Skip to main content
Log in

A SIR epidemic model for citation dynamics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The study of citations in the scientific literature crosses the boundaries between the traditional branches of science and stands on its own as a most profitable research field dubbed the ‘science of science.’ Although the understanding of the citation histories of individual papers involves many intangible factors, the basic assumption that citations beget citations can explain most features of the empirical citation patterns. Here, we use the SIR epidemic model as a mechanistic model for the citation dynamics of well-cited papers published in selected journals of the American Physical Society. The estimated epidemiological parameters offer insight into unknown quantities as the size of the community that could cite a paper and its ultimate impact on that community. We find a good, though imperfect, agreement between the rank of the journals obtained using the epidemiological parameters and the impact factor rank.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The citing article pairs and article metadata used to generate the citation histories of the 300 hit papers considered in the manuscript are available under request from the APS Data Sets for Research at https://journals.aps.org/dataset.]

References

  1. R. Merton, The Sociology of Science (University of Chicago Press, Chicago, 1973)

    Google Scholar 

  2. D.J.S. Price, Science Since Babylon (Yale University Press, New Haven, 1975).

    Google Scholar 

  3. F. Radicchi, S. Fortunato, C. Castellano, Proc. Natl. Acad. Sci. USA 105, 17268 (2008)

    Article  ADS  Google Scholar 

  4. F. Radicchi, S. Fortunato, B. Markines, A. Vespignani, Phys. Rev. E 80, 056103 (2009)

    Article  ADS  Google Scholar 

  5. B. Uzzi, S. Mukherjee, M. Stringer, B. Jones, Science 342, 468 (2013)

    Article  ADS  Google Scholar 

  6. J. Ioannidis, K.W. Boyack, H. Small, A.A. Sorensen, R. Klavans, Nature 514, 561 (2014)

    Article  ADS  Google Scholar 

  7. J. Mingers, L. Leydesdorff, Eur. J. Oper. Res. 246, 1 (2015)

    Article  Google Scholar 

  8. S. Redner, Eur. Phys. J. B 4, 131 (1988)

    Article  ADS  Google Scholar 

  9. S. Redner, Phys. Today 58, 49 (2005)

    Article  Google Scholar 

  10. M.L. Wallace, V. Larivière, Y. Gingras, J. Informetr. 3, 296 (2009)

    Article  Google Scholar 

  11. A.F.J. van Raan, Scientometrics 59, 467 (2004)

    Article  Google Scholar 

  12. Q. Ke, E. Ferrara, F. Radicchi, A. Flammini, Proc. Natl. Acad. Sci. USA 112, 7426 (2015)

    Article  ADS  Google Scholar 

  13. J. Mingers, J. Oper. Res. Soc. 59, 1013 (2008)

    Article  Google Scholar 

  14. C. Min, Y. Ding, J. Li, Y. Bu, L. Pei, J. Sun, J. Assoc. Inf. Sci. Technol. 69, 1271 (2018)

    Article  Google Scholar 

  15. D. Wang, C. Song, A.-L. Barabási, Science 342, 127 (2013)

    Article  ADS  Google Scholar 

  16. L.M. Bettencourt, A. Cintrón-Arias, D.I. Kaiser, C. Castillo-Chávez, Physica A 364, 513 (2006)

    Article  ADS  Google Scholar 

  17. https://journals.aps.org/datasets

  18. E. Garfield, JAMA 295, 90 (2006)

    Article  Google Scholar 

  19. P. Larsen, M. Von Ins, Scientometrics 84, 575 (2010)

    Article  Google Scholar 

  20. E. Landhuis, Nature 535, 457 (2016)

    Article  Google Scholar 

  21. K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002)

    Article  ADS  Google Scholar 

  22. M.S. Kim, W. Son, V. Bužek, P.L. Knight, Phys. Rev. A 65, 032323 (2002)

    Article  ADS  Google Scholar 

  23. I. Souza, N. Marzari, D. Vanderbilt, Phys. Rev. B 65, 035109 (2001)

    Article  ADS  Google Scholar 

  24. W.O. Kermack, A.G. McKendrick, Proc. R. Soc. A 115, 700 (1927)

    ADS  Google Scholar 

  25. J.D. Murray, Mathematical Biology I: An Introduction (Springer, New York, 1993)

    Book  Google Scholar 

  26. B.M. Althouse, J.D. West, C.T. Bergstrom, T. Bergstrom, J. Assoc. Inf. Sci. Technol. 60, 27 (2009)

    Article  Google Scholar 

  27. E.M. Rogers, Diffusion of Innovations (Simon and Schuster, New York, 2010)

    Google Scholar 

  28. F.M. Bass, Manag. Sci. 15, 215 (1969)

    Article  Google Scholar 

  29. J.G. Foster, A. Rzhetsky, J.A. Evans, Am. Sociol. Rev. 80, 875 (2015)

    Article  Google Scholar 

  30. J. Li, Y. Yin, S. Fortunato, D. Wang, Nat. Rev. Phys. 1, 301 (2019)

    Article  Google Scholar 

  31. Y.-H. Eom, S. Fortunato, PLoS ONE 6, e24926 (2011)

    Article  ADS  Google Scholar 

  32. Y. Dong, R.A. Johnson, N.V. Chawla, IEEE Trans. Big Data 2, 18 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the American Physical Society for letting us use their citation database. The research of JFF was supported in part by Grant No. 2020/03041-3, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and by Grant No. 305058/2017-7 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). SMR was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro M. Reia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reia, S.M., Fontanari, J.F. A SIR epidemic model for citation dynamics. Eur. Phys. J. Plus 136, 207 (2021). https://doi.org/10.1140/epjp/s13360-021-01199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01199-0

Navigation