Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems | IEEE Journals & Magazine | IEEE Xplore

Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems


Abstract:

This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissi...Show More

Abstract:

This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.
Published in: IEEE Transactions on Neural Networks and Learning Systems ( Volume: 28, Issue: 8, August 2017)
Page(s): 1929 - 1940
Date of Publication: 01 February 2017

ISSN Information:

PubMed ID: 28166510

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.