Skip to main content

Advertisement

Log in

The phosphodiesterase 5 inhibitor tadalafil regulates lipidic homeostasis in human skeletal muscle cell metabolism

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Tadalafil seems to ameliorate insulin resistance and glucose homeostasis in humans. We have previously reported that tadalafil targets human skeletal muscle cells with an insulin (I)-like effect. We aim to evaluate in human fetal skeletal muscle cells after tadalafil or I: (i) expression profile of I-regulated genes dedicated to cellular energy control, glycolitic activity or microtubule formation/vesicle transport, as GLUT4, PPARγ, HK2, IRS-1, KIF1C, and KIFAP3; (ii) GLUT4, Flotillin-1, and Caveolin-1 localization, all proteins involved in energy-dependent cell trafficking; (iii) activation of I-targeted paths, as IRS-1, PKB/AKT, mTOR, P70/S6K. Free fatty acids intracellular level was measured. Sildenafil or a cGMP synthetic analog were used for comparison; PDE5 and PDE11 gene expression was evaluated in human fetal skeletal muscle cells.

Methods

RTq-PCR, PCR, western blot, free fatty acid assay commercial kit, and lipid stain non-fluorescent assay were used.

Results

Tadalafil upregulated I-targeted investigated genes with the same temporal pattern as I (GLUT4, PPARγ, and IRS-1 at 3 h; HK2, KIF1C, KIFAP3 at 12 h), re-localized GLUT4 in cell sites positively immune-decorated for Caveolin-1 and Flotillin-1, suggesting the involvement of lipid rafts, induced specific residue phosphorylation of IRS-1/AKT/mTOR complex in association with free fatty acid de novo synthesis. Sildenafil or GMP analog did not affect GLUT4 trafficking or free fatty acid levels.

Conclusion

In human fetal skeletal muscle cells tadalafil likely favors energy storage by modulating lipid homeostasis via IRS-1-mediated mechanisms, involving activation of I-targeted genes and intracellular cascade related to metabolic control. Those data provide some biomolecular evidences explaining, in part, tadalafil-induced favorable control of human metabolism shown by clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.C. Carson, T.F. Lue, Phosphodiesterase type 5 inhibitors for erectile dysfunction. BJU Int. 96, 257–280 (2005)

    Article  CAS  Google Scholar 

  2. J.H. Hong, Y.S. Kwon, I.Y. Kim, Pharmacodynamics, pharmacokinetics and clinical efficacy of phosphodiesterase-5 inhibitors. Exp. Opin. Drug Metab. Toxicol. 13, 183–192 (2017)

    Article  CAS  Google Scholar 

  3. M. Dell’Agli, G.V. Galli, E. Dal Cero, F. Belluti, R. Matera, E. Zironi, G. Pagliuca, E. Bosisio, Potent inhibition of human phosphodiesterase-5 by icariin derivatives. J. Nat. Prod. 71, 1513–1517 (2008)

    Article  Google Scholar 

  4. A. Basu, R.E. Ryder, New treatment options for erectile dysfunction in patients with diabetes mellitus. Drugs 64, 2667–2688 (2004)

    Article  CAS  Google Scholar 

  5. S.H. Francis, J.D. Corbin, PDE5 inhibitors: targeting erectile dysfunction in diabetics. Curr. Opin. Pharmacol. 11, 683–688 (2011)

    Article  CAS  Google Scholar 

  6. Y.P. Balhara, S. Sarkar, R. Gupta, Phosphodiesterase-5 inhibitors for erectile dysfunction in patients with diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Indian J. Endocrinol. Metab. 19, 451–461 (2015)

    Article  CAS  Google Scholar 

  7. D. Hatzichristou, M. Gambla, E. Rubio-Aurioles, J. Buvat, G.B. Brock, G. Spera, L. Rose, D. Lording, S. Liang, Efficacy of tadalafil once daily in men with diabetes mellitus and erectile dysfunction. Diabet. Med. 25, 138–46 (2008)

    Article  CAS  Google Scholar 

  8. A. Aversa, Systemic and metabolic effects of PDE5-inhibitor drugs. World J. Diabetes 1, 3–7 (2010)

    Article  Google Scholar 

  9. C.E. Ramirez, H. Nian, C. Yu, J.L. Gamboa, J.M. Luther, N.J. Brown, C.A. Shibao, Treatment with Sildenafil Improves Insulin Sensitivity in Prediabetes: A Randomized, Controlled Trial. J. Clin. Endocrinol. Metab. 100, 4533–4540 (2015)

    Article  CAS  Google Scholar 

  10. L. Fu, F. Li, A. Bruckbauer, Q. Cao, X. Cui, R. Wu, H. Shi, B. Xue, M.B. Zemel, Interaction between leucine and phosphodiesterase 5 inhibition in modulating insulin sensitivity and lipid metabolism. Diabetes Metab. Syndr. Obes. 8, 227–239 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. J.E. Ho, P. Arora, G.A. Walford, A. Ghorbani, D.P. Guanaga, B.P. Dhakal, D.I. Nathan, E.S. Buys, J.C. Florez, C. Newton-Cheh, G.D. Lewis, T.J. Wang, Effect of phosphodiesterase inhibition on insulin resistance in obese individuals. J. Am. Heart Assoc. (2014). doi:10.1161/JAHA.114.001001

  12. L. Di Luigi, C. Baldari, P. Sgrò, G.P. Emerenziani, M.C. Gallotta, S. Bianchini, F. Romanelli, F. Pigozzi, A. Lenzi, L. Guidetti, The type 5 phosphodiesterase inhibitor tadalafil influences salivary cortisol, testosterone, and dehydroepiandrosterone sulphate responses to maximal exercise in healthy men. J. Clin. Endocrinol. Metab. (2008). doi:10.1210/jc.2008-0847

    Article  CAS  Google Scholar 

  13. L. Di Luigi, C. Baldari, F. Pigozzi, G.P. Emerenziani, M.C. Gallotta, F. Iellamo, E. Ciminelli, P. Sgrò, F. Romanelli, A. Lenzi, L. Guidetti, The long-acting phosphodiesterase inhibitor tadalafil does not influence athletes’ VO2max, aerobic, and anaerobic thresholds in normoxia. Int. J. Sports Med. 29, 110–115 (2008)

    Article  Google Scholar 

  14. H. Duplain, R. Burcelin, C. Sartori, S. Cook, M. Egli, M. Lepori, P. Vollenweider, T. Pedrazzini, P. Nicod, B. Thorens, U. Scherrer, Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation 104, 342–345 (2001)

    Article  CAS  Google Scholar 

  15. M. Sheffield-Moore, J.E. Wiktorowicz, K.V. Soman, C.P. Danesi, M.P. Kinsky, E.L. Dillon, K.M. Randolph, S.L. Casperson, D.C. Gore, A.M. Horstman, J.P. Lynch, B.M. Doucet, J.A. Mettler, J.W. Ryder, L.L. Ploutz-Snyder, J.W. Hsu, F. Jahoor, K. Jennings, G.R. White, S.D. McCammon, W.J. Durham, Sildenafil increases muscle protein synthesis and reduces muscle fatigue. Clin. Transl. Sci. 6, 463–468 (2013)

    Article  CAS  Google Scholar 

  16. S. Sabatini, P. Sgrò, G. Duranti, R. Ceci, L. Di Luigi, Tadalafil alters energy metabolism in C2C12 skeletal muscle cells. Acta Biochim. Pol. 58, 237–241 (2011)

    Article  CAS  Google Scholar 

  17. C. Crescioli, N. Sturli, M. Sottili, P. Bonini, A. Lenzi, L. Di Luigi, Insulin-like effect of the phosphodiesterase type 5 inhibitor tadalafil onto male human skeletal muscle cells. J. Endocrinol. Invest. (2013). doi:10.3275/9034

  18. E. Milani, S. Nikfar, R. Khorasani, M.J. Zamani, M. Abdollahi, Reduction of diabetes-induced oxidative stress by phosphodiesterase inhibitors in rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 140, 251–255 (2005)

    Article  Google Scholar 

  19. L. Di Luigi, F. Romanelli, P. Sgrò., A. Lenzi, Andrological aspects of physical exercise and sport medicine. Endocrine 42, 278–284 (2012)

    Article  Google Scholar 

  20. L. Di Luigi, Supplements and the endocrine system in athletes. Clin. Sports Med. 27, 131–151 (2008)

    Article  Google Scholar 

  21. C. Baldari, L. Di Luigi, G.P. Emerenziani, M.C. Gallotta, P. Sgrò, L. Guidetti, Is explosive performance influenced by androgen concentrations in young male soccer players? Br. J. Sports Med. 43, 191–194 (2009)

    Article  CAS  Google Scholar 

  22. R.A. De Fronzo, E. Jacot, E. Jequier, E. Maeder, J. Wahren, J.P. Felber, The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30, 1000–1007 (1981)

    Article  Google Scholar 

  23. C. Crescioli, M. Sottili, P. Bonini, L. Cosmi, P. Chiarugi, P. Romagnani, G.B. Vannelli, M. Colletti, A.M. Isidori, M. Serio, A. Lenzi, L. Di Luigi, Inflammatory response in human skeletal muscle cells: CXCL10 as a potential therapeutic target. Eur. J. Cell Biol. 91, 139–149 (2012)

    Article  CAS  Google Scholar 

  24. C. Antinozzi, C. Corinaldesi, C. Giordano, A. Pisano, B. Cerbelli, S. Migliaccio, L. Di Luigi, K. Stefanantoni, G.B. Vannelli, S. Minisola, G. Valesini, V. Riccieri, A. Lenzi, C. Crescioli, Potential role for the VDR agonist elocalcitol in metabolic control: Evidences in human skeletal muscle cells. J. Steroid Biochem. Mol. Biol. 167, 169–181 (2017)

    Article  CAS  Google Scholar 

  25. Z.W. Yu, J. Burén, S. Enerbäck, E. Nilsson, L. Samuelsson, J.W. Eriksson, Insulin can enhance GLUT4 gene expression in 3T3-F442A cells and this effect is mimicked by vanadate but counteracted by cAMP and high glucose--potential implications for insulin resistance. Biochim. Biophys. Acta 1535, 174–185 (2001)

    Article  CAS  Google Scholar 

  26. J. Rieusset, F. Andreelli, D. Auboeuf, M. Roques, P. Vallier, J.P. Riou, J. Auwerx, M. Laville, H. Vidal, Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor-gamma in human adipocytes. Diabetes 48, 699–705 (1999)

    Article  CAS  Google Scholar 

  27. H. Osawa, C. Sutherland, R.B. Robey, R.L. Printz, D.K. Granner, Analysis of the signaling pathway involved in the regulation of hexokinase II gene transcription by insulin. J. Biol. Chem. 271, 16690–16694 (1996)

    Article  CAS  Google Scholar 

  28. S. Rome, K. Clément, R. Rabasa-Lhoret, E. Loizon, C. Poitou, G.S. Barsh, J.P. Riou, M. Laville, H. Vidal, Microarray profiling of human skeletal muscle reveals that insulin regulates approximately 800 genes during a hyperinsulinemic clamp. J. Biol. Chem. 278, 18063–18068 (2003)

    Article  CAS  Google Scholar 

  29. K.A. Cho, P.B. Kang, PLIN2 inhibits insulin-induced glucose uptake in myoblasts through the activation of the NLRP3 inflammasome. Int. J. Mol. Med. 36, 839–844 (2015)

    Article  CAS  Google Scholar 

  30. P. Gallina, M. Paganini, L. Lombardini, R. Saccardi, M. Marini, M.T. De Cristofaro, P. Pinzani, F. Salvianti, C. Crescioli, A. Di Rita., S. Bucciantini, C. Mechi, E. Sarchielli, M. Moretti, S. Piacentini, G. Gritti, A. Bosi, S. Sorbi, G. Orlandini, G.B. Vannelli, N. Di Lorenzo, Development of human striatal anlagen after transplantation in a patient with Huntington’s disease. Exp. Neurol. 213, 241–244 (2008)

    Article  Google Scholar 

  31. A. Aversa, M. Caprio, A. Antelmi, A. Armani, M. Brama, E.A. Greco, D. Francomano, M. Calanchini, G. Spera, L. Di Luigi, G.M. Rosano, A. Lenzi, S. Migliaccio, A. Fabbri, Exposure to phosphodiesterase type 5 inhibitors stimulates aromatase expression in human adipocytes in vitro. J. Sex. Med. 8, 696–704 (2011)

    Article  CAS  Google Scholar 

  32. S. Marchiani, L. Bonaccorsi, P. Ferruzzi, C. Crescioli, M. Muratori, L. Adorini, G. Forti, M. Maggi, E. Baldi, The vitamin D analogue BXL-628 inhibits growth factor-stimulated proliferation and invasion of DU145 prostate cancer cells. J. Cancer Res. Clin. Oncol. 132, 408–416 (2006)

    Article  CAS  Google Scholar 

  33. G.L. Gravina, F. Marampon, P. Muzi, A. Mancini, M. Piccolella, P. Negri-Cesi, M. Motta, A. Lenzi, E. Di Cesare, V. Tombolini, E.A. Jannini, C. Festuccia, PXD101 potentiates hormonal therapy and prevents the onset of castration-resistant phenotype modulating androgen receptor, HSP90, and CRM1 in preclinical models of prostate cancer. Endocr. Relat. Cancer. (2013). doi:10.1530/ERC-12-0240

    Article  CAS  Google Scholar 

  34. L. Di Luigi, M. Sottili, C. Antinozzi, G.B. Vannelli, F. Romanelli, V. Riccieri, G. Valesini, A. Lenzi, C. Crescioli, The vitamin D receptor agonist BXL-01-0029 as a potential new pharmacological tool for the treatment of inflammatory myopathies. PLoS One. (2013). doi:10.1371/journal.pone.0077745

    Article  CAS  Google Scholar 

  35. E.J. Henriksen, B.B. Dokken, Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets 7, 1435–1441 (2006)

    Article  CAS  Google Scholar 

  36. S. Uckert, P. Hedlund, K.E. Andersson, M.C. Truss, U. Jonas, C.G. Stief, Update on phosphodiesterase (PDE) isoenzymes as pharmacologic targets in urology: present and future. Eur Urol. 50, 1194–1207 (2006)

    Article  Google Scholar 

  37. J.E. Ayala, D.P. Bracy, B.M. Julien, J.N. Rottman, P.T. Fueger, D.H. Wasserman, Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice. Diabetes 56, 1025–1033 (2007)

    Article  CAS  Google Scholar 

  38. L. Fu, F. Li, A. Bruckbauer, Q. Cao, X. Cui, R. Wu, H. Shi, B. Xue, M.B. Zemel, Interaction between leucine and phosphodiesterase 5 inhibition in modulating insulin sensitivity and lipid metabolism. Diabetes Metab. Syndr. Obes. (2015). doi:10.2147/DMSO.S82338

  39. P.A. Jansson, G. Murdolo, L. Sjögren, B. Nyström, M. Sjöstrand, L. Strindberg, P. Lönnroth, Tadalafil increases muscle capillary recruitment and forearm glucose uptake in women with type 2 diabetes. Diabetologia 53, 2205–2208 (2010)

    Article  CAS  Google Scholar 

  40. L. Sjögren, J. Olausson, L. Strindberg, R. Mobini, P. Fogelstrand, L. Mattsson Hultén, P.A. Jansson, Postprandial effects of the phosphodiesterase-5 inhibitor tadalafil in people with well-controlled Type 2 diabetes mellitus: a randomized controlled trial. Diabet. Med. 33, 1299–1301 (2016)

    Article  Google Scholar 

  41. G. Murdolo, M. Sjöstrand, L. Strindberg, P. Lönnroth, P.A. Jansson, The selective phosphodiesterase-5 inhibitor tadalafil induces microvascular and metabolic effects in type 2 diabetic postmenopausal females. J. Clin. Endocrinol. Metab. 98, 245–254 (2013)

    Article  CAS  Google Scholar 

  42. C. McMahon, Efficacy and safety of daily tadalafil in men with erectile dysfunction previously unresponsive to on-demand tadalafil. J. Sex Med. 1, 292–300 (2004)

    Article  CAS  Google Scholar 

  43. B.E. Sansbury, B.G. Hill, Regulation of obesity and insulin resistance by nitric oxide. Free Radic. Biol. Med. 73, 383–399 (2014)

    Article  CAS  Google Scholar 

  44. U. Förstermann, T. Münzel, Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113, 1708–1714 (2006)

    Article  Google Scholar 

  45. J.M. Richey, The vascular endothelium, a benign restrictive barrier? NO! Role of nitric oxide in regulating insulin action. Diabetes. (2013). doi:10.2337/db13-1395

    Article  CAS  Google Scholar 

  46. M. Kanzaki, J.E. Pessin, Insulin signaling: GLUT4 vesicles exit via the exocyst. Curr. Biol. 15, 574–576 (2003)

    Article  Google Scholar 

  47. J.B. Helms, C. Zurzolo, Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5, 247–54 (2004)

    Article  CAS  Google Scholar 

  48. L.H. Chamberlain, G.W. Gould, The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes. J. Biol. Chem. 277, 49750–49754 (2002)

    Article  CAS  Google Scholar 

  49. A. Ros-Baro, C. Lopez-Iglesias, S. Peiro, D. Bellido, M. Palacin, A. Zorzano, M. Camps, Lipid rafts are required for GLUT4 internalization in adipose cells. Proc. Natl Acad. Sci. USA. 98, 12050–12055 (2001)

    Article  CAS  Google Scholar 

  50. K. Fecchi, D. Volonte, M.P. Hezel, K. Schmeck, F. Galbiati, Spatial and temporal regulation of GLUT4 translocation by flotillin-1 and caveolin-3 in skeletal muscle cells. FASEB J. 20, 705–707 (2006)

    Article  CAS  Google Scholar 

  51. E. González-Muñoz, C. López-Iglesias, M. Calvo, M. Palacín, A. Zorzano, M. Camps, Caveolin-1 loss of function accelerates glucose transporter 4 and insulin receptor degradation in 3T3-L1 adipocytes. Endocrinology 150, 3493–3502 (2009)

    Article  Google Scholar 

  52. Y. Hoon Son, S.J. Lee, K.B. Lee, J.H. Lee, E.M. Jeong, S.C. Chung, S.C. Park, I.G. Kim, Dexamethasone downregulates caveolin-1 causing muscle atrophy via inhibited insulin signaling. J. Endocrinol. 225, 27–37 (2005)

    Article  Google Scholar 

  53. Y.S. Oh, L.Y. Khil, K.A. Cho, S.J. Ryu, M.K. Ha, G.J. Cheon, T.S. Lee, J.W. Yoon, H.S. Jun, S.C. Park, A potential role for skeletal muscle caveolin-1 as an insulin sensitivity modulator in ageing-dependent non-obese type 2 diabetes: studies in a new mouse model. Diabetologia 51, 1025–1034 (2008)

    Article  CAS  Google Scholar 

  54. M. Laplante, D.M. Sabatini, mTOR signaling in growth control and disease. Cell 149, 274–293 (2012)

    Article  CAS  Google Scholar 

  55. D.A. Altomare, A.R. Khaled, Homeostasis and the importance for a balance between AKT/mTOR activity and intracellular signaling. Curr. Med. Chem. 9, 3748–3762 (2012)

    Article  Google Scholar 

  56. N. Takei, H. Nawa, mTOR signaling and its roles in normal and abnormal brain development. Front. Mol. Neurosci. (2014). doi:10.3389/fnmol.2014.00028

  57. M. Gao, J. Liang, Y. Lu, H. Guo, P. German, S. Bai, E. Jonasch, X. Yang, G.B. Mills, Z. Ding, Site-specific activation of AKT protects cells from death induced by glucose deprivation. Oncogene. 33, 745–755 (2014)

    Article  CAS  Google Scholar 

  58. S.F. Moore, R.W. Hunter, I. Hers, mTORC2 protein complex-mediated Akt (Protein Kinase B) Serine 473 Phosphorylation is not required for Akt1 activity in human platelets. J. Biol. Chem. 286, 24553–24560 (2011)

    Article  CAS  Google Scholar 

  59. L. Vadlakonda, A. Dash, M. Pasupuleti, K. Anil Kumar, P. Reddanna, The Paradox of Akt-mTOR Interactions. Front. Oncol. (2013). doi:10.3389/fonc.2013.00165

  60. C.A. Moody, R.S. Scott, N. Amirghahari, C.O. Nathan, L.S. Young, C.W. Dawson, J.W. Sixbey, Modulation of the cell growth regulator mTOR by Epstein-Barr virus-encoded LMP2A. J. Virol. 79, 5499–5506 (2005)

    Article  CAS  Google Scholar 

  61. C. Gao, C. Hölscher, Y. Liu, L. Li, GSK3: a key target for the development of novel treatments for type 2 diabetes mellitus and Alzheimer disease. Rev. Neurosci. 23, 1–11 (2011)

    Article  Google Scholar 

  62. M. Laplante, D.M. Sabatini, mTOR signaling at a glance. J. Cell. Sci. (2009). doi:10.1242/jcs.051011

    Article  CAS  Google Scholar 

  63. T. Porstmann, C.R. Santos, B. Griffiths, M. Cully, M. Wu, S. Leevers, J.R. Griffiths, Y.L. Chung, A. Schulze, SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224–236 (2008)

    Article  CAS  Google Scholar 

  64. J.E. Kim, J. Chen, Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 53, 2748–2756 (2004)

    Article  CAS  Google Scholar 

  65. C. Fernández-Hernando, K.J. Moore, MicroRNA modulation of cholesterol homeostasis. Arterioscler. Thromb. Vasc. Biol. 31, 2378–2382 (2011)

    Article  Google Scholar 

  66. M.A. Bouhlel, B. Staels, G. Chinetti-Gbaguidi, Peroxisome proliferator-activated receptors--from active regulators of macrophage biology to pharmacological targets in the treatment of cardiovascular disease. J. Intern. Med. 263, 28–42 (2008)

    CAS  PubMed  Google Scholar 

  67. L. Luo, M. Liu, Adipose tissue in control of metabolism. J. Endocrinol. 231, R77–R99 (2016)

    Article  CAS  Google Scholar 

  68. M. Coelho, T. Oliveira, R. Fernandes, Biochemistry of adipose tissue: an endocrine organ. Arch. Med. Sci. 9, 191–200 (2013)

    Article  CAS  Google Scholar 

  69. L.J. van Loon, B.H. Goodpaster, Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state. Pflugers Arch. 451, 606–616 (2006)

    Article  CAS  Google Scholar 

  70. B.H. Goodpaster, J. He, S. Watkins, D.E. Kelley, Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J. Clin. Endocrinol. Metab. 86, 5755–5761 (2001)

    Article  CAS  Google Scholar 

  71. A.P. Russell, Lipotoxicity: the obese and endurance-trained paradox. Int. J. Obes. Relat. Metab. Disord. 28, S66–S71 (2004)

    Article  CAS  Google Scholar 

  72. Z. Guo, L. Zhou, M.D. Jensen, Acute hyperinsulinemia inhibits intramyocellular triglyceride synthesis in high-fat-fed obese rats. J. Lipid Res. 47, 2640–2646 (2006)

    Article  CAS  Google Scholar 

  73. Y. Li, S. Xu, X. Zhang, Z. Yi, S. Cichello, Skeletal intramyocellular lipid metabolism and insulin resistance. Biophys. Rep. 1, 90–98 (2015)

    Article  CAS  Google Scholar 

  74. M.E. Young, B. Leighton, Fuel oxidation in skeletal muscle is increased by nitric oxide/cGMP--evidence for involvement of cGMP-dependent protein kinase. FEBS Lett. 424, 79–83 (1998)

    Article  CAS  Google Scholar 

  75. M.E. Young, G.K. Radda, B. Leighton, Nitric oxide stimulates glucose transport and metabolism in rat skeletal muscle in vitro. Biochem. J. 322, 223–228 (1997)

    Article  CAS  Google Scholar 

  76. Y. Higaki, M.F. Hirshman, N. Fujii, L.J. Goodyear, Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes 50, 241–247 (2001)

    Article  CAS  Google Scholar 

  77. K. Loughney, J. Taylor, V.A. Florio, 3′,5′-cyclic nucleotide phosphodiesterase 11A: localization in human tissues. Int. J. Impot. Res. 17, 320–325 (2005)

    Article  CAS  Google Scholar 

  78. G. Kakik, N.S. Tuzun, S. Durdagi, Investigation of PDE5/PDE6 and PDE5/PDE11 selective potent tadalafil-like PDE5 inhibitors using combination of molecular modeling approaches, molecular fingerprint-based virtual screening protocols and structure-based pharmacophore development. J. Enzyme Inhib. Med. Chem. 32, 311–330 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This report was supported by ELI Lilly ICOS Corporation, Indianapolis, USA.

Funding

This study was funded by ELI LILLY (Ex NCR H6D-IT-V015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Crescioli.

Ethics declarations

Conflict of interest

Crescioli C declares that she has received research grants from Company ELI LILLY. All the other authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

F. Marampon and C. Antinozzi contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marampon, F., Antinozzi, C., Corinaldesi, C. et al. The phosphodiesterase 5 inhibitor tadalafil regulates lipidic homeostasis in human skeletal muscle cell metabolism. Endocrine 59, 602–613 (2018). https://doi.org/10.1007/s12020-017-1378-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-017-1378-2

Keywords

Navigation