Skip to main content

Technique for Transformation of DL Knowledge Base to Boolean Representation

  • Chapter
  • First Online:
Computational Intelligence and Efficiency in Engineering Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 595))

Abstract

Knowledge Cartography (KC) allows for fast answering of Description Logic (DL) knowledge base queries, but requires expensive preprocessing to represent knowledge in internal representation, i.e., the algorithm for computation of map of concepts as binary signatures is exponential time (however, for taxonomies—as many practical cases have shown—it is at most quadratic time). Preprocessing is already part of DL reasoning process and some computations are pre-calculated before user issues query to knowledge base. Using another method—Tableaux, no knowledge preprocessing is performed, however, all reasoning is done after user issues query. That’s why KC is faster than Tableaux during query answering. The chapter focuses on preprocessing issue for KC. It mainly considers the research on efficient generation of binary signatures and signatures rebuilding by employing the methods for logic synthesis. It has been confirmed that logic synthesis Complement algorithm is efficient when applied to the construction of the map of concepts. The research has shown that strategy of construction should be adjusted depending on ontology size. For smaller ontologies—the non-recursive approach should be used, on the contrary—for larger ontologies—recursive approach with bi-partitioning of the ontology graph. The recursive procedure indicated good scaling for large taxonomies. Another observation was that Complement algorithm works faster for non-sorted CNFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  2. Borowik, G.: Boolean function complementation based algorithm for data discretization. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory—EUROCAST 2013, Part II. LNCS, vol. 8112, pp. 218–225. Springer, Heidelberg (2013). doi:10.1007/978-3-642-53862-9_28

  3. Borowik, G.: Data mining approach for decision and classification systems using logic synthesis algorithms. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in Computational Intelligence, Chap. 1. Topics in Intelligent Engineering and Informatics, pp. 3–23. Springer International Publishing (2014). doi:10.1007/978-3-319-01436-4_1

  4. Borowik, G., Łuba, T.: Fast algorithm of attribute reduction based on the complementation of Boolean function. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in Computational Intelligence, Chap. 2. Topics in Intelligent Engineering and Informatics, pp. 25–41. Springer International Publishing (2014). doi:10.1007/978-3-319-01436-4_2

  5. Borowik, G., Nogalski, D.: Efficient technique for transformation from concepts to Boolean algebra. In: Chaczko, Z., Gaol, F.L., Pichler, F., Chiu, C. (eds.) 2nd Asia-Pacific Conference on Computer Aided System Engineering—APCASE 2014, pp. 24–27. APCASE Foundation, Bali (2014)

    Google Scholar 

  6. Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.: Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers (1984)

    Google Scholar 

  7. Goczyła, K., Grabowska, T., Waloszek, W., Zawadzki, M.: The knowledge cartography—a new approach to reasoning over description logics ontologies. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006: Theory and Practice of Computer Science. Lecture Notes in Computer Science, vol. 3831, pp. 293–302. Springer, Berlin (2006). doi:10.1007/11611257_27

  8. Grzymała-Busse, J.W.: LERS—a system for learning from examples based on rough sets. In: Słowiński, R. (ed.) Intelligent Decision Support— Handbook of Application and Advanced of the Rough Sets Theory, Theory and Decision Library, vol. 11, pp. 3–18. Springer, Netherlands (1992). doi:10.1007/978-94-015-7975-9_1

  9. Grzymała-Busse, J.W.: LERS—a data mining system. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 1347–1351. Springer (2005). doi:10.1007/0-387-25465-X_65

  10. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular graphs. (1999)

    Google Scholar 

  11. Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough Sets: A Tutorial. (1999)

    Google Scholar 

  12. Lang, C., Steinbach, B.: Bi-decomposition of function sets in multiple-valued logic for circuit design and data mining. Artif. Intell. Rev. 20(3–4), 233–267 (2003). doi:10.1023/B:AIRE.0000006608.31990.cd

    Article  MATH  Google Scholar 

  13. Michie, D.: Problem decomposition and the learning of skills. In: Lavrac, N., Wrobel, S. (eds.) Machine Learning: ECML-95. Lecture Notes in Computer Science, vol. 912, pp. 17–31. Springer, Berlin Heidelberg (1995). doi:10.1007/3-540-59286-5_46

  14. Nilsson, U., Małuszyński., J.: Logic, Programming and Prolog. Previously published by John Wiley & Sons Ltd., 2 edn. (2000)

    Google Scholar 

  15. Nogalski, D., Chmielewski, M.: Semantic web service discovery and information fusion using OWL-S and SPARQL formal specifications over NATO JC3IEDM and TIDE services. In: Amanowicz, M. (ed.) Concepts and Implementations for Innovative Military Communications and Information Technologies, pp. 165–174. Military University of Technology, Warsaw (2010)

    Google Scholar 

  16. Nogalski, D., Najgebauer, A.: Semantic mediation of NATO C2 systems based on JC3IEDM and NFFI ontologies. In: RTO Symposium “Semantic and Domain based Interoperability” RTO-MP-IST-101. Oslo (2011)

    Google Scholar 

  17. Nogalski, D., Wróblewska, A., Szklarz, P., Chmielewski, M.: Battlefield situational awareness—generating usefull ontology based on relational data model MIP JC3IEDM (in Polish). In: Ficoń, K. (ed.) Transformacja Systemów Dowodzenia, pp. 177–194. Ośrodek Badawczo-Rozwojowy Centrum Techniki Morskiej (2010)

    Google Scholar 

  18. Papadimitriou, C.H.: Computational Complexity. Academic Internet Publishers (2007)

    Google Scholar 

  19. Pawlak, Z.: Rough Sets Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston (1991)

    MATH  Google Scholar 

  20. Rokach, L., Maimon, O.: Data mining using decomposition methods. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 981–998. Springer (2010). doi:10.1007/978-0-387-09823-4_51

  21. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, New jersey (2009)

    Google Scholar 

  22. Samuel, A.L.: Some studies in machine learning using the game of checkers. II—recent progress. IBM J. Res. Dev. 11(6), 601–617 (1967)

    Article  Google Scholar 

  23. Waloszek, W.: Structural representation of description logics ontologies (in Polish). Ph.D. Thesis, Gdańsk University of Technology, Gdańsk (2007)

    Google Scholar 

  24. Zupan, B., Bohanec, M., Demsar, J., Bratko, I.: Feature transformation by function decomposition. IEEE Intell. Syst. Appl. 13(2), 38–43 (1998). doi:10.1109/5254.671090

    Article  Google Scholar 

  25. NCBO: SNOMED Clinical Terms. http://bioportal.bioontology.org/ontologies/SNOMEDCT (2014). Accessed May 2014

  26. RSES—Rough Set Exploration System. http://logic.mimuw.edu.pl/~rses/. Accessed May 2014

  27. SW: W3C Semantic Web Activity. http://www.w3.org/2001/sw/. Accessed May 2014

  28. UC Irvine machine learning repository. http://archive.ics.uci.edu/ml/. Accessed May 2014

  29. W3C: OWL Web Ontology Language. http://www.w3.org/TR/owl-features/. Release date Feb 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Borowik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borowik, G., Nogalski, D. (2015). Technique for Transformation of DL Knowledge Base to Boolean Representation. In: Borowik, G., Chaczko, Z., Jacak, W., Łuba, T. (eds) Computational Intelligence and Efficiency in Engineering Systems. Studies in Computational Intelligence, vol 595. Springer, Cham. https://doi.org/10.1007/978-3-319-15720-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15720-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15719-1

  • Online ISBN: 978-3-319-15720-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics