Skip to main content

Shape Constraints for the Left Ventricle Segmentation from Cardiac Cine MRI Based on Snake Models

  • Chapter
  • First Online:
Shape Analysis in Medical Image Analysis

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 14))

Abstract

Segmentation of the left ventricle (LV) is a hot topic in cardiac magnetic resonance (MR) images analysis. To make thorough use of the anatomical and functional information, it is necessary to segment the endocardium and epicardium of the left ventricle. However, automatic and accurate segmentation of the left ventricle remains a challenging problem because of papillary muscles, lack of edge information, image inhomogeneity and low contrast at the epicardium. In this chapter, we address the shape constraints for extracting the endocardium and epicardium from cardiac cine MRI based on snake models. For endocardium segmentation, a circle/ellipse-based shape energy term is incorporated into the snake model. With this prior constraint, the snake contour can conquer the unexpected local minimum stemming from artifacts and papillary muscle. After extracting the endocardium, the edge map is modified to yield a new external force field for active contours, which automatically pushes the snake contour directly to the epicardium by employing the endocardium result as initialization. However, the circle constraint does not work very well for the epicardium, and the ellipse constraint needs the troublesome calculation of the ellipse orientation during snake evolution. Assuming that the epicardium resembles the endocardium in shape, we further propose a novel shape similarity energy for epicardium segmentation. With this energy, the snake model can avoid being trapped into artifacts and leaking out at weak boundaries. Based on the circle constraint and shape similarity energy, we present an automatic algorithm to extract the endocardium and epicardium of the LV simultaneously. Both qualitative and quantitative evaluations on our dataset and the publicly available database (e.g., MICCAI 2009) demonstrate the good performance of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL, Benjamin EJ, Go AS, Mozaffarian D (2013) Heart disease and stroke statistics-2013 update a report from the american heart association. Circulation 127(1): e6–e245

    Google Scholar 

  2. Frangi A, Niessen W, Viergever M (2001) Three-dimensional modeling for functional analysis of cardiac images: a review. IEEE Trans Med Imaging 20(1):2–5

    Article  Google Scholar 

  3. Ayed I, Chen H, Punithakumar K, Ross I, Li S (2012) Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the bhattacharyya measure. Med Image Anal 16:87–100

    Article  Google Scholar 

  4. Punithakumar K, Ben Ayed I, Islam A, Ross I, Li S (2010) Tracking endocardial motion via multiple model filtering. IEEE Trans Biomed Eng 57(8): 2001–2010

    Google Scholar 

  5. Ben Ayed I, Punithakumar K, Li S, Islam A, Chong J (2009) Left ventricle segmentation via graph cut distribution matching. In: Medical image computing and computer-assisted intervention-MICCAI 2009, pp 901–909

    Google Scholar 

  6. Cousty J, Najman L, Couprie M, Clément-Guinaudeau S, Goissen T, Garot J (2010) Segmentation of 4 D cardiac MRI: automated method based on spatio-temporal watershed cuts. Image Vis Comput 28(8):1229–1243

    Article  Google Scholar 

  7. Cocosco C, Niessen W, Netsch T, Vonken E, Lund G, Stork A, Viergever M (2008) Automatic image-driven segmentation of the ventricles in cardiac cine MRI. J Magn Reson Imaging 28(2):366–374

    Article  Google Scholar 

  8. Pednekar A, Kurkure U, Muthupillai R, Flamm S, Kakadiaris I (2006) Automated left ventricular segmentation in cardiac MRI. IEEE Trans Biomed Eng 53(7):1425–1428

    Article  Google Scholar 

  9. Kurkure U, Pednekar A, Muthupillai R, Flamm S, Kakadiaris I (2009) Localization and segmentation of left ventricle in cardiac cine- MR images. IEEE Trans Biomed Eng 56(5):1360–1370

    Article  Google Scholar 

  10. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331

    Article  Google Scholar 

  11. Paragios N (2003) A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans Med Imaging 22(6):773–776

    Article  Google Scholar 

  12. Ben Ayed I, Li S, Ross I (2009) Embedding overlap priors in variational left ventricle tracking. IEEE Trans Med Imaging 28(12): 1902–1913

    Google Scholar 

  13. Wang Y, Jia Y (2006) Segmentation of the left ventricle from cardiac MR images based on degenerated minimal surface diffusion and shape priors. In: 18th International conference on pattern recognition, 2006. ICPR 2006, vol. 4. IEEE, pp 671–674

    Google Scholar 

  14. Liang J, Ding G, Wu Y (2008) Segmentation of the left ventricle from cardiac MR images based on radial GVF snake. In: International Conference on BioMedical Engineering and Informatics, 2008. BMEI 2008, vol 2. IEEE, pp 238–242

    Google Scholar 

  15. Cootes T, Taylor C, Cooper D, Graham J et al (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  16. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685

    Article  Google Scholar 

  17. Zhang H, Wahle A, Johnson R, Scholz T, Sonka M (2010) 4-D cardiac MR image analysis: Left and right ventricular morphology and function. IEEE Trans Med Imaging 29(2):350–364

    Article  Google Scholar 

  18. Carneiro G, Nascimento J, Freitas A (2012) The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans Image Process 21(3):968–982

    Article  MathSciNet  Google Scholar 

  19. Petitjean C, Dacher J (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15(2):169–184

    Article  Google Scholar 

  20. Wang Y, Jia Y (2006) Segmentation of the left venctricle from MR images via snake models incorporating shape similarities. In: 2006 IEEE International conference on image processing. IEEE, pp 213–216

    Google Scholar 

  21. Wang Y, Jia Y (2008) External force for active contours: gradient vector convolution. In: PRICAI, (2008) trends in artificial intelligence, pp 466–472

    Google Scholar 

  22. Wang Y, Liang J, Jia Y (2007) On the critical point of gradient vector flow snake. In: Proceedings of the 8th Asian conference on computer vision-volume Part II. Springer-Verlag, pp 754–763

    Google Scholar 

  23. Wu Y, Wang Y, Jia Y (2013) Segmentation of the left ventricle in cardiac cine mri using a shape-constrained snake model. Comput Vis Image Underst 117(9):990–1003. http://dx.doi.org/10.1016/j.cviu.2012.12.008

  24. Ranganath S (1995) Contour extraction from cardiac MRI studies using snakes. IEEE Trans Med Imaging 14(2):328–338

    Article  Google Scholar 

  25. Makowski P, Sørensen T, Therkildsen S, Materka A, Stødkilde-Jørgensen H, Pedersen E (2002) Two-phase active contour method for semiautomatic segmentation of the heart and blood vessels from MRI images for 3 D visualization. Comput Med Imaging Graph 26(1):9–17

    Article  Google Scholar 

  26. Cohen LD (1991) On active contour models and balloons. CVGIP: Image underst 53(2):211–218

    Article  MATH  Google Scholar 

  27. Hautvast G, Lobregt S, Breeuwer M, Gerritsen F (2006) Automatic contour propagation in cine cardiac magnetic resonance images. IEEE Trans Med Imaging 25(11):1472–1482

    Article  Google Scholar 

  28. Xu C, Prince J (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369

    Article  MATH  MathSciNet  Google Scholar 

  29. Santarelli M, Positano V, Michelassi C, Lombardi M, Landini L (2003) Automated cardiac MR image segmentation: theory and measurement evaluation. Med Eng Phys 25(2):149–159

    Article  Google Scholar 

  30. Lee H, Codella N, Cham M, Weinsaft J, Wang Y (2010) Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI. IEEE Trans. Biomed. Eng 57(4):905–913

    Article  Google Scholar 

  31. Nguyen D, Masterson K, Vallée J (2007) Comparative evaluation of active contour model extensions for automated cardiac MR image segmentation by regional error assessment. Magn Reson Mater Phys, Biol Med 20(2):69–82

    Article  Google Scholar 

  32. Paragios N (2002) A variational approach for the segmentation of the left ventricle in cardiac image analysis. Int J Comput Vision 50(3):345–362

    Article  MATH  Google Scholar 

  33. Folkesson J, Samset E, Kwong R, Westin C (2008) Unifying statistical classification and geodesic active regions for segmentation of cardiac MRI. IEEE Trans Inf Technol Biomed 12(3):328–334

    Article  Google Scholar 

  34. Alessandrini M, Dietenbeck T, Basset O, Friboulet D, Bernard O (2011) Using a geometric formulation of annular-like shape priors for constraining variational level-sets. Pattern Recogn Lett 32(9):1240–1249

    Article  Google Scholar 

  35. Pluempitiwiriyawej C, Moura J, Wu Y, Ho C (2005) Stacs: new active contour scheme for cardiac mr image segmentation. IEEE Trans Med Imaging 24(5):593–603

    Article  Google Scholar 

  36. Chen T, Babb J, Kellman P, Axel L, Kim D (2008) Semiautomated segmentation of myocardial contours for fast strain analysis in cine displacement-encoded MRI. IEEE Trans Med Imaging 27(8):1084–1094

    Article  Google Scholar 

  37. Lynch M, Ghita O, Whelan P (2006) Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge. Comput Med Imaging Graph 30(4):255–262

    Article  Google Scholar 

  38. Punithakumar K, Ben Ayed I, Ross I, Islam A, Chong J, Li S (2010) Detection of left ventricular motion abnormality via information measures and bayesian filtering. IEEE Trans Inf Technol Biomed 14(4):1106–1113

    Google Scholar 

  39. Lynch M, Ghita O, Whelan P (2008) Segmentation of the left ventricle of the heart in 3- D+ t MRI data using an optimized nonrigid temporal model. IEEE Trans Med Imaging 27(2):195–203

    Article  Google Scholar 

  40. Osher S, Sethian J (1988) Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49

    Article  MATH  MathSciNet  Google Scholar 

  41. Zhu Y, Papademetris X, Sinusas A, Duncan J (2010) Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model. IEEE Trans Med Imaging 29(3):669–687

    Article  Google Scholar 

  42. Jolly M (2006) Automatic segmentation of the left ventricle in cardiac mr and ct images. Int J Comput Vision 70(2):151–163

    Article  Google Scholar 

  43. Duta N, Jain AK, Jolly MP (1999) Learning 2d shape models. In: Proceedings of the international conference on computer vision and pattern recognition, vol 2, 7–14

    Google Scholar 

  44. Lorenzo-Valdés M, Sanchez-Ortiz GI, Elkington AG, Mohiaddin RH, Rueckert D et al (2004) Segmentation of 4d cardiac mr images using a probabilistic atlas and the em algorithm. Med Image Anal 8(3):255–265

    Google Scholar 

  45. Van Assen HC, Danilouchkine MG, Frangi AF, Ordas S, Westenberg JJ, Reiber JH, Lelieveldt BP (2006) Spasm: a 3d-asm for segmentation of sparse and arbitrarily oriented cardiac mri data. Med Image Anal 10(2):286–303

    Google Scholar 

  46. van Assen HC, Danilouchkine MG, Dirksen MS, Reiber JH, Lelieveldt BP (2008) A 3-d active shape model driven by fuzzy inference: application to cardiac ct and mr. IEEE Trans Inf Technol Biomed 12(5):595–605

    Article  Google Scholar 

  47. Matthews I, Baker S (2004) Active appearance models revisited. Int J Comput Vision 60(2):135–164

    Article  Google Scholar 

  48. Gopal S, Otaki Y, Arsanjani R, Berman D, Terzopoulos D, Slomka P (2013) Combining active appearance and deformable superquadric models for lv segmentation in cardiac mri. In: SPIE medical imaging, international society for optics and photonics, pp 86690G–86690G

    Google Scholar 

  49. Ghose S, Oliver A, Marti R, Llado X, Freixenet J, Mitra J, Vilanova JC, Meriaudeau F (2012) A hybrid framework of multiple active appearance models and global registration for 3d prostate segmentation in mri. In: SPIE Medical imaging, international society for optics and photonics, pp 83140S–83140S

    Google Scholar 

  50. Mitchell SC, Lelieveldt BPF, van der Geest RJ, Bosch HG, Reiver J, Sonka M (2001) Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac mr images. IEEE Trans Med Imaging 20(5):415–423

    Article  Google Scholar 

  51. Pfeifer B, Hanser F, Seger M, Hintermueller C, Modre-Osprian R, Fischer G, Muehlthaler H, Trieb T, Tilg B (2005) Cardiac modeling using active appearance models and morphological operators. In: Medical imaging, international society for optics and photonics, pp 279–289

    Google Scholar 

  52. Zambal S, Hladuvka J, Buhler K (2006) Improving segmentation of the left ventricle using a two-component statistical model. In: Medical image computing and computer-assisted intervention-MICCAI 2006. Springer, pp 151–158

    Google Scholar 

  53. Ray N, Acton S (2004) Motion gradient vector flow: an external force for tracking rolling leukocytes with shape and size constrained active contours. IEEE Trans Med Imaging 23(12):1466–1478

    Article  Google Scholar 

  54. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vision 22(1):61–79

    Article  MATH  Google Scholar 

  55. Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  56. Zhang K, Zhang L, Song H, Zhou W (2010) Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis Comput 28(4):668–676

    Article  Google Scholar 

  57. Xie X, Mirmehdi M (2008) MAC: magnetostatic active contour model. IEEE Trans Pattern Anal Mach Intell 30(4):632–646

    Article  Google Scholar 

  58. Tang J (2009) A multi-direction GVF snake for the segmentation of skin cancer images. Pattern Recogn 42(6):1172–1179

    Article  Google Scholar 

  59. Mishra A, Fieguth P, Clausi D (2011) Decoupled active contour (dac) for boundary detection. IEEE Trans Pattern Anal Mach Intell 33(2):310–324

    Article  Google Scholar 

  60. Cheng J, Foo S (2006) Dynamic directional gradient vector flow for snakes. IEEE Trans. Image Process 15(6):1563–1571

    Article  Google Scholar 

  61. Wu Y, Jia Y, Wang Y (2010) Adaptive diffusion flow for parametric active contours. In: 20th International conference on pattern recognition, ICPR 2010. IEEE, 2010, pp 2788–2791

    Google Scholar 

  62. Xu C, Prince J (1998) Generalized gradient vector flow external forces for active contours. Signal Process 71(2):131–139

    Google Scholar 

  63. Lu S, Wang Y (2010) Gradient vector flow over manifold for active contours. In: Proceedings of the 9th Asian conference on computer vision, ACCV 2009. Springer-Verlag, pp 147–156

    Google Scholar 

  64. Park H, Chung M (2002) External force of snake: virtual electric field. Electron Lett 38(24):1500–1502

    Article  MathSciNet  Google Scholar 

  65. Yuan D, Lu S (2002) Simulated static electric field (ssef) snake for deformable models. In: Proceedings of 16th International Conference on Pattern Recognition, vol 1. IEEE, pp 83–86

    Google Scholar 

  66. Jalba AC, Wilkinson MH, Roerdink JB (2004) Cpm: a deformable model for shape recovery and segmentation based on charged particles. IEEE Trans Pattern Anal Mach Intell 26(10):1320–1335

    Article  Google Scholar 

  67. Li B, Acton S (2007) Active contour external force using vector field convolution for image segmentation. IEEE Trans Image Process 16(8):2096–2106

    Article  MathSciNet  Google Scholar 

  68. Vidholm E, Sundqvist P, Nystrom I (2006) Accelerating the computation of 3d gradient vector flow fields. In: 18th International conference on pattern recognition, ICPR 2006, vol 3. IEEE, pp 677–680

    Google Scholar 

  69. Han X, Xu C, Prince J (2007) Fast numerical scheme for gradient vector flow computation using a multigrid method. IET Image Proc 1(1):48–55

    Article  Google Scholar 

  70. Boukerroui D (2012) Efficient numerical schemes for gradient vector flow. Pattern Recogn 45(1):626–636

    Article  MATH  Google Scholar 

  71. Ren D, Zuo W, Zhao X, Lin Z, Zhang D (2013) Fast gradient vector flow computation based on augmented lagrangian method. Pattern Recogn Lett 2(34):219-225

    Google Scholar 

  72. Ray N, Acton S, Ley K (2002) Tracking leukocytes in vivo with shape and size constrained active contours. IEEE Trans Med Imaging 21(10):1222–1235

    Article  Google Scholar 

  73. Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11:285–296

    Article  Google Scholar 

  74. Mikic I, Krucinski S, Thomas J (1998) Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates. IEEE Trans Med Imaging 17(2):274–284

    Article  Google Scholar 

  75. Radau P, Lu Y, Connelly K, Paul G, Dick A, Wright G (2009) Evaluation framework for algorithms segmenting short axis cardiac mri. the midas journal-cardiac mr left ventricle segmentation challenge, 2009. http://hdl.handle.net/10380/3070

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of China(NSFC) under Grants No.90920009 & No. 60602050, and the Key Program from the Tianjin Commission of Technology of China under Grant No. 11JCZDJC15600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanquan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Y., Wu, Y., Jia, Y. (2014). Shape Constraints for the Left Ventricle Segmentation from Cardiac Cine MRI Based on Snake Models. In: Li, S., Tavares, J. (eds) Shape Analysis in Medical Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-03813-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03813-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03812-4

  • Online ISBN: 978-3-319-03813-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics