Skip to main content
Log in

Citations to chemical resources in scholarly articles: CRC Handbook of Chemistry and Physics and The Merck Index

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The use of authoritative chemical resources by scientists is an important first step to finding reliable and credible information for supporting and validating research results. Given the vast number of commercially and freely available online resources used for searching chemical and physical information, the utility of the traditional ready-reference print resources such as the CRC Handbook of Chemistry and Physics (referred to as the “Rubber Bible”) and The Merck Index (referred to as the “Chemist’s Bible”) may no longer be regarded suitable or useful for looking-up information and hence no longer required for purchase by academic institutions. To investigate this hypothesis, a study was undertaken to examine the usage and impact of these resources through citation in scholarly articles. The ‘Cited Reference Search’ from the Web of Science database is used to search, collect, and analyze article citations from the Science Citation Index Expanded to the CRC Handbook of Chemistry and Physics and The Merck Index, between the years 2002 and 2015 inclusive. The distribution of article citations to these chemical resources was analyzed by document type, research field, country, affiliation, and journal. The article citation yearly counts to these chemical resources were further compared to Wikipedia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Notes

  1. Tomaszewski, R. Unpublished results.

References

  • Álvarez, E. C., & Anegón, F. D. (2009). Chemistry in Spain bibliometric analysis through Scopus. Chimica Oggi, 27(6), 61–64.

    Google Scholar 

  • Annibaldi, A., Truzzi, C., Illuminati, S., & Scarponi, G. (2010). Scientometric analysis of national university research performance in analytical chemistry on the basis of academic publications: Italy as case study. Analytical and Bioanalytical Chemistry, 398(1), 17–26. doi:10.1007/s00216-010-4286-3.

    Article  Google Scholar 

  • Arkhipov, D. B., & Berezkin, V. G. (2002). Development of analytical chemistry in the latter half of the 20th century (scientometric analysis). Journal of Analytical Chemistry, 57(7), 581–585. doi:10.1023/a:1016217715420.

    Article  Google Scholar 

  • Badar, K., Hite, J. M., & Badir, Y. F. (2013). Examining the relationship of co-authorship network centrality and gender on academic research performance: The case of chemistry researchers in Pakistan. Scientometrics, 94(2), 755–775. doi:10.1007/s11192-012-0764-z.

    Article  Google Scholar 

  • Bailón-Moreno, R., Jurado-Alameda, E., Ruiz-Baños, R., & Courtial, J. P. (2005). Analysis of the field of physical chemistry of surfactants with the Unified Scienctometric Model. Fit of relational and activity indicators. Scientometrics, 63(2), 259–276. doi:10.1007/s11192-005-0212-4.

    Article  Google Scholar 

  • Balaban, A. T., & Klein, D. J. (2006). Is chemistry ‘The Central Science’? How are different sciences related? Co-citations, reductionism, emergence, and posets. Scientometrics, 69(3), 615–637. doi:10.1007/s11192-006-0173-2.

    Article  Google Scholar 

  • Barth, A., & Marx, W. (2012). Stimulation of ideas through compound-based bibliometrics: Counting and mapping chemical compounds for analyzing research topics in chemistry, physics, and materials science. ChemistryOpen, 1(6), 276–283. doi:10.1002/open.201200029.

    Article  Google Scholar 

  • Berezkin, V. G., Sidorenko, N. A., & Arkhipov, D. B. (2007). How we are cited: Russian analytical chemistry in the mirror of the science citation index (1991–2004). Journal of Analytical Chemistry, 62(1), 90–99. doi:10.1134/s1061934807010182.

    Article  Google Scholar 

  • Bornmann, L., Leydesdorff, L., & Marx, W. (2007). Citation environment of angewandte chemie. Chimia, 61(3), 104–109. doi:10.2533/chimia.2007.104.

    Article  Google Scholar 

  • Bornmann, L., Schier, H., Marx, W., & Daniel, H. D. (2011). Does the h index for assessing single publications really work? A case study on papers published in chemistry. Scientometrics, 89(3), 835–843. doi:10.1007/s11192-011-0472-0.

    Article  Google Scholar 

  • Bouznik, V. M., & Zibareva, I. V. (2015). Fluorine chemistry in Russia: Bibliometrical and subject analysis. Fluorine Notes, 3(100), 1–2. doi:10.17677/fn20714807.2015.03.04.

    Google Scholar 

  • Boyack, K. W., Börner, K., & Klavans, R. (2009). Mapping the structure and evolution of chemistry research. Scientometrics, 79(1), 45–60. doi:10.1007/s11192-009-0403-5.

    Article  Google Scholar 

  • Braun, T., Glänzel, W., & Grupp, H. (1995). The scientometric weight of 50 nations in 27 science areas, 1989–1993. Part I. All fields combined, mathematics, engineering, chemistry and physics. Scientometrics, 33(3), 263–293. doi:10.1007/BF02017332.

    Article  Google Scholar 

  • Braun, T., Glänzel, W., & Schubert, A. (1987). One more version of the facts and figures on publication output and relative citation impact in the life sciences and chemistry 1978–1980. Scientometrics, 11(3–4), 127–140. doi:10.1007/BF02016587.

    Article  Google Scholar 

  • Braun, T., Glänzel, W., & Schubert, A. (1988). The newest version of the facts and figures on publication output and relative citation impact in the life sciences and chemistry 1981–1985. Scientometrics, 14(1–2), 3–15. doi:10.1007/BF02020240.

    Google Scholar 

  • Braun, T., Glänzel, W., & Schubert, A. (1989a). Charting national research performances in analytical-chemistry, 1981–1985. Trends in Analytical Chemistry, 8(8), 281–284. doi:10.1016/0165-9936(89)85058-7.

    Article  Google Scholar 

  • Braun, T., Glänzel, W., & Schubert, A. (1989b). National research efforts in analytical-chemistry, 1981–1985. Trends in Analytical Chemistry, 8(9), 316–318. doi:10.1016/0165-9936(89)87033-5.

    Article  Google Scholar 

  • Braun, T., & Schubert, A. (2010). Journal of radioanalytical and nuclear chemistry, 2005–2009: A citation-based bibliography and impact analysis using Hirsch-type statistics. Journal of Radioanalytical and Nuclear Chemistry, 285(1), 1–168. doi:10.1007/s10967-010-0571-z.

    Article  Google Scholar 

  • Braun, T., Szabadi-Peresztegi, Z., & Kovács-Németh, É. (2003). No-bells for ambiguous lists of ranked Nobelists as science indicators of national merit in physics, chemistry and medicine, 1901–2001. Scientometrics, 56(1), 3–28. doi:10.1023/A:1021998006078.

    Article  Google Scholar 

  • Brazzeal, B. (2011). Citations to Wikipedia in chemistry journals: A preliminary study. Issues in Science and Technology Librarianship. doi:10.5062/F4057CV7.

    Google Scholar 

  • Brown, C. (2007). The role of Web-based information in the scholarly communication of chemists: Citation and content analyses of American Chemical Society journals. Journal of the Association for Information Science and Technology, 58(13), 2055–2065. doi:10.1002/asi.20666.

    Article  Google Scholar 

  • Buchanan, R. A. (2006). Accuracy of cited references: The role of citation databases. College & Research Libraries, 67(4), 292–303. doi:10.5860/crl.67.4.292.

    Article  Google Scholar 

  • Buntrock, R. E. (2016). Using citation indexes, citation searching, and bibliometrics to improve chemistry scholarship, research, and administration. Journal of Chemical Education, 93(3), 560–566. doi:10.1021/acs.jchemed.5b00451.

    Article  Google Scholar 

  • Buznik, V. M., & Zibareva, I. V. (2011). Bibliometric analysis of scientific publications on fluoropolymers. Polymer Science Series A, 53(11), 1110–1120. doi:10.1134/s0965545x11110022.

    Article  Google Scholar 

  • Buznik, V. M., Zibareva, I. V., Piottukh-Peletskii, V. N., & Sorokin, N. I. (2004). Bibliometric analysis of the Journal of Structural Chemistry. Journal of Structural Chemistry, 45(6), 1096–1106. doi:10.1007/s10947-005-0100-z.

    Article  Google Scholar 

  • Ciriminna, R., & Pagliaro, M. (2013). On the use of the h-index in evaluating chemical research. Chemistry Central Journal. doi:10.1186/1752-153x-7-132.

    Google Scholar 

  • Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. doi:10.1002/asi.21525.

    Article  MATH  Google Scholar 

  • Currano, J. N., & Roth, D. L. (Eds.). (2014). Chemical information for chemists: A primer. Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Dewitt, T., Nicholson, R., & Wilson, M. (1980). Science citation index and chemistry. Scientometrics, 2(4), 265–275. doi:10.1007/BF02016348.

    Article  Google Scholar 

  • Dou, H., Quoniam, L., & Hassanaly, P. (1991). The scientific dynamics of a city: A study of chemistry in Marseilles from 1981 to the present. Scientometrics, 22(1), 83–93. doi:10.1007/bf02019276.

    Article  Google Scholar 

  • Dwivedi, S., Kumar, S., & Garg, K. C. (2015). Scientometric profile of organic chemistry research in India during 2004–2013. Current Science, 109(5), 869–877. doi:10.18520/v109/i5/869-877.

    Article  Google Scholar 

  • Gingras, Y., & Wallace, M. L. (2010). Why it has become more difficult to predict Nobel Prize winners: A bibliometric analysis of nominees and winners of the chemistry and physics prizes (1901–2007). Scientometrics, 82(2), 401–412. doi:10.1007/s11192-009-0035-9.

    Article  Google Scholar 

  • Glänzel, W., & Schubert, A. (2001). Double effort = double impact? A critical view at international co-authorship in chemistry. Scientometrics, 50(2), 199–214. doi:10.1023/a:1010561321723.

    Article  Google Scholar 

  • Grandjean, P., Eriksen, M. L., Ellegaard, O., & Wallin, J. A. (2011). The Matthew effect in environmental science publication: A bibliometric analysis of chemical substances in journal articles. Environmental Health. doi:10.1186/1476-069x-10-96.

    Google Scholar 

  • Gross, P. L. K., & Gross, E. M. (1927). College libraries and chemical education. Science, 66, 385–389.

    Article  Google Scholar 

  • Guay, Y. (1986). Emergence of basic research on the periphery: Organic chemistry in India, 1907–1926. Scientometrics, 10(1–2), 77–94. doi:10.1007/BF02016862.

    Article  Google Scholar 

  • Harirchi, G., Melin, G., & Etemad, S. (2007). An exploratory study of the feature of Iranian co-authorships in biology, chemistry and physics. Scientometrics, 72(1), 11–24. doi:10.1007/s11192-007-1693-0.

    Article  Google Scholar 

  • Harzing, A. W. K., & Van der Wal, R. (2008). Google scholar as a new source for citation analysis. Ethics in Science and Environmental Politics, 8(1), 61–73. doi:10.3354/esep00076.

    Article  Google Scholar 

  • Hawkins, D. T. (1980). Crystallographic literature: A bibliometric and citation analysis. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 36(3), 475–482. doi:10.1107/S056773948000099X.

    Article  Google Scholar 

  • Haynes, W. M. (Ed.). (2016). CRC handbook of chemistry and physics: A ready-reference book of chemical and physical data. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Herbstein, F. H. (1993). Measuring publications output and publications impact of faculty members of a university chemistry department. Scientometrics, 28(3), 349–373. doi:10.1007/bf02026515.

    Article  Google Scholar 

  • Hernández-García, Y. I., Chamizo, J. A., Kleiche-Dray, M., & Russell, J. M. (2015). The scientific impact of Mexican steroid research 1935–1965: A bibliometric and historiographic analysis. Journal of the Association for Information Science and Technology, 67(5), 1245–1256. doi:10.1002/asi.23493.

    Article  Google Scholar 

  • Jacsó, P. (2004). Citation searching. Online Information Review, 28(6), 454–460. doi:10.1108/14684520410570580.

    Article  Google Scholar 

  • Kademani, B. S., Kumar, V., Sagar, A., & Kumar, A. (2006). World literature on thorium research: A scientometric study based on Science Citation Index. Scientometrics, 69(2), 347–364. doi:10.1007/s11192-006-0157-2.

    Article  Google Scholar 

  • Kademani, B. S., Kumar, V., Surwase, G., Sagar, A., Mohan, L., Gaderao, C. R., et al. (2005). Scientometric dimensions of innovation communication productivity of the chemistry division at Bhabha atomic research centre. Malaysian Journal of Library & Information Science, 10(1), 65–89.

    Google Scholar 

  • Karki, M. M. S., & Garg, K. C. (1997). Bibliometrics of alkaloid chemistry research in India. Journal of Chemical Information and Computer Sciences, 37(2), 157–161. doi:10.1021/ci960032z.

    Article  Google Scholar 

  • Karki, M. M. S., & Garg, K. C. (1999). Scientometrics of Indian organic chemistry research. Scientometrics, 45(1), 107–116. doi:10.1007/bf02458471.

    Article  Google Scholar 

  • Karki, M. M. S., Garg, K. C., & Sharma, P. (2000). Activity and growth of organic chemistry research in India during 1971–1989. Scientometrics, 49(2), 279–288. doi:10.1023/a:1010521203335.

    Article  Google Scholar 

  • Kato, M., & Ando, A. (2013). The relationship between research performance and international collaboration in chemistry. Scientometrics, 97(3), 535–553. doi:10.1007/s11192-013-1011-y.

    Article  Google Scholar 

  • Kim, M. J., & Kim, B. J. (2000). A bibliometric analysis of publications by the chemistry department, Seoul National University, Korea, 1992–1998. Journal of Information Science, 26(2), 111–119. doi:10.1177/016555150002600204.

    Article  Google Scholar 

  • Kumari, G. L. (2006). Trends in synthetic organic chemistry research. Cross-country comparison of Activity Index. Scientometrics, 67(3), 467–476. doi:10.1556/Scient.67.2006.3.8.

    Article  Google Scholar 

  • Kumari, G. L. (2009). Synthetic organic chemistry research: Analysis by scientometric indicators. Scientometrics, 80(3), 559–570. doi:10.1007/s11192-007-1985-4.

    Article  MathSciNet  Google Scholar 

  • Lafferty, M. (2009). A framework for evaluating science and technology electronic reference books: A comparison of five platforms in chemistry. Issues in Science and Technology Librarianship. Retrieved from http://www.istl.org/09-fall/refereed1.html?a_aid=3598aabf

  • Li, J., Burnham, J. F., Lemley, T., & Britton, R. M. (2010). Citation analysis: Comparison of web of science, scopus, SciFinder, and google scholar. Journal of Electronic Resources in Medical Libraries, 7(3), 196–217. doi:10.1080/15424065.2010.505518.

    Article  Google Scholar 

  • Li, J., & Willett, P. (2009). Bibliometric analysis of Chinese research on cyclization, MALDI-TOF, and antibiotics. Journal of Chemical Information and Modeling, 50(1), 22–29. doi:10.1021/ci9003199.

    Article  Google Scholar 

  • Liang, L., Rousseau, R., & Zhong, Z. (2013). Non-english journals and papers in physics and chemistry: bias in citations? Scientometrics, 95(1), 333–350. doi:10.1007/s11192-012-0828-0.

    Article  Google Scholar 

  • Lyon, W. (1990). Current status of neutron activation analysis and aplied nuclear chemistry. Journal of Radioanalytical and Nuclear Chemistry, 140(1), 205–214. doi:10.1007/BF02037378.

    Article  Google Scholar 

  • Maczelka, H., & Zsindely, S. (1992). All well if starts well? Citation infancy of recently launched chemistry journals. Scientometrics, 25(2), 367–372. doi:10.1007/bf02028092.

    Article  Google Scholar 

  • Malo, S., & Geuna, A. (2000). Science-technology linkages in an emerging research platform: The case of combinatorial chemistry and biology. Scientometrics, 47(2), 303–321. doi:10.1023/A:1005643127551.

    Article  Google Scholar 

  • Marx, W. (2001). Angewandte chemie in light of the science citation index. Angewandte Chemie International Edition, 40(1), 139–143.

    Article  MathSciNet  Google Scholar 

  • Morillo, F., Bordons, M., & Gómez, I. (2001). An approach to interdisciplinarity through bibliometric indicators. Scientometrics, 51(1), 203–222. doi:10.1023/A:1010529114941.

    Article  Google Scholar 

  • Nagpaul, P. S., & Pant, N. (1993). Cross-national assessment of specialization patterns in chemistry. Scientometrics, 27(2), 215–235. doi:10.1007/BF02016551.

    Article  Google Scholar 

  • Nederhof, A., & Van Raan, A. (1989). A validation study of bibliometric indicators: The comparative performance of cum laude doctorates in chemistry. Scientometrics, 17(5–6), 427–435. doi:10.1007/BF02017463.

    Article  Google Scholar 

  • Neuhaus, C., & Daniel, H. D. (2009). A new reference standard for citation analysis in chemistry and related fields based on the sections of chemical abstracts. Scientometrics, 78(2), 219–229. doi:10.1007/s11192-007-2007-2.

    Article  Google Scholar 

  • O’Neil, M. J. (Ed.). (2013). The Merck index: An encyclopedia of chemicals, drugs, and biologicals. Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Osareh, F., & McCain, K. W. (2008). The structure of Iranian chemistry research, 1990–2006: An author cocitation analysis. Journal of the American Society for Information Science and Technology, 59(13), 2146–2155. doi:10.1002/asi.20923.

    Article  Google Scholar 

  • Pinski, G. (1977). Influence and interrelationship of chemical journals. Journal of Chemical Information and Computer Sciences, 17(2), 67–74. doi:10.1021/ci60010a003.

    Google Scholar 

  • Quoniam, L., Dou, H., Hassanaly, P., & Mille, G. (1991). Bibliometrics and chemistry: An example on fatty-acids and phospholipides. Analusis, 19(1), I48–I52.

    Google Scholar 

  • Qurashi, M. M. (1991). Publication-rate and size of two prolific research groups in departments of inorganic-chemistry at Dacca University (1944–1965) and zoology at Karachi University (1966–84). Scientometrics, 20(1), 79–92. doi:10.1007/bf02018146.

    Article  Google Scholar 

  • Rabkin, Y., & Lafitte-Houssat, J. (1979). Cooperative research in petroleum chemistry. Scientometrics, 1(4), 327–338. doi:10.1007/BF02019304.

    Article  Google Scholar 

  • Ridley, D. D. (2001). Citation searches in on-line databases: Possibilities and pitfalls. Trends in Analytical Chemistry, 20(1), 1–10. doi:10.1016/s0167-2940(01)90065-2.

    Article  Google Scholar 

  • Rivera, G., Puras, G., Palos, I., Ordaz-Pichardo, C., & Bocanegra-Garcia, V. (2010). Bibliometric analysis of scientific publications in the field of medicinal chemistry in Latin America, the People’s Republic of China, and India. Medicinal Chemistry Research, 19(6), 603–616. doi:10.1007/s00044-009-9216-6.

    Article  Google Scholar 

  • Russell, J. M., Hernández-García, Y., & Kleiche-Dray, M. (2016). Collaboration dynamics of Mexican research in chemistry and its relationship with communication patterns. Scientometrics, 109(1), 283–316. doi:10.1007/s11192-016-2069-0.

    Article  Google Scholar 

  • Schubert, A. (1996). The portrait of a journal as reflected in its publications, references and citations: Inorganica Chimica Acta, 1990–1994. Inorganica Chimica Acta, 253(2), 111–118. doi:10.1016/S0020-1693(96)05360-1.

    Article  Google Scholar 

  • Schummer, J. (1997a). Scientometric studies on chemistry I: The exponential growth of chemical substances, 1800–1995. Scientometrics, 39(1), 107–123. doi:10.1007/bf02457433.

    Article  MathSciNet  Google Scholar 

  • Schummer, J. (1997b). Scientometric studies on chemistry II: Aims and methods of producing new chemical substances. Scientometrics, 39(1), 125–140. doi:10.1007/bf02457434.

    Article  MathSciNet  Google Scholar 

  • Singh, U., & Arunachalam, S. (1991). Publication and citation patterns in the literature of liquid crystals with special reference to the contribution of India, Canada, Japan, United Kingdom and the Soviet Union. Scientometrics, 20(1), 197–220. doi:10.1007/BF02018155.

    Article  Google Scholar 

  • Spagnolo, F. (1990). Brazilian scientists’ publications and mainstream science: Some policy implications: The case of chemical and electrical engineering. Scientometrics, 18(3–4), 205–218. doi:10.1007/BF02017762.

    Article  Google Scholar 

  • Takeda, Y., Kajikawa, Y., & Matsushima, K. (2007). Citation network of CVD research: Research topics and journals. Chemical Vapor Deposition, 13(10), 523–525. doi:10.1002/cvde.200700011.

    Article  Google Scholar 

  • Téllez, H., & Vadillo, J. M. (2010). Bibliometric study of journal publications on analytical chemistry 2000–2007: Publication productivity and journal preferences by country. Analytical and Bioanalytical Chemistry, 397(4), 1477–1484. doi:10.1007/s00216-010-3732-6.

    Article  Google Scholar 

  • Testa, J. (2016). The Thomson Reuters journal selection process. Retrieved from http://wokinfo.com/essays/journal-selection-process/.

  • Tomaszewski, R., & MacDonald, K. I. (2016). A study of citations to Wikipedia in scholarly publications. Science & Technology Libraries, 35(3), 246–261. doi:10.1080/0194262x.2016.1206052.

    Article  Google Scholar 

  • Tsay, M. Y. (1989). Bibliometric study of the application of computers in synthetic organic, physical, inorganic, and analytical chemistry literature abstracted by chemical abstracts in 1986. Journal of Chemical Information and Computer Sciences, 29(3), 156–158. doi:10.1021/ci00063a004.

    Google Scholar 

  • van Raan, A. F. (2006a). Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups. Scientometrics, 67(3), 491–502. doi:10.1007/s11192-006-0066-4.

    Article  Google Scholar 

  • van Raan, A. F. J. (2006b). Performance-related differences of bibliometric statistical properties of research groups: Cumulative advantages and hierarchically layered networks. Journal of the American Society for Information Science and Technology, 57(14), 1919–1935. doi:10.1002/asi.20389.

    Article  Google Scholar 

  • Ventura, O. N., & Mombrú, A. W. (2006). Use of bibliometric information to assist research policy making. A comparison of publication and citation profiles of full and associate professors at a school of chemistry in Uruguay. Scientometrics, 69(2), 287–313. doi:10.1007/s11192-006-0154-5.

    Article  Google Scholar 

  • Vinkler, P. (1999). Ratio of short term and long term impact factors and similarities of chemistry journals represented by references. Scientometrics, 46(3), 621–633. doi:10.1007/BF02459616.

    Article  Google Scholar 

  • Waaijer, C. J., & Palmblad, M. (2015). Bibliometric mapping: Eight decades of analytical chemistry, with special focus on the use of mass spectrometry. Analytical Chemistry, 87(9), 4588–4596. doi:10.1021/ac5040314.

    Article  Google Scholar 

  • Wan, T. J., Shen, S. M., Bandyopadhyay, A., & Shu, C. M. (2012). Bibliometric analysis of carbon dioxide reduction research trends during 1999–2009. Separation and Purification Technology, 94, 87–91. doi:10.1016/j.seppur.2011.07.022.

    Article  Google Scholar 

  • Whitley, K. M. (2002). Analysis of SciFinder scholar and web of science citation searches. Journal of the American Society for Information Science and Technology, 53(14), 1210–1215. doi:10.1002/asi.10192.

    Article  Google Scholar 

  • Yalpani, M., Heydari, A., & Mehrdad, M. (2005). Application of scientometric methods to chemical research in Iran: Reflections on Iran’s current science policy. Scientometrics, 63(3), 531–547. doi:10.1007/s11192-005-0226-y.

    Article  Google Scholar 

  • Ye, L., Lewis, S. E., Raker, J. R., & Oueini, R. (2015). Examining the impact of chemistry education research articles from 2007 through 2013 by citation counts. Journal of Chemical Education, 92(8), 1299–1305. doi:10.1021/ed5007635.

    Article  Google Scholar 

  • Yitzhaki, M., & Ben-Tamar, D. (1991). Number of references in biochemistry and other fields; A case study of the journal of biological chemistry throughout 1910–1985. Scientometrics, 21(1), 3–22. doi:10.1007/BF02019179.

    Article  Google Scholar 

  • Zhang, B. G., Liu, Y., Huang, W. L., Li, J. X., Feng, C. P., & Hu, W. W. (2015). Mapping of hexavalent chromium removal research: A bibliometric analysis of research outputs from 1975 to 2012. Fresenius Environmental Bulletin, 24(12C), 4834–4841.

    Google Scholar 

  • Zhou, P., & Leydesdorff, L. (2009). Chemistry in China—A bibliometric view. Chimica Oggi, 27(6), 19–22.

    Google Scholar 

  • Zibareva, I. V., & Parmon, V. N. (2013). Identification of “hot spots” of the science of catalysis: Bibliometric and thematic analysis of nowaday reviews and monographs. Russian Chemical Bulletin, 62(10), 2266–2278. doi:10.1007/s11172-013-0329-1.

    Article  Google Scholar 

  • Zibareva, I. V., Vedyagin, A. A., & Bukhtiyarov, V. I. (2014). Nanocatalysis: A bibliometric analysis. Kinetics and Catalysis, 55(1), 1–11. doi:10.1134/S0023158414010194.

    Article  Google Scholar 

  • Zibareva, I. V., Vedyagin, A. A., & Bukhtiyarov, V. I. (2016). Kinetika i Kataliz: 55 years in the bibliometric dimension. Kinetics and Catalysis, 57(1), 1–16. doi:10.1134/S0023158416010146.

    Article  Google Scholar 

  • Zsindely, S., Schubert, A., & Braun, T. (1982). Citation patterns of editorial gatekeepers in international chemistry journals. Scientometrics, 4(1), 69–76. doi:10.1007/BF02098007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tomaszewski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomaszewski, R. Citations to chemical resources in scholarly articles: CRC Handbook of Chemistry and Physics and The Merck Index . Scientometrics 112, 1865–1879 (2017). https://doi.org/10.1007/s11192-017-2437-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2437-4

Keywords

Navigation