Skip to main content

Genetic transformation of wheat via pollen 25 Years of plant transformation attempts II

  • Chapter

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 24))

Abstract

Almost all gene transfer techniques except pollen-based methods require a plant regeneration system. Whether in vitro steps must be included in pollen-mediated transfer depends on the selectable marker genes, e.g., in vitro culture will not be required using anthocyanin markers (Hess, 1980). As another example, the hybrid Nicotiana glauca × N. langsdorffii is well-known for the formation of genetic tumors. To transfer the tumor gene “I” from N. langsdorffii to N. glauca via pollen, N. glauca pollen cultures were treated with N. langsdorffii DNA, and pollen-derived plants were grown in soil. Tumor phenotype was screened by wounding the plants. Again, in vitro steps could be avoided by this approach (Hess, 1975; Hess et al., 1976).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alwen, A., N. Eller, M. Kastler, R. Benito Moreno, and E. Heberle-Bors, 1990. Potential of in vitro pollen maturation for gene transfer. Physiol. Plant. 79: 194–196.

    Article  Google Scholar 

  • Balzer, H.-J., 1990. DNA-Methylierung in Weizen. Intemann, Prien am Chiemsee.

    Google Scholar 

  • Becker, D., R. Brettschneider and H. Lörz, 1994. Fertile transgenic wheat from microprojectile bombardement of scutellar tissue. Plant J. 5: 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Binder, S., 1994. Untersuchungen zur in vitro-Keimung von Tabak-und Weizenpollen. Diploma Thesis, Faculty of Biology, University of Hohenheim, Stuttgart.

    Google Scholar 

  • Binns, A., and M. Tomashow, 1988. Cell biology of Agrobacterium infection and transformation of plants. Ann. Rev. Microbiol. 42: 575–606.

    Article  CAS  Google Scholar 

  • Brettschneider, R., H. Lörz, and S. Stirn, 1993. In vitro Kultur und Gentransfer bei Getreide. BioEngineering 9: 31–36.

    Google Scholar 

  • Bytebier, B., F. Deboeck, H. Greve, M. Van Montagu, and J. Hernalsteens, 1987. T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinales. Proc. Natl. Acad. Sci. USA 84: 5345–5349.

    Article  PubMed  CAS  Google Scholar 

  • Chan, M.-T., H.-H. Chang, S.-L. Ho, W.-F. Tong, and S.M. Yu, 1993. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric a-amylase promoter/β-glucuronidase gene. Plant Mol. Biol. 22: 491–506.

    Article  PubMed  CAS  Google Scholar 

  • Chan, M.-T., T-M. Lee, and H.-H. Chang, 1992. Transformation of Indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol. 33: 577–583.

    CAS  Google Scholar 

  • Chen, D.F., P.J. Dale, J.S. Heslop-Harrison, J.W. Snape, W. Harwood, S. Bean, and P.M. Mullineaux, 1994. Stability of transgenes and presence of N6 methyladenine DNA in transformed wheat cells. Plant J. 5: 429–436.

    Article  Google Scholar 

  • Dale, P., S. Marks, M. Brown, C. Woolstone, H. Gunn, P. Mullineaux, D. Lewis, J. Kemp, D. Chen, D. Gimour, and R. Flavell, 1989. Agroinfection of wheat: inoculation of in vitro grown seedlings and embryos. Plant Sci. 63: 237–245.

    Article  CAS  Google Scholar 

  • DeCleene, M., 1985. The suceptibility of monocotyledons to Agrobacterium tumefaciens. Phytopathol. Z. 113: 81–89.

    Article  Google Scholar 

  • Domisse, E., D. Leung, M. Shaw, and A. Conner, 1990. Onion is a monocotyledonous host for Agrobacterium. Plant Sci. 69: 249–334.

    Article  Google Scholar 

  • Flavell, R.B., S. Sardana, S. Jackson, and M. O’Dell, 1990. The molecular basis of variation affecting gene expression: Evidence from studies of the ribosomal RNA gene loci of wheat. In: J.P. Gustafson (Ed.), Gene Manipulation in Plant Improvement II, pp. 419–430. Plenum Press, New York.

    Chapter  Google Scholar 

  • Gould, J., M. Devey, O. Hasegawa, E. Ulian, G. Peterson, and R. Smith, 1991. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95: 426–434.

    Article  PubMed  CAS  Google Scholar 

  • Graves, A., and S. Goldman, 1986. The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol. Biol. 7: 43–50.

    Article  CAS  Google Scholar 

  • Graves, A., and S. Goldman, 1987. Agrobacterium-mediated transformation of the monocot genus Gladiolus: Detection of expression of T-DNA encoded genes. J. Bacteriol. 169: 1745–1746.

    PubMed  CAS  Google Scholar 

  • Grimsley, N., T. Hohn, J. Davis, and B. Hohn, 1987. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325: 177–179.

    Google Scholar 

  • Grimsley, N., C. Ramos, T. Hein, and B. Hohn, 1988. Meristematic tissues of maize plants are most suceptible to agroinfection with maize streak virus. Bio/Technology 6: 185–189.

    Article  Google Scholar 

  • Grimsley, N., T. Hohn, C. Ramos, C. Kado, and P. Rogwosky, 1989. DNA transfer from Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions. Mol. Gen. Genet. 217: 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, R., H. MacDonald, R. Coutts, and K. Buck, 1988. Agroinfection of Triticum aestivum with cloned DNA of wheat dwarf virus. J. Gen. Virol. 69: 891–986.

    Article  CAS  Google Scholar 

  • Hernalsteens, J., L. Thia-Tong, J. Schell, and M. Van Montagu, 1984. An Agrobacterium-transformed cell culture from the monocot Asparagus officinales. EMBO J. 3: 3039–3041.

    PubMed  CAS  Google Scholar 

  • Hess, D., 1975. Uptake of DNA and phage into pollen and genetic manipulation. In: L. Ledoux (Ed.), Genetic Manipulation with Plant Material, pp. 519–537. Plenum Press, New York.

    Google Scholar 

  • Hess, D., 1980. Investigations on the intra-and interspecific transfer of anthocyanin genes using pollen as vectors. Z. Pflanzenphysiol. 98: 321–337.

    CAS  Google Scholar 

  • Hess, D., 1981. Attempts to transfer kanamycin resistance of bacterial plasmid origin in Petunia hybrida using pollen as vectors. Biochem. Physiol. Pflanzen 176: 322–328.

    Google Scholar 

  • Hess, D., 1996. Genetic transformation of Petunia via pollen. In: S.M. Jain, S.K. Sapory and R.E. Veilleux (Eds.), In Vitro Production of Haploids in Higher Plants, pp. 373–390. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Hess, D., G. Schneider, H. Lörz, and G. Blaich, 1976. Investigations on the tumor induction in Nicotiana glauca by pollen transfer of DNA isolated from Nicotiana langsdorffii. Z. Pflanzenphysiol. 77: 247–254.

    CAS  Google Scholar 

  • Hess, D., K. Dressler, and R. Nimmrichter, 1990. Transformation experiments pipetting Agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Sci. 72: 233–244.

    Article  CAS  Google Scholar 

  • Hess, D., M. Iser, A. Schmid, S. Stegmaier, and K. Dressler, 1992. Pollen mediated indirect gene transfer to dicots and monocots. In: E. Ottaviano, D. Mulcahy, M. Sarli Gorla and G. Bergamini Mulcahy (Eds.), Angiosperm Pollen and Ovules, pp. 261–273. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Hooykaas-Slogteren, G., P. Hooykaas, and R. Schilperoort, 1984. Expression of Ti-plasmid genes in monocotyledoneous plants infected with Agrobacterium tumefaciens. Nature 311: 763–764.

    Article  Google Scholar 

  • Horsch, R., J. Fry, N. Hoffmann, D. Eichholtz, S. Rogers, and R. Fraley, 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  • Jähne, A., D. Becker, and H. Lörz, 1994. Regeneration of transgenic, microspore-derived, fertile barley. Theor. Appl. Genet. 89: 525–533.

    Article  Google Scholar 

  • Janssen, B.-J., and R. Gardner, 1989. Localized transient expression of GUS in leaf disks following cocultivation with Agrobacterium. Plant Mol. Biol. 14: 61–72.

    Article  Google Scholar 

  • Kappes, C., 1987. Induktion der vir-Region von Agrobacterium tumefaciens durch Faktoren aus pflanzenkonditionierten Medien. Diploma Thesis, Faculty of Biology, University of Hohenheim, Stuttgart.

    Google Scholar 

  • Kay, R., A. Chan, M. Daly, and J. McPherson, 1987. Duplication of CaMV 35 S promoter sequences creates a strong enhancer for plant genes. Science 236: 1299–1302.

    Google Scholar 

  • Klein, T., E. Wolf, R. Wu, and J. Sanford, 1987. High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70–73.

    Article  CAS  Google Scholar 

  • Langridge, P., R. Brettschneider, P. Lazzeri, and H. Lörz, 1992. Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment. Plant J. 2: 631–638.

    Article  CAS  Google Scholar 

  • Maas, C., J. Laufs, S. Grant, C. Korfhage, and W. Werr, 1991. The combination of a novel stimulatory element in the first exon of the maize shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Mol. Biol. 16: 199–207.

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas, J., 1992. Pollen expressed genes and their regulation. In: E. Ottaviano, D. Mulcahy, M. Sarli Gorla and G. Bergamini Mulcahy (Eds.), Angiosperm Pollen and Ovules, pp. 3–5. Springer Verlag, New York.

    Chapter  Google Scholar 

  • Nehra, S., R. Chibbar, N. Leung, K. Caswell, C. Mallard, L. Steinhauer, M. Baga, and K. Kartha, 1994. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 5: 285–297.

    Article  CAS  Google Scholar 

  • Paszkowski, J., R. Shillito, M. Saul, V. Mansdak, T. Hohn, B. Hohn, and I. Potrykus, 1984. Direct gene transfer to plants. EMBO J. 3: 2717–2722.

    PubMed  CAS  Google Scholar 

  • Raineri, D., P. Bottino, M. Gordon, and E. Nester, 1990. Agrobacterium-mediated transformation of rice (Oryza sativa L.). Bio/Technology 8: 33–38.

    Google Scholar 

  • Schäfer, W., A. Görz, and G. Kahl, 1987. T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327: 529–532.

    Article  Google Scholar 

  • Stöger, E., R. Benito Moreno, B. Ylstra, O. Vincente, and E. Heberle-Bors, 1992. Comparison of different techniques for gene transfer into mature and immature tobacco pollen. Transgen Res. 1: 71–78.

    Article  Google Scholar 

  • Theiss, G., R. Schleicher, G. Schimpff-Weiland, and H. Follmann, 1987. DNA methylation in wheat. Eur. J. Biochem. 167: 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Twell, D., T. Klein, M. Fromm, and S. McCormick, 1989. Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol. 91: 1270–1274.

    Article  PubMed  CAS  Google Scholar 

  • Usami, S., S. Okamoto, I. Takebe, and Y. Machida, 1988. Factor inducing Agrobacterium tumefaciens vir gene expression is present in monocotyledoneous plants. Proc. Natl. Acad. Sci. USA 85: 3748–3752.

    Article  CAS  Google Scholar 

  • Vasil, I. 1993. Molecular genetic improvement of cereal and grass crops. Newslett. Int. Ass. Plant Tiss. Cult. 72: 2–10.

    Google Scholar 

  • Vasil, V., M. Clancy, R. Ferl, I. Vasil, and C. Hannah, 1989. Increased gene expression by the first intron of maize shrunken-1 locus in grass species. Plant Physiol. 91: 1575–1579.

    Article  PubMed  CAS  Google Scholar 

  • Vasil, V., F. Redway, and I. Vasil, 1990. Regeneration of plants from embryogenic suspension culture protoplasts of wheat ( Triticum aestivum ). Bio/Technology 8: 429–434.

    Article  Google Scholar 

  • Vasil, V., A. Castillo, E. Fromm, and I. Vasil, 1992. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10: 667–674.

    Article  CAS  Google Scholar 

  • Vasil, V., V. Srivastava, A. Castillo, E. Fromm, and I. Vasil, 1993. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 11: 1554–1558.

    Article  Google Scholar 

  • Viertel, K., and D. Hess, 1995. Shoot tips of wheat, as an alternative source for regenerable embryogenic callus cultures. Plant Cell Tiss. Org. Cult. (in press).

    Google Scholar 

  • Viertel, K., M. Iser, A. Schmid, K. Dressler, and D. Hess, 1996. Agrobacterium-mediated gene transfer to wheat via pollen and shoot tips: Stable transformation versus epigenetic repression, rearrangement and disintegration of transgenes (submitted for publication).

    Google Scholar 

  • Weeks, J., O. Anderson, and A. Blechl, 1993. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102: 1077–1084.

    PubMed  CAS  Google Scholar 

  • Ylstra, B., A. Touraev, R. Moreno, E. Stöger, A. van Tunen, O. Vincente, J. Mol, and E. Heberle-Bors, 1992. Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiol. 100: 902–907.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hess, D. (1996). Genetic transformation of wheat via pollen 25 Years of plant transformation attempts II . In: Jain, S.M., Sopory, S.K., Veilleux, R.E. (eds) In Vitro Haploid Production in Higher Plants. Current Plant Science and Biotechnology in Agriculture, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0477-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0477-9_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4580-5

  • Online ISBN: 978-94-017-0477-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics