Skip to main content

3D Structure Estimation from a Single View Using Generic Fitted Primitives (GFP)

  • Conference paper
Computer Vision, Imaging and Computer Graphics. Theory and Application

Abstract

This paper presents a method for surface estimation applied on single viewed objects. Its goal is to deliver reliable 3D scene information to service robotics application for appropriate grasp and manipulation actions. The core of the approach is to deform a predefined generic primitive such that it captures the local geometrical information which describes the imaged object model. The primitive modeling process is performed on 3D Regions of Interest (ROI) obtained by classifying the objects present in the scene. In order to speed up the process, the primitive points are divided into two categories: control and regular points. The control points are used to sculpt the initial primitive model based on the principle of active contours, or snakes, whereas the regular points are used to smooth the final representation of the object. In the end, a compact volume can be obtained by generating a 3D mesh based on the newly modified primitive point cloud. The obtainedPoint Distribution Models (PDM) are used for the purpose of precise object manipulation in service robotics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, M., Burschka, D., Hager, G.: Advances in Computational Stereo. IEEE Transaction on Pattern Recognition and Machine Intelligence 25(8), 993–1008 (2003)

    Article  Google Scholar 

  2. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active Shape Models-Their Training and Application. Comp. Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  3. Criminisi, A., Reid, I., Zisserman, A.: Single View Metrology. International Journal on Computer Vision 40(2), 123–148 (2000)

    Article  MATH  Google Scholar 

  4. Grigorescu, S., Cocias, T., Macesanu, G., Puiu, D., Moldoveanu, F.: Robust Camera Pose and Scene Structure Analysis for Service Robotics. Robotics and Autonomous Systems 59(11), 899–909 (2011)

    Article  Google Scholar 

  5. Hartley, R., Zisserman, A.: Multiple View Geometryin Computer Vision. Cambridge University Press, Great Britain (2004)

    Book  Google Scholar 

  6. Horry, Y., Anjyo, K., Arai, K.: Tour into the Picture: Using a Spidery Mesh Interface to Make Animation from a Single Image. In: Proc. ACM SIGGRAPH, New York, pp. 225–232 (1997)

    Google Scholar 

  7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision 1(4), 321–331 (1998)

    Article  Google Scholar 

  8. Kim, T., Seo, Y., Lee, S., Yang, Z., Chang, M.: Simultaneous Registration of Multiple Views with Markers. Computer-Aided Design 41(4), 231–239 (2009)

    Article  Google Scholar 

  9. Kutulakos, K., Seitz, S.: A Theory of Shape by Space Carving. International Journal of Computer Vision 38(3), 199–218 (2000)

    Article  MATH  Google Scholar 

  10. Lhuillier, M., Quan, L.: A Quasi-Dense Approach to Surface Reconstruction from Uncali-brated Images. IEEE TPAMI 27(3), 418–433 (2005)

    Article  Google Scholar 

  11. Matsuyama, T., Wu, X., Takai, T., Wada, T.: Real-Time Dynamic 3-D Object Shape Re-construction and High-Fidelity Texture Mapping for 3-D Video. IEEE Transactions on Circuits and Systems for Video Technology 14(3), 357–369 (2004)

    Article  Google Scholar 

  12. Stamos, I., Liu, L., Chao, C., Wolberg, G., Yu, G., Zokai, S.: Integrating Automated Range Registration with Multi-view Geometry for the Photorealistic Modeling of Large-Scale Scenes. International Journal of Computer Vision 78(2/3), 237–260 (2008)

    Article  Google Scholar 

  13. Sturm, P., Maybank, S.: A Method for Interactive 3D Reconstruction of Piecewise Planar Objects from Single Images. In: BMVC, United Kingdom (1999)

    Google Scholar 

  14. Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice Hall PTR (1998)

    Google Scholar 

  15. Turiac, M., Ivanovici, M., Radulescu, T.: Variance-driven Active Contours. In: International Conference on Image Processing, Computer Vision, and Pattern Recognition, Las Vegas, Nevada, USA (2010)

    Google Scholar 

  16. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-Chamber Heart Modeling and Automatic Segmentation for 3D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features. IEEE Transaction on Medical Imaging 27(11), 1668–1681 (2008)

    Article  Google Scholar 

  17. Microsoft motion sensing devices, http://en.wikipedia.org/wiki/Kinect

  18. Rusu, R.B., Blodow, N., Beetz, M.: Fast Point Feature Histograms (FPFH) for 3D Regis-tration. In: International Conference on Robotics and Automation, Kobe, Japan, pp. 3212–3217 (2009)

    Google Scholar 

  19. Nixon, M.S., Aguado, A.S.: Feature extraction and image Processing. Academic Press (2002)

    Google Scholar 

  20. Point Grey Research’s, http://www.ptgrey.com/products/bumblebee2/bumblebee2_stereo_camera.asp

  21. Autonomous mobile robots, software and accessories, http://www.mobilerobots.com

  22. Autonomous mobile robots, manipulators, http://www.mobilerobots.com/accessories/manipulators.aspx

  23. Miller, A., Allen, P.K.: Graspit!: A Versatile Simulator for Robotic Grasping. IEEE Robotics and Automation Magazine 11(4), 110–122 (2004)

    Article  Google Scholar 

  24. Augmented Reality (AR) research department, http://www.hitl.washington.edu/artoolkit/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cocias, T.T., Grigorescu, S.M., Moldoveanu, F. (2013). 3D Structure Estimation from a Single View Using Generic Fitted Primitives (GFP). In: Csurka, G., Kraus, M., Laramee, R.S., Richard, P., Braz, J. (eds) Computer Vision, Imaging and Computer Graphics. Theory and Application. Communications in Computer and Information Science, vol 359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38241-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38241-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38240-6

  • Online ISBN: 978-3-642-38241-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics