Skip to main content

Membrane Transporters in ADME

  • Chapter
  • First Online:
Transporters in Drug Development

Abstract

Transporter-mediated absorption or efflux of drug compounds across tissue barriers may affect drug ADME properties. This is exemplified in the present chapter, where we demonstrate how the intestinal proton-coupled amino acid transporter PAT1 may act as a mediator of intestinal gaboxadol absorption. We also discuss how organic anions may be substrates for multiple intestinal transporters. The role of the apical proton co-transporter OATP2B1 and the basolateral facilitative OSTα/β transporter in absorptive and exsorptive transport of the organic anion model substrate E1S is treated in detail.

Distribution of drug compounds across the blood–brain barrier does rely on transporters to a large extent, and we describe the challenges of developing in vitro methods which may predict drug distribution to the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

δ-ALA:

δ-Aminolevulinic acid

ABC:

ATP-binding cassette

ADME:

Absorption, distribution, metabolism, and excretion

ASBT:

Apical sodium-dependent bile acid transporter

BBB:

Blood–brain barrier

BCRP:

Breast cancer resistance protein

BSEP:

Bile salt export pump

Caco-2:

Colorectal adenocarcinoma cells

DDI:

Drug–drug interactions

DHEAS:

Dihydroepiandrosterone-3-sulfate

E1S:

Estrone-1-sulfate

EMA:

European Medicines Agency

FDA:

US Food and Drug Administration

K m :

Michaelis constant

l-Pro:

l-Proline

l-Trp:

l-Tryptophan

MATE:

Multidrug and toxin extrusion

MCT:

Monocarboxylate transporter

MRP:

Multidrug resistance protein

NCE:

New chemical entity

NTCP:

Na+ taurocholate cotransporting polypeptide (human)

NVU:

Neurovascular unit

OAT:

Organic anion transporter

OATP:

Organic anion transporting polypeptide

OST:

Organic solute transporter

P APP :

Apparent permeability

PAT:

Proton-coupled amino acid transporter

PEPT:

Proton-coupled di-/tripeptide transporter

P UP :

Uptake/influx permeability

SLC:

Solute carrier

SLCO:

Solute carrier organic anion

TCA:

Taurocholic acid

TJ:

Tight junctions

V max :

Maximal transport rate

References

  • Abbot EL, Grenade DS, Kennedy DJ, Gatfield KM, Thwaites DT (2005) Vigabatrin transport across the human intestinal epithelial (caco-2) brush-border membrane is via the H(+)-coupled amino-acid transporter hPAT1. Br J Pharmacol 147:298–306

    Article  PubMed Central  Google Scholar 

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  • Ballatori N, Christian WV, Lee JY, Dawson PA, Soroka CJ, Boyer JL, Madejczyk MS, Li N (2005) OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42:1270–1279

    Article  CAS  PubMed  Google Scholar 

  • Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104:29–45

    Article  CAS  PubMed  Google Scholar 

  • Boado RJ, Li JY, Nagaya M, Zhang C, Pardridge WM (1999) Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc Natl Acad Sci USA 96:12079–12084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boll M, Foltz M, Rubio-Aliaga I, Daniel H (2003) A cluster of proton/amino acid transporter genes in the human and mouse genomes. Genomics 82:47–56

    Article  CAS  PubMed  Google Scholar 

  • Brandsch M (2009) Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls. Expert Opin Drug Metab Toxicol 5:887–905

    Article  CAS  PubMed  Google Scholar 

  • Brandsch M, Knutter I, Bosse-Doenecke E (2008) Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 60:543–585

    Article  CAS  PubMed  Google Scholar 

  • Bretschneider B, Brandsch M, Neubert R (1999) Intestinal transport of beta-lactam antibiotics: analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm Res 16:55–61

    Article  CAS  PubMed  Google Scholar 

  • Broberg ML, Holm R, Tonsberg H, Frolund S, Ewon KB, Nielsen AL, Brodin B, Jensen A, Kall MA, Christensen KV, Nielsen CU (2012) Function and expression of the proton-coupled amino acid transporter Slc36a1 along the rat gastrointestinal tract: implications for intestinal absorption of gaboxadol. Br J Pharmacol 167:654–665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brodin B, Nielsen CU, Steffansen B, Frokjaer S (2002) Transport of peptidomimetic drugs by the intestinal di/tri-peptide transporter, PepT1. J Pharmacol Toxicol 90:285–296

    Article  CAS  Google Scholar 

  • Broer S, Bailey CG, Kowalczuk S, Ng C, Vanslambrouck JM, Rodgers H, uray-Blais C, Cavanaugh JA, Broer A, Rasko JE (2008) Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. J Clin Invest 118:3881–3892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Fei YJ, Anderson CM, Wake KA, Miyauchi S, Huang W, Thwaites DT, Ganapathy V (2003) Structure, function and immunolocalization of a proton-coupled amino acid transporter (hPAT1) in the human intestinal cell line caco-2. J Physiol 546:349–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooray HC, Blackmore CG, Maskell L, Barrand MA (2002) Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 13:2059–2063

    Article  CAS  PubMed  Google Scholar 

  • Dahan A, Amidon GL (2009) Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am J Physiol Gastrointest Liver Physiol 297:G371–G377

    Article  CAS  PubMed  Google Scholar 

  • Daniel H, Fett C, Kratz A (1989) Demonstration and modification of intervillous pH profiles in rat small intestine in vitro. Am J Physiol 257:G489–G495

    CAS  PubMed  Google Scholar 

  • Daniel H, Morse EL, Adibi SA (1991) The high and low affinity transport systems for dipeptides in kidney brush border membrane respond differently to alterations in pH gradient and membrane potential. J Biol Chem 266:19917–19924

    CAS  PubMed  Google Scholar 

  • Del Amo EM, Urtti A, Yliperttula M (2008) Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 35:161–174

    Article  PubMed  Google Scholar 

  • Doring F, Walter J, Will J, Focking M, Boll M, Amasheh S, Clauss W, Daniel H (1998) Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J Clin Invest 101:2761–2767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ejsing TB, Hasselstrom J, Linnet K (2006) The influence of P-glycoprotein on cerebral and hepatic concentrations of nortriptyline and its metabolites. Drug Metabol Drug Interact 21:139–162

    Article  PubMed  Google Scholar 

  • EMA (2010) Draft Guideline on investigation of drug interactions.The guideline is available at: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf

  • Eriksson AH, Ronsted N, Guler S, Jager AK, Sendra JR, Brodin B (2012) In vitro evaluation of the P-glycoprotein interactions of a series of potentially CNS-active amaryllidaceae alkaloids. J Pharm Pharmacol 64:1667–1677

    Article  CAS  PubMed  Google Scholar 

  • Estudante M, Morais JG, Soveral G,Benet LZ. (2012). Intestinal drug transporters: An overview. Adv Drug Deliv Rev

    Google Scholar 

  • FDA. Draft Guidance for industry. Drug Interaction Studies: Study Design, Data Analysis, Implications for Dosing, and Labeling recommendations (2012) pp 1–75. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.pdf

  • Franke H, Galla H, Beuckmann CT (2000) Primary cultures of brain microvessel endothelial cells: a valid and flexible model to study drug transport through the blood-brain barrier in vitro. Brain Res Brain Res Protoc 5:248–256

    Article  CAS  PubMed  Google Scholar 

  • Frolund S, Cutillas O, Larsen M, Brodin B, Nielsen CU (2010) Delta-aminolevulinic acid is a substrate for SLC36A1 (hPAT1). Br J Pharmacol 159:1339–1353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frolund S, Langthaler L, Kall MA, Holm R, Nielsen CU (2012) Intestinal Drug Transport via the Proton-Coupled Amino Acid Transporter PAT1 (SLC36A1) Is Inhibited by Gly-X(aa) Dipeptides. Mol Pharm 4:2761–2769

    Article  Google Scholar 

  • Ganapathy V, Leibach FH (1983) Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline. J Biol Chem 258:14189–14192

    CAS  PubMed  Google Scholar 

  • Ganapathy V, Mendicino J, Pashley DH, Leibach FH (1980) Carrier-mediated transport of glycyl-L-proline in renal brush border vesicles. Biochem Biophys Res Commun 97:1133–1139

    Article  CAS  PubMed  Google Scholar 

  • Gjedde A, Crone C (1975) Induction processes in blood-brain transfer of ketone bodies during starvation. Am J Physiol 229:1165–1169

    CAS  PubMed  Google Scholar 

  • Gram LK, Rist GM, Lennernas H, Steffansen B (2009a) Impact of carriers in oral absorption: Permeation across Caco-2 cells for the organic anions estrone-3-sulfate and glipizide. Eur J Pharm Sci 37:378–386

    Article  CAS  PubMed  Google Scholar 

  • Gram LK, Rist GM, Steffansen B (2009b) Impact of transporters in oral absorption: a case study of in vitro and in vivo organic anion absorption. Mol Pharm 6:1457–1465

    Article  CAS  PubMed  Google Scholar 

  • Grandvuinet AS, Steffansen B (2011) Interactions between organic anions on multiple transporters in Caco-2 cells. J Pharm Sci 100:3817–3830

    Article  CAS  PubMed  Google Scholar 

  • Grandvuinet AS, Gustavsson L, Steffansen B (2013) new insight into the carrier-mediated transport of estrone-sulfate in the Caco-2 cell model Mol Pharm. 2013 Jul 8. [Epub ahead of print]

    Google Scholar 

  • Grandvuinet AS, Vestergaard HT, Rapin N, Steffansen B (2012) Intestinal transporters for endogenic and pharmaceutical organic anions: the challenges of deriving in vitro kinetic parameters for the prediction of clinically relevant drug–drug interactions. J Pharm Pharmacol 64:1523–1548

    Article  CAS  PubMed  Google Scholar 

  • Hakkarainen JJ, Jalkanen AJ, Kaariainen TM, Keski-Rahkonen P, Venalainen T, Hokkanen J, Monkkonen J, Suhonen M, Forsberg MM (2010) Comparison of in vitro cell models in predicting in vivo brain entry of drugs. Int J Pharm 402:27–36

    Article  CAS  PubMed  Google Scholar 

  • Hayeshi R, Hilgendorf C, Artursson P, Augustijns P, Brodin B, Dehertogh P, Fisher K, Fossati L, Hovenkamp E, Korjamo T, Masungi C, Maubon N, Mols R, Mullertz A, Monkkonen J, O′Driscoll C, Oppers-Tiemissen HM, Ragnarsson EG, Rooseboom M, Ungell AL (2008) Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur J Pharm Sci 35:383–396

    Article  CAS  PubMed  Google Scholar 

  • Helms HC, Waagepetersen HS, Nielsen CU, Brodin B (2010) Paracellular tightness and claudin-5 expression is increased in the BCEC/astrocyte blood-brain barrier model by increasing media buffer capacity during growth. AAPS J 12:759–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Helms HC, Madelung R, Waagepetersen HS, Nielsen CU, Brodin B (2012) In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate. Glia 60:882–893

    Article  PubMed  Google Scholar 

  • Hirano M, Maeda K, Matsushima S, Nozaki Y, Kusuhara H, Sugiyama Y (2005) Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol Pharmacol 68:800–807

    CAS  PubMed  Google Scholar 

  • Ho RH, Leake BF, Roberts RL, Lee W, Kim RB (2004) Ethnicity-dependent polymorphism in Na + -taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J Biol Chem 279:7213–7222

    Article  CAS  PubMed  Google Scholar 

  • Holm R, Kall MA, Frolund S, Nielsen AL, Jensen A, Broberg ML, Nielsen CU (2012) Rectal absorption of vigabatrin, a substrate of the proton coupled amino acid transporter (PAT1, Slc36a1), in rats. Pharm Res 29:1134–1142

    Article  CAS  PubMed  Google Scholar 

  • Hu YG, Smith DE, Ma K, Jappar D, Thomas W, Hillgren KM (2008) Targeted disruption of peptide transporter Pept1 gene in mice significantly reduces dipeptide absorption in intestine. Mol Pharm 5:1122–1130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamal MA, Jiang H, Hu Y, Keep RF, Smith DE (2009) Influence of genetic knockout of Pept2 on the in vivo disposition of endogenous and exogenous carnosine in wild-type and Pept2 null mice. Am J Physiol Regul Integr Comp Physiol 296:R986–R991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi Y, Ohshiro N, Sakai R, Ohbayashi M, Kohyama N, Yamamoto T (2005) Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). J Pharm Pharmacol 57:573–578

    Article  CAS  PubMed  Google Scholar 

  • Koenen A, Kock K, Keiser M, Siegmund W, Kroemer HK, Grube M (2012) Steroid hormones specifically modify the activity of organic anion transporting polypeptides. Eur J Pharm Sci 47(4):774–780

    Article  CAS  PubMed  Google Scholar 

  • Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B (2001) Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120:525–533

    Article  CAS  PubMed  Google Scholar 

  • Kusuhara H, Furuie H, Inano A, Sunagawa A, Yamada S, Wu C, Fukizawa S, Morimoto N, Ieiri I, Morishita M, Sumita K, Mayahara H, Fujita T, Maeda K, Sugiyama Y (2012) Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the impact of curcumin as an in vivo inhibitor of BCRP. Br J Pharmacol 166:1793–1803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larsen M, Larsen BB, Frolund B, Nielsen CU (2008) Transport of amino acids and GABA analogues via the human proton-coupled amino acid transporter, hPAT1: Characterization of conditions for affinity and transport experiments in Caco-2 cells. Eur J Pharm Sci 35:86–95

    Article  CAS  PubMed  Google Scholar 

  • Larsen M, Holm R, Jensen KG, Brodin B, Nielsen CU (2009) Intestinal gaboxadol absorption via PAT1(SLC36A1): modified absorption in vivo following co-administration of L-tryptophan. Br J Pharmacol 157:1380–1389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larsen M, Holm R, Jensen KG, Sveigaard C, Brodin B, Nielsen CU (2010) 5-Hydroxy-L-tryptophan alters gaboxadol pharmacokinetics in rats: involvement of PAT1 and rOat1 in gaboxadol absorption and elimination. Eur J Pharm Sci 39:68–75

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang Y, Zhang W, Huang Y, Hein K, Hildalgo I (2012) The role of a basolateral transporter in rosuvastatin transport and its interplay with apical BCRP in polarized cell monolayer systems. Drug Metab Dispos 40(11):2102–8

    Article  CAS  PubMed  Google Scholar 

  • Linnet K, Ejsing TB (2008) A review on the impact of P-glycoprotein on the penetration of drugs into the brain. Focus on psychotropic drugs. Eur Neuropsychopharmacol 18:157–169

    Article  CAS  PubMed  Google Scholar 

  • Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, Palecek SP, Shusta EV (2012) Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 30:783–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Metzner L, Kottra G, Neubert K, Daniel H, Brandsch M (2005) Serotonin, L-tryptophan, and tryptamine are effective inhibitors of the amino acid transport system PAT1. FASEB J 19:1468–1473

    Article  CAS  PubMed  Google Scholar 

  • Ming X, Knight BM, Thakker DR (2011) Vectorial transport of fexofenadine across Caco-2 cells: involvement of apical uptake and basolateral efflux transporters. Mol Pharm 8:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto Y, Ganapathy V, Leibach FH (1985) Proton gradient-coupled uphill transport of glycylsarcosine in rabbit renal brush-border membrane vesicles. Biochem Biophys Res Commun 132:946–953

    Article  CAS  PubMed  Google Scholar 

  • Morrissey KM, Wen CC, Johns SJ, Zhang L, Huang SM, Giacomini KM (2012) The UCSF-FDA TransPortal: a public drug transporter database. Clin Pharmacol Ther 92:545–546

    Article  CAS  PubMed  Google Scholar 

  • Nielsen CU, Brodin B (2003) Di/tri-peptide transporters as drug delivery targets: regulation of transport under physiological and patho-physiological conditions. Curr Drug Targets 4:373–388

    Article  CAS  PubMed  Google Scholar 

  • Nielsen CU, Brodin B, Jorgensen FS, Frokjaer S, Steffansen B (2002) Human peptide transporters: therapeutic applications. Expert Opin Ther Pat 12:1329–1350

    Article  CAS  Google Scholar 

  • Nies AT, Jedlitschky G, Konig J, Herold-Mende C, Steiner HH, Schmitt HP, Keppler D (2004) Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 129:349–360

    Article  CAS  PubMed  Google Scholar 

  • Noe J, Portmann R, Brun ME, Funk C (2007) Substrate-dependent drug–drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab Dispos 35:1308–1314

    Article  CAS  PubMed  Google Scholar 

  • Ocheltree SM, Shen H, Hu Y, Keep RF, Smith DE (2005) Role and relevance of peptide transporter 2 (PEPT2) in the kidney and choroid plexus: in vivo studies with glycylsarcosine in wild-type and PEPT2 knockout mice. J Pharmacol Exp Ther 315:240–247

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki S, Terasaki T (2007) Contribution of carrier-mediated transport systems to the blood–brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 24:1745–1758

    Article  CAS  PubMed  Google Scholar 

  • Patabendige A, Skinner RA, Abbott NJ (2012) Establishment of a simplified in vitro porcine blood–brain barrier model with high transendothelial electrical resistance. Brain Res 1521:1–15

    Article  PubMed  Google Scholar 

  • Pillai SM, Meredith D (2010) SLC36A4 (hPAT4) is a high affinity amino acid transporter when expressed in Xenopus laevis oocytes. J Biol Chem 286:2455–2460

    Article  PubMed Central  PubMed  Google Scholar 

  • Qian YM, Song WC, Cui H, Cole SP, Deeley RG (2001) Glutathione stimulates sulfated estrogen transport by multidrug resistance protein 1. J Biol Chem 276:6404–6411

    Article  CAS  PubMed  Google Scholar 

  • Roberts LM, Black DS, Raman C, Woodford K, Zhou M, Haggerty JE, Yan AT, Cwirla SE, Grindstaff KK (2008) Subcellular localization of transporters along the rat blood–brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience 155:423–438

    Article  CAS  PubMed  Google Scholar 

  • Rolsted K, Rapin N, Steffansen B (2011) Simulating kinetic parameters in transporter mediated permeability across Caco-2 cells. A case study of estrone-3-sulfate. Eur J Pharm Sci 44:218–226

    Article  CAS  PubMed  Google Scholar 

  • Sai Y, Kaneko Y, Ito S, Mitsuoka K, Kato Y, Tamai I, Artursson P, Tsuji A (2006) Predominant contribution of organic anion transporting polypeptide OATP-B (OATP2B1) to apical uptake of estrone-3-sulfate by human intestinal Caco-2 cells. Drug Metab Dispos 34:1423–1431

    Article  CAS  PubMed  Google Scholar 

  • Schinkel AH, Smit JJ, van TO, Beijnen JH, Wagenaar E, van DL, Mol CA, van der Valk MA, Robanus-Maandag EC, te Riele HP (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood–brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    Article  CAS  PubMed  Google Scholar 

  • Seward DJ, Koh AS, Boyer JL, Ballatori N (2003) Functional complementation between a novel mammalian polygenic transport complex and an evolutionarily ancient organic solute transporter, OSTalpha-OSTbeta. J Biol Chem 278:27473–27482

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Ocheltree SM, Hu Y, Keep RF, Smith DE (2007) Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice. Drug Metab Dispos 35:1209–1216

    Article  PubMed  Google Scholar 

  • Shin HJ, Anzai N, Enomoto A, He X (2007) d.K. Kim, H. Endou, and Y. Kanai. Novel liver-specific organic anion transporter OAT7 that operates the exchange of sulfate conjugates for short chain fatty acid butyrate. Hepatology 45:1046–1055

    Article  CAS  PubMed  Google Scholar 

  • Smith DE, Pavlova A, Berger UV, Hediger MA, Yang T, Huang YG, Schnermann JB (1998) Tubular localization and tissue distribution of peptide transporters in rat kidney. Pharm Res 15:1244–1249

    Article  CAS  PubMed  Google Scholar 

  • Spears KJ, Ross J, Stenhouse A, Ward CJ, Goh LB, Wolf CR, Morgan P, Ayrton A, Friedberg TH (2005) Directional trans-epithelial transport of organic anions in porcine LLC-PK1 cells that co-express human OATP1B1 (OATP-C) and MRP2. Biochem Pharmacol 69:415–423

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y (2003) ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 278:22644–22649

    Article  CAS  PubMed  Google Scholar 

  • Tamai I, Nezu J-I, Uchino H, Sai Y, Oku A, Shimane M, Tsuji A (2000) Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun 273(1):251–260

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Abe Y, Tsugu A, Takamiya Y, Akatsuka A, Tsuruo T, Yamazaki H, Ueyama Y, Sato O, Tamaoki N (1994) Ultrastructural localization of P-glycoprotein on capillary endothelial cells in human gliomas. Virchows Arch 425:133–138

    Article  CAS  PubMed  Google Scholar 

  • Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K (2007) Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol 74:359–371

    Article  CAS  PubMed  Google Scholar 

  • Thwaites DT, Anderson CM (2007) H + -coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp Physiol 92:603–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thwaites DT, Anderson CM (2011) The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br J Pharmacol 164:1802–1816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T (2011) Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117:333–345

    Article  CAS  PubMed  Google Scholar 

  • Uhernik AL, Tucker C, Smith JP (2011) Control of MCT1 function in cerebrovascular endothelial cells by intracellular pH. Brain Res 1376:10–22

    Article  CAS  PubMed  Google Scholar 

  • Vanslambrouck JM, Broer A, Thavyogarajah T, Holst J, Bailey CG, Broer S, Rasko JE (2010) Renal imino acid and glycine transport system ontogeny and involvement in developmental iminoglycinuria. Biochem J 428:397–407

    Article  CAS  PubMed  Google Scholar 

  • Varma MV, Rotter CJ, Chupka J, Whalen KM, Duignan DB, Feng B, Litchfield J, Goosen TC, El-Kattan AF (2011) pH-sensitive interaction of HMG-CoA reductase inhibitors (statins) with organic anion transporting polypeptide 2B1. Mol Pharm 8:1303–1313

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bente Steffansen M.Sc.(Pharm), Ph.D. .

Editor information

Editors and Affiliations

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steffansen, B., Nielsen, C.U., Brodin, B. (2013). Membrane Transporters in ADME. In: Sugiyama, Y., Steffansen, B. (eds) Transporters in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8229-1_1

Download citation

Publish with us

Policies and ethics