Skip to main content

The Method of Cataclastic Analysis of Discontinuous Displacements

  • Chapter
  • First Online:
Book cover Moment Tensor Solutions

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

Abstract

Studying regularities of the spatial distribution and temporal variations of tectonic stress is one of the most important issues in a number of disciplines of the Earth sciences. In geodynamics, the problem of understanding of the stress state in the Earth’s crust and in the lithosphere is associated with the need to explain the mechanism of formation of the tectonic structures of various scale levels. In seismology, this is a problem of studying the formation mechanism of the earthquake source at the afterschock stage and the development of the post seismic relaxation at the aftershock stage. In geology, a stress state helps to establish interrelations of the formation conditions of the complex structures, discontinuous structures (slip faults) and other deformation structures with mineral deposits. In mining and oil production, stress data provide a safe and efficient exploration of natural resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelier J (1975) Sur l’analyse de measures recueilles dans des sites failles: l’utilite d’une confrontation entre les methods dynamiques et cinematiquues. Bull Soc Geol France 281:1805–1808

    Google Scholar 

  • Angelier J (1984) Tectonic analysis of fault slip data sets. Geophys Res 89(B7):5835–5848

    Article  Google Scholar 

  • Angelier J, Mechler P (1977) Sur une methode graphique de recherche des contraintes principales egalement utilisable en tectonique et en seismologie: la methode des diedres droits. Bull Soc Geol Fr V XIX 6:1309–1318

    Article  Google Scholar 

  • Arefiev SS, Delui B (1998) The focal zone of the Shikotan earthquake of 1994: the choice of the active plane. Phys Earth 6:64–74

    Google Scholar 

  • Arefiev SS (2003) Epicentral seismological studies. Moscow, Akademkniga. p 374 (in Russian)

    Google Scholar 

  • Batdorf SB, Budiansky B (1949) A mathematical theory of plasticity based on the concept of slip. NASA Technical Note 1871

    Google Scholar 

  • Bott MHP (1959) The mechanics of oblique slip faulting. Geol Mag 96:109–117

    Article  Google Scholar 

  • Bridgman W (1949) Studies in large plastic flow and fracture, with special emphasis on the effects of hydrostatic pressure. McGraw-Hill Book Co., Inc., New York, p 362

    Google Scholar 

  • Byerlee JD (1967) Frictional characteristics of granite under high confining pressure. J Geophys Res 72(14):3639–3648

    Article  Google Scholar 

  • Byerlee JD (1978) Friction of rocks. Pure Appl Geophys 116:615–626

    Article  Google Scholar 

  • Byerlee JD (1968) Brittle-ductile transition in rocks. J Geophys Res 73(14):4741–4750

    Article  Google Scholar 

  • Carey E, Bruneier B (1974) Analyse theorique et numerique d’un modele mecanique elementaire applique a l’etude d’une populaton de failles. C R Acad Sci Paris D 279:891–894

    Google Scholar 

  • Chernykh KF (1998) An introduction to modern anisotropic elasticity. Begell Publishing House, New York, p 282

    Google Scholar 

  • Dobrovol’sky IP (2009) Mathematical theory of preparation and prediction of earthquakes. FIZMATLIT. Moscow, p 240 (in Russian)

    Google Scholar 

  • Drucker DC (1959) A definition of stable inelastic material. Trans ASME, J Appl Mech 101–106

    Google Scholar 

  • Goustchenko OI (1975) Kinematic principle of reconstruction of directions of main stresses (on geological and seismological data) DAN USSR Ser Geophys 225 (3):557–560 (in Russian)

    Google Scholar 

  • Goustchenko OI (1996) Seismotectonic stress-monitoring of the lithosphere (structural-kinematic principle and basic elements of the algorithm) DAN USSR Ser Geophys 346 (3):399–402 (in Russian)

    Google Scholar 

  • Handin J (1969) On the Colombo—Morh failure criterion. J Geophys Res 74(22):5343–5348

    Article  Google Scholar 

  • Hardebeck JL, Hauksson E (2001) Crustal stress field in southern California and its implications for fault mechanics. J Geophys Res 106(B10):21859–21882

    Article  Google Scholar 

  • Kasahara K (1981) Earthguake mechanies. Cambriage University Press, p 284

    Google Scholar 

  • Knopoff L (1958) Energy release in earthquakes. Geophys J MNRAS 1: 44–52

    Article  Google Scholar 

  • Kostrov BV (1975) Mechanics of tectonic earthquake source. Nauka Hayкa, Moscow, p 176 (Russia)

    Google Scholar 

  • Kostrov BV, Das S (1988) Principles of earthquake source mechanics. In: Cambridge monographs on mechanics and applied mathematics. Cambridge University, Cambridge, New York, Port Chester, Melbourne, Sydney, p 286

    Google Scholar 

  • McKenzie Dan P (1969) The relation between fault plane solutions for earthquakes and directions of the principal stresses. Bull Seism Soc Am 59(2):591–601

    Google Scholar 

  • Mises RV (1928) Angew Math Mech 8:161–185

    Google Scholar 

  • Mogi K (1964) Deformation and fracture of rocks under confining pressure (2) compression test on dry rock sample Bul Earthq Res Inst Univ Tokyo 42(Part 3):491–514

    Google Scholar 

  • Mogi K (1966) Pressure dependence of rock strength and transition from brittle fracture to ductile flow. Bull Earthq Res Inst Univ Tokyo 44:215–232

    Google Scholar 

  • Nikolaevskiy VN (1996) Geomechanics and fluidodynamics. Kluwer, Dordrecht, p 349

    Book  Google Scholar 

  • Osokina DN (1988) Hierarchical properties of a stress field and its relation to fault displacements. J Geodyn 10:331–344

    Article  Google Scholar 

  • Paul B (1968) Macroscopic criteria for plastic flow and brittle fracture. In: Liebowitz H (ed) Fracture. An advanced treatise, vol 2. Academic Press, New York, pp 313–496

    Google Scholar 

  • Rebetskii YuL (2003) Development of the method of cataclastic analysis of shear fractures for tectonic stress estimation. Dokl Earth Sci 388(1):72–76

    Google Scholar 

  • Rebetsky YuL (1999) Methods for reconstructing tectonic stresses and seismotectonic deformations based on the modern theory of plasticity. Dokl Earth Sci 365A(3):370–373

    Google Scholar 

  • Rebetsky YuL, Lermontova AS (2016) Accounting for the supercritical state of the geoenvironment and the problem of the long-range effect of earthquake foci. Vestnik Kraunts Nauka Zemle 32:115–123 (In Russia)

    Google Scholar 

  • Rebetsky YuL, Polets AYu, Zlobin TK (2016) The state of stress in the earth’s crust along the northwestern flank of the Pacific seismic focal zone before the Tohoku earthquake of 11 March 2011. Tectonophysics 685:60–76. https://doi.org/10.1016/j.tecto.2016.07.016

    Article  Google Scholar 

  • Rebetsky YuL, Sycheva NA, Kuchay OA, Tatevossian RE (2012) Development of inversion methods on fault slip data: stress state in orogenes of the central Asia. Tectonophysics 581:114–131. https://doi.org/10.1016/j.tecto.2012.09.027

    Article  Google Scholar 

  • Rebetsky YuL, Tatevossian RE (2013) Rupture propagation in strong earthquake sources and tectonic stress field. Bull Soc Geol Fr 184(4–5):335–346

    Article  Google Scholar 

  • Rice J (1980) The mechanics of earthquake rupture. In: Dziewonski AM, Boschi E (eds) Physics of the earth’s interior. North-Holland, Amsterdam, pp 555–649

    Google Scholar 

  • Rummel F, Alheid HJ, Frohn C (1978) Dilatancy and fracture induced velocity changes in rock and their relation to friction sliding pure and app. Geophys 116:743–764

    Google Scholar 

  • Sibson RH (1974) Frictional constraints on thrust, wrench and normal faults. Nature 249:542–544

    Article  Google Scholar 

  • Starr AT (1928) Slip in crystal and rupture in solid due to shear. Proc Camb Phil Soc 24:489–500

    Article  Google Scholar 

  • Shteynberg VV (1983) On focal parameters and seismic effect of earthquakes. Izv Academy Sci USSR Phys Earth (7): 536–548

    Google Scholar 

  • Stesky RM (1978) Rock friction-effect of confining pressure, temperature, and pore pressure Pure App. Geophys 116:691–704

    Google Scholar 

  • Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York, p 506

    Book  Google Scholar 

  • Tikhonov IN, Vasilenko NF, Prytkov AS, Spirin AI, Frolov DI (2007) Catastrophic simushir earthquakes November 15, 2006 and January 13, 2007. Probl Seismic sound Far East and East Sib: Intern Sci Simp Yu-Sakhalinsk: Izd IMGG FEB RAS. From 27–28 (Russian)

    Google Scholar 

  • Timoshenko SP, Goodier JN (1970) Theory of elasticity. McGraw-Hill Book Company, New Yurk, p 576

    Google Scholar 

  • Wallace RE (1951) Geometry of shearing stress and relation to faulting. J Geol 59:18–130

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seism Soc Am 84(4):974–1002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. L. Rebetsky or A. Yu. Polets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rebetsky, Y.L., Polets, A.Y. (2018). The Method of Cataclastic Analysis of Discontinuous Displacements. In: D'Amico, S. (eds) Moment Tensor Solutions. Springer Natural Hazards. Springer, Cham. https://doi.org/10.1007/978-3-319-77359-9_6

Download citation

Publish with us

Policies and ethics