nonomiya J, Pang J, Salphati L, Olivero AG, Sutherlin DP, O’Brien C, Spoerke JM, Patel S, Lensun L, Kassees R, Ross L, Lackner MR, Sampath D, Belvin M, Friedman LS. GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Mol Cancer Ther. 2011;10(12):2426–36.

    CAS  PubMed  Google Scholar 

  111. Wagner AJ, Bendell JC, Dolly S, Morgan JA, Ware JA, Fredrickson J, Mazina KE, Lauchle JO, Burris HA, De Bono JS. A first-in-human phase I study to evaluate GDC-0980, an oral PI3K/mTOR inhibitor, administered QD in patients with advanced solid tumors. Proceedings of the 2011 ASCO annual meeting; 3–7 Jun 2011, Chicago.

    Google Scholar 

  112. Yap TA, Yan L, Patnaik A, Fearen I, Olmos D, Papadopoulos K, Baird RD, Delgado L, Taylor A, Lupinacci L, Riisnaes R, Pope LL, Heaton SP, Thomas G, Garrett MD, Sullivan DM, de Bono JS, Tolcher AW. First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol. 2011;29(35):4688–95.

    CAS  PubMed  Google Scholar 

  113. Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder PK, Pan BS, Kotani H. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010;9(7):1956–67.

    CAS  PubMed  Google Scholar 

  114. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J, Pandolfi PP. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008;118(9):3065–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Janku F, Wheler JJ, Westin SN, Moulder SL, Naing A, Tsimberidou AM, Fu S, Falchook GS, Hong DS, Garrido-Laguna I, Luthra R, Lee JJ, Lu KH, Kurzrock R. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. J Clin Oncol. 2012;30(8):777–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Janku F, Wheler JJ, Naing A, Falchook GS, Hong DS, Stepanek V, Fu S, Piha-Paul SA, Lee JJ, Luthra R, Tsimberidou AM, Kurzrock R. PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early phase clinical trials. Cancer Res. 2012;12:765.

    Google Scholar 

  117. Dutt A, Salvesen HB, Chen TH, Ramos AH, Onofrio RC, Hatton C, Nicoletti R, Winckler W, Grewal R, Hanna M, Wyhs N, Ziaugra L, Richter DJ, Trovik J, Engelsen IB, Stefansson IM, Fennell T, Cibulskis K, Zody MC, Akslen LA, Gabriel S, Wong KK, Sellers WR, Meyerson M, Greulich H. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc Natl Acad Sci U S A. 2008;105(25):8713–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Byron SA, Pollock PM. FGFR as a molecular target in endometrial cancer. Future Oncol. 2009;5(1):27–32.

    CAS  PubMed  Google Scholar 

  119. Byron SA, Gartside MG, Wellens CL, Mallon MA, Keenan JB, Powell MA, Goodfellow PJ, Pollock PM. Inhibition of activated fibroblast growth factor receptor 2 in endometrial cancer cells induces cell death despite PTEN abrogation. Cancer Res. 2008;68(17):6902–7.

    CAS  PubMed  Google Scholar 

  120. Hirai M, Nakagawara A, Oosaki T, Hayashi Y, Hirono M, Yoshinora T. Expression of vascular endothelial growth factors (VEGF-A/VEGF-1 and VEGF-C/VEGF-2) in postmenopausal uterine endometrial carcinoma. Gynecol Oncol. 2001;80(2):181–8.

    CAS  PubMed  Google Scholar 

  121. Yokoyama Y, Sato S, Futagami M, Fukushi Y, Sakamoto T, Umemoto M, Saito Y. Prognostic significance of vascular endothelial growth factor and its receptors in endometrial carcinoma. Gynecol Oncol. 2000;77(3):413–8.

    CAS  PubMed  Google Scholar 

  122. Miyake T, Yoshino K, Enomoto T, Takata T, Ugaki H, Kim A, Fujiwara K, Miyatake T, Fujita M, Kimura T. PIK3CA gene mutations and amplifications in uterine cancers, identified by methods that avoid confounding by PIK3CA pseudogene sequences. Cancer Lett. 2008;261(1):120–6.

    CAS  PubMed  Google Scholar 

  123. Koul A, Willén R, Bendahl PO, Nilbert M, Borg A. Distinct sets of gene alterations in endometrial carcinoma implicate alternate modes of tumorigenesis. Cancer. 2002;94(9):2369–79.

    CAS  PubMed  Google Scholar 

  124. Lax SF, Kendall B, Tashiro H, Slebos RJ, Hedrick L. The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways. Cancer. 2000;88(4):814–24.

    CAS  PubMed  Google Scholar 

  125. Pollock PM, Gartside MG, Dejeza LC, Powell MA, Mallon MA, Davies H, Mohammadi M, Futreal PA, Stratton MR, Trent JM, Goodfellow PJ. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene. 2007;26(50):7158–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Jia L, Liu Y, Yi X, Miron A, Crum CP, Kong B, Zheng W. Endometrial glandular dysplasia with frequent p53 gene mutation: a genetic evidence its precancer nature for endometrial serous carcinoma. Clin Cancer Res. 2008;14(8):2263–9.

    CAS  PubMed  Google Scholar 

  127. MacDonald ND, Salvesen HB, Ryan A, Iversen OE, Akslen LA, Jacobs IJ. Frequency and prognostic impact of microsatellite instability in a large population-based study of endometrial carcinomas. Cancer Res. 2000;60(6):1750–2.

    CAS  PubMed  Google Scholar 

  128. Basil JB, Goodfellow PJ, Rader JS, Mutch DG, Herzog TJ. Clinical significance of microsatellite instability in endometrial carcinoma. Cancer. 2000;89(8):1758–64.

    CAS  PubMed  Google Scholar 

  129. Fadare O, Zheng W. Insights into endometrial serous carcinogenesis and progression. Int J Clin Exp Pathol. 2009;2(5):411–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Morrison C, Zanagnolo V, Ramirez N, Cohn DE, Kelbick N, Copeland L, Maxwell GL, Fowler JM. HER-2 is an independent prognostic factor in endometrial cancer: association with outcome in a large cohort of surgically staged patients. J Clin Oncol. 2006;24(15):2376–85.

    CAS  PubMed  Google Scholar 

  131. Konecny GE, Santos L, Winterhoff B, Hatmal M, Keeney GL, Mariani A, Jones M, Neuper C, Thomas B, Muderspach L, Riehle D, Wang HJ, Dowdy S, Podratz KC, Press MF. HER2 gene amplification and EGFR expression in a large cohort of surgically staged patients with nonendometrioid (type II) endometrial cancer. Br J Cancer. 2009;100(1):89–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Wander SA, Hennessy BT, Slingerland JM. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Investig. 2011;121(4):1230–41.

    Google Scholar 

  133. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–101.

    CAS  PubMed  Google Scholar 

  134. Hresko RC, Mueckler M. mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem. 2005;280(49):40406–16.

    CAS  PubMed  Google Scholar 

  135. Hong F, Larrea MD, Doughty C, Kwiarkowski DJ, Squillate R, Slingerland JM. mTOR-raptor binds and activates SGKl to regulate p27 phosphorylation. Mol Cell. 2008;30(6):701–11.

    CAS  PubMed  Google Scholar 

  136. Garcia-Marrinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGKl). Biochem J. 2008;416(3):375–85.

    Google Scholar 

  137. Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol. 2003;13(15):1259–68.

    CAS  PubMed  Google Scholar 

  138. Kim DH, Sarbassoy DD, Ali SM, King JE, Latek RR, Erdiument-Bromage H, Tempst P, Sabatini DM. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110(2):163–75.

    CAS  PubMed  Google Scholar 

  139. Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol. 2002;4(9):658–65.

    CAS  PubMed  Google Scholar 

  140. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell. 2002;10(1):151–62.

    CAS  PubMed  Google Scholar 

  141. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648–57.

    CAS  PubMed  Google Scholar 

  142. Darb-Esfahani S, Faggad A, Noske A, Weichert W, Buckendahl AC, Müller B, Budczies J, Röske A, Dietel M, Denkert C. Phospho-mTOR and phospho-4EBP1 in endometrial adenocarcinoma: association with stage and grade in vivo and link with response to rapamycin treatment in vitro. J Cancer Res Clin Oncol. 2009;135:933–41.

    CAS  PubMed  Google Scholar 

  143. Liang J, Slingerland JM. Multiple roles of the PI3K/ PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2003;2(4):339–45.

    CAS  PubMed  Google Scholar 

  144. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC. Cytoplasmic localization of p21Cip1/WAFl by Akt-induced phosphorylation in HER-2/neu-over-expressing cells. Nat Cell Biol. 2001;3(3):245–52.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Kristeleit MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Flynn, M.J., Kristeleit, R. (2015). Management of Advanced Endometrial Cancer and Inhibitors of the PI3K/AKT/mTOR Pathway. In: Patel, H., Mould, T., Joseph, J., Delaney, C. (eds) Pelvic Cancer Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-4258-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4258-4_31

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4257-7

  • Online ISBN: 978-1-4471-4258-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics