Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Plasma levels of natriuretic peptides and year-by-year blood pressure variability: a population-based study

Abstract

Augmented blood pressure (BP) variability over various time periods has been recognized as a risk factor for cardiovascular diseases. Both atrial and B-type natriuretic peptides (ANP and BNP) are secreted in response to volume or pressure overload to the heart, exerting natriuretic and vasodilator actions. In this study, we examined the relationships between year-by-year BP variability and plasma levels of ANP and BNP in the general population. Study subjects were local residents receiving an annual heath checkup, who had an estimated glomerular filtration rate of >30 ml min−1 per 1.73 m2 and no history of heart disease. Of those, we selected 314 subjects that received checkups at least five times over the past 6 years. BP variability year-by-year was retrospectively evaluated by s.d., coefficient of variation, average real variability and variation independent of the mean of BP values of 6 or 7 time points. The four parameters of BP variability were each found to significantly correlate with logarithmically transformed ANP and BNP levels by simple regression. When classified by quartiles of s.d. of systolic BP, the highest quartile group showed significantly higher levels of the natriuretic peptides compared with other groups. Multivariate analyses revealed that BP variability was an independent determinant for the ANP and BNP levels. In conclusion, augmented year-by-year BP variability over the past 6 years was associated with elevation of plasma levels of ANP and BNP, suggesting a possible relationship between the BP variability and cardiac load, in the general population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Rothwell PM, Howard SC, Dolan E, O'Brien E, Dobson JE, Dahlof B et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet 2010; 375 (9718): 895–905.

    Article  Google Scholar 

  2. Parati G, Ochoa JE, Lombardi C, Bilo G . Assessment and management of blood-pressure variability. Nat Rev Cardiol 2013; 10: 143–155.

    Article  Google Scholar 

  3. Muntner P, Shimbo D, Tonelli M, Reynolds K, Arnett DK, Oparil S . The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994. Hypertension 2011; 57: 160–166.

    Article  CAS  Google Scholar 

  4. Nagai M, Hoshide S, Nishikawa M, Masahisa S, Kario K . Visit-to-visit blood pressure variability in the elderly: associations with cognitive impairment and carotid artery remodeling. Atherosclerosis 2014; 233: 19–26.

    Article  CAS  Google Scholar 

  5. Mancia G, Bombelli M, Facchetti R, Madotto F, Corrao G, Trevano FQ et al. Long-term prognostic value of blood pressure variability in the general population: results of the Pressioni Arteriose Monitorate e Loro Associazioni Study. Hypertension 2007; 49: 1265–1270.

    Article  CAS  Google Scholar 

  6. Kario K, Pickering TG, Matsuo T, Hoshide S, Schwartz JE, Shimada K . Stroke prognosis and abnormal nocturnal blood pressure falls in older hypertensives. Hypertension 2001; 38: 852–857.

    Article  CAS  Google Scholar 

  7. Pierdomenico SD, Di Nicola M, Esposito AL, Di Mascio R, Ballone E, Lapenna D et al. Prognostic value of different indices of blood pressure variability in hypertensive patients. Am J Hypertens 2009; 22: 842–847.

    Article  Google Scholar 

  8. Zakopoulos NA, Tsivgoulis G, Barlas G, Papamichael C, Spengos K, Manios E et al. Time rate of blood pressure variation is associated with increased common carotid artery intima-media thickness. Hypertension 2005; 45: 505–512.

    Article  CAS  Google Scholar 

  9. Zakopoulos NA, Tsivgoulis G, Barlas G, Spengos K, Manios E, Ikonomidis I et al. Impact of the time rate of blood pressure variation on left ventricular mass. J Hypertens 2006; 24: 2071–2077.

    Article  CAS  Google Scholar 

  10. Kikuya M, Hozawa A, Ohokubo T, Tsuji I, Michimata M, Matsubara M et al. Prognostic significance of blood pressure and heart rate variabilities: the Ohasama study. Hypertension 2000; 36: 901–906.

    Article  CAS  Google Scholar 

  11. Kangawa K, Matsuo H . Purification and complete amino acid sequence of α-human atrial natriuretic polypeptide (α-hANP). Biochem Biophys Res Commun 1984; 118: 131–139.

    Article  CAS  Google Scholar 

  12. Sudoh T, Kangawa K, Minamino N, Matsuo H . A new natriuretic peptide in porcine brain. Nature 1988; 332 (6159): 78–81.

    Article  CAS  Google Scholar 

  13. Minamino N, Nishikimi T . Natriuretic peptides. In: Kastin AJ . (ed). Handbook of Biologically Active Peptides. Academic Press: San Diego, CA, USA, 2013, pp 1415–1422.

    Book  Google Scholar 

  14. Kato J . Natriuretic peptides. In: Caplan M . (ed). Reference Module in Biomedical Sciences. Elsevier: London, UK, 2014.

    Google Scholar 

  15. Kato J, Kitamura K, Matsui E, Tanaka M, Ishizaka Y, Kita T et al. Plasma adrenomedullin and natriuretic peptides in patients with essential or malignant hypertension. Hypertens Res 1999; 22: 61–65.

    Article  CAS  Google Scholar 

  16. Kato J, Kobayashi K, Etoh T, Tanaka M, Kitamura K, Imamura T et al. Plasma adrenomedullin concentration in patients with heart failure. J Clin Endocrinol Metab 1996; 81: 180–183.

    CAS  PubMed  Google Scholar 

  17. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 2009; 53: 982–992.

    Article  CAS  Google Scholar 

  18. Kawano S, Kawagoe Y, Kuwasako K, Shimamoto S, Igarashi K, Tokashiki M et al. Gender-related alterations in plasma adrenomedullin level and its correlation with body weight gain. Endocr Connect 2015; 4: 43–49.

    Article  Google Scholar 

  19. Satoh M, Hosaka M, Asayama K, Kikuya M, Inoue R, Metoki H et al. Association between N-terminal pro B-type natriuretic peptide and day-to-day blood pressure and heart rate variability in a general population: the Ohasama study. J Hypertens 2015; 33: 1536–1541.

    Article  CAS  Google Scholar 

  20. Ogawa N, Komura H, Kuwasako K, Kitamura K, Kato J . Plasma levels of natriuretic peptides and development of chronic kidney disease. BMC Nephrol 2015; 16: 171.

    Article  Google Scholar 

  21. Yano Y, Fujimoto S, Kramer H, Sato Y, Konta T, Iseki K et al. Long-term blood pressure variability, new-onset diabetes mellitus, and new-onset chronic kidney disease in the Japanese general population. Hypertension 2015; 66: 30–36.

    Article  CAS  Google Scholar 

  22. Kato J, Kitamura K, Uemura T, Kuwasako K, Kita T, Kangawa K et al. Plasma levels of adrenomedullin and atrial and brain natriuretic peptides in the general population: their relations to age and pulse pressure. Hypertens Res 2002; 25: 887–892.

    Article  CAS  Google Scholar 

  23. Giannessi D, Andreassi MG, Del Ry S, Clerico A, Colombo MG, Dini N . Possibility of age regulation of the natriuretic peptide C-receptor in human platelets. J Endocrinol Invest 2001; 24: 8–16.

    Article  CAS  Google Scholar 

  24. Ichihara A, Kaneshiro Y, Takemitsu T, Sakoda M, Hayashi M . Ambulatory blood pressure variability and brachial-ankle pulse wave velocity in untreated hypertensive patients. J Hum Hypertens 2006; 20: 529–536.

    Article  CAS  Google Scholar 

  25. Bahrainwala J, Patel A, Diaz KM, Veerabhadrappa P, Cohen DL, Cucchiara A et al. Ambulatory Arterial Stiffness Index and circadian blood pressure variability. J Am Soc Hypertens 2015; 9: 705–710.

    Article  Google Scholar 

  26. Stabouli S, Papakatsika S, Kotronis G, Papadopoulou-Legbelou K, Rizos Z, Kotsis V . Arterial stiffness and SBP variability in children and adolescents. J Hypertens 2015; 33: 88–95.

    Article  CAS  Google Scholar 

  27. Song H, Wei F, Liu Z, Zhao Y, Ye L, Lu F et al. Visit-to-visit variability in systolic blood pressure: correlated with the changes of arterial stiffness and myocardial perfusion in on-treated hypertensive patients. Clin Exp Hypertens 2015; 37: 63–69.

    Article  Google Scholar 

  28. Yambe M, Tomiyama H, Koji Y, Motobe K, Shiina K, Gulnisia Z et al. B-type natriuretic peptide and arterial stiffness in healthy Japanese men. Am J Hypertens 2006; 19: 443–447.

    Article  CAS  Google Scholar 

  29. Shroff GR, Cen YY, Duprez DA, Bart BA . Relationship between carotid artery stiffness index, BNP and high-sensitivity CRP. J Hum Hypertens 2009; 23: 783–787.

    Article  CAS  Google Scholar 

  30. Rutten JH, Mattace-Raso FU, Verwoert GC, Lindemans J, Hofman A, Witteman JC et al. Arterial stiffness as determinant of increased amino terminal pro-B-type natriuretic peptide levels in individuals with and without cardiovascular disease - the Rotterdam Study. J Hypertens 2010; 28: 2061–2067.

    Article  CAS  Google Scholar 

  31. Liu Z, Peng J, Lu F, Zhao Y, Wang S, Sun S et al. Salt loading and potassium supplementation: effects on ambulatory arterial stiffness index and endothelin-1 levels in normotensive and mild hypertensive patients. J Clin Hypertens 2013; 15: 485–496.

    Article  CAS  Google Scholar 

  32. Hummel SL, Seymour EM, Brook RD, Kolias TJ, Sheth SS, Rosenblum HR et al. Low-sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Hypertension 2012; 60: 1200–1206.

    Article  CAS  Google Scholar 

  33. Jablonski KL, Fedorova OV, Racine ML, Geolfos CJ, Gates PE, Chonchol M et al. Dietary sodium restriction and association with urinary marinobufagenin, blood pressure, and aortic stiffness. Clin J Am Soc Nephrol 2013; 8: 1952–1959.

    Article  CAS  Google Scholar 

  34. Mitchell GF, Izzo JL Jr, Lacourcière Y, Ouellet JP, Neutel J, Qian C et al. Omapatrilat reduces pulse pressure and proximal aortic stiffness in patients with systolic hypertension: results of the conduit hemodynamics of omapatrilat international research study. Circulation 2002; 105: 2955–2961.

    Article  CAS  Google Scholar 

  35. Kohno M, Horio T, Yokokawa K, Yasunari K, Ikeda M, Minami M et al. Brain natriuretic peptide as a marker for hypertensive left ventricular hypertrophy: changes during 1-year antihypertensive therapy with angiotensin-converting enzyme inhibitor. Am J Med 1995; 98: 257–265.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants-in-Aid for Scientific Research from the Japanese Society for the Promotion of Science (No JP26461256) and by Grants-in-Aid for Clinical Research from the Miyazaki University Hospital. We are grateful to Mr Tadashi Tojiki, the Mayor of Miyazaki City, and the staff of Miyazaki City Health Center for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Kato.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, J., Kawagoe, Y., Jiang, D. et al. Plasma levels of natriuretic peptides and year-by-year blood pressure variability: a population-based study. J Hum Hypertens 31, 525–529 (2017). https://doi.org/10.1038/jhh.2017.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2017.14

Search

Quick links