Skip to main content

Advertisement

Log in

25 Years of Neuroendocrine Neoplasms of the Gastrointestinal Tract

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

This paper provides a personal pathologist’s view of how neuroendocrine tumors (NET) were perceived and defined in the last quarter of a century. In years when the Helicobacter pylori, omeprazole and the adenoma–carcinoma sequence in colon carcinogenesis significantly impacted on gastrointestinal (GI) pathology daily practice, neuroendocrine neoplasms of the GI tract passed from the original carcinoid definition to the current NET and neuroendocrine carcinoma (NEC) definitions. The development of different concepts, basic tumor biology knowledge, tools for pathology diagnosis and the various World Health Organization (WHO) classifications from 1980 through 2010 are briefly reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Loffeld RJ, Willems I, Flendrig JA, Arends JW Helicobacter pylori and gastric carcinoma. Histopathology 17: 537-541, 1990.

    Article  PubMed  CAS  Google Scholar 

  2. Copeland CE, Stahlfeld K Two tall poppies and the discovery of Helicobacter pylori. Journal of the American College of Surgeons 214: 237-241, 2012.

    Article  PubMed  Google Scholar 

  3. Pincock S Nobel Prize winners Robin Warren and Barry Marshall. Lancet 366: 1429, 2005.

    Article  PubMed  Google Scholar 

  4. Biasco G, Miglioli M, Barbara L, Corinaldesi R, di Febo G Omeprazole, Helicobacter pylori, gastritis, and duodenal ulcer. Lancet 2: 1403, 1989.

    Article  PubMed  CAS  Google Scholar 

  5. Fearon ER, Vogelstein B A genetic model for colorectal tumorigenesis. Cell 61: 759-767, 1990.

    Article  PubMed  CAS  Google Scholar 

  6. Winawer SJ, Zauber AG, Ho MN et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. The New England journal of medicine 329: 1977-1981, 1993.

    Article  PubMed  CAS  Google Scholar 

  7. Oberndorfer S Karzinoide Tumoren des Dünndarms. Frankf Z Pathol Int 1: 425-432, 1907.

    Google Scholar 

  8. Gosset A, Masson P Tumeurs endocrine de l’appendice. Presse Medicale 25: 237, 1914.

    Google Scholar 

  9. Pearse AGE The cytochemistry and ultrastructure of polypeptide-hormone producing cells of the APUD series and the embryologic, physiologic and pathologic implication of the concept. J Histochem Cytochem 17: 303-313, 1969.

    Article  PubMed  CAS  Google Scholar 

  10. Pearse AG, Polak JM Endocrine tumours of neural crest origin: neurolophomas, apudomas and the APUD concept. Medical biology 52: 3-18, 1974.

    PubMed  CAS  Google Scholar 

  11. Le Douarin NM, Teillet MA The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30: 31-48, 1973.

    PubMed  Google Scholar 

  12. Solcia E, Capella C, Buffa R, Usellini L, Frigerio B, Fontana P Endocrine cells of the gastrointestinal tract and related tumors. Pathobiology annual 9: 163-204, 1979.

    PubMed  CAS  Google Scholar 

  13. Solcia E, Capella C, Buffa R, Fiocca R, Frigerio B, Usellini L Identification, ultrastructure and classification of gut endocrine cells and related growths. Investigative & cell pathology 3: 37-49, 1980.

    CAS  Google Scholar 

  14. Solcia E, Rindi G, Capella C. Neuroendocrine tumours and hyperplasias. In: Felipe MI, Lake BD, eds. Histochemistry in pathology. Edinburgh, London, Melbourne, New York: Churchill-Livingstone, 1990; 397-409.

    Google Scholar 

  15. Rindi G, Villanacci V, Ubiali A (2000) Biological and molecular aspects of gastroenteropancreatic neuroendocrine tumors. Digestion 62 (Suppl 1): 19–26.

    Article  PubMed  CAS  Google Scholar 

  16. Rindi G, Wiedenmann B Neuroendocrine neoplasms of the gut and pancreas: new insights. Nature reviews. Endocrinology 8: 54-64, 2012.

    Google Scholar 

  17. Pictet RL, Rall LB, Phelps P, Rutter WJ The neural crest and the origin of the insulin-producing and other gastrointestinal hormone-producing cells. Science 191: 191-192, 1976.

    Article  PubMed  CAS  Google Scholar 

  18. Hanahan D Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315: 115-122, 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Rindi G, Efrat S, Ghatei MA, Bloom SR, Solcia E, Polak JM Glucagonomas of transgenic mice express a wide range of general neuroendocrine markers and bioactive peptides. Virchows Arch A Pathol Anat Histopathol 419: 115-129, 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Rindi G, Grant SG, Yiangou Y et al. Development of neuroendocrine tumors in the gastrointestinal tract of transgenic mice. Heterogeneity of hormone expression. Am J Pathol 136: 1349-1363, 1990.

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Murphy D, Bishop A, Rindi G et al. Mice transgenic for a vasopressin-SV40 hybrid oncogene develop tumors of the endocrine pancreas and the anterior pituitary. A possible model for human multiple endocrine neoplasia type 1. Am J Pathol 129: 552-566, 1987.

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Pochet R, Brocas H, Vassart G et al. Radioautographic localization of prolactin messenger RNA on histological sections by in situ hybridization. Brain research 211: 433-438, 1981.

    Article  PubMed  CAS  Google Scholar 

  23. Reubi JC, Hacki WH, Lamberts SW Hormone-producing gastrointestinal tumors contain a high density of somatostatin receptors. The Journal of clinical endocrinology and metabolism 65: 1127-1134, 1987.

    Article  PubMed  CAS  Google Scholar 

  24. Polak JM, Hamid Q, Springall DR et al. Localization of bombesin-like peptides in tumors. Ann N Y Acad Sci 547: 322-335, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Grimelius L A silver nitrate stain for a2 cells in human pancreatic islets. Acta Soc Med Upsal 73: 243-270, 1968.

    PubMed  CAS  Google Scholar 

  26. Rindi G, Leiter AB, Kopin AS, Bordi C, Solcia E The “normal” endocrine cell of the gut: changing concepts and new evidences. Ann N Y Acad Sci 1014: 1-12, 2004.

    Article  PubMed  CAS  Google Scholar 

  27. Lloyd RV, Wilson BS Specific endocrine tissue marker defined by a monoclonal antibody. Science 222: 628-630, 1983.

    Article  PubMed  CAS  Google Scholar 

  28. Lloyd RV, Mervak T, Schmidt K, Warner TF, Wilson BS Immunohistochemical detection of chromogranin and neuron-specific enolase in pancreatic endocrine neoplasms. The American journal of surgical pathology 8: 607-614, 1984.

    Article  PubMed  CAS  Google Scholar 

  29. Wiedenmann B, Huttner WB Synaptophysin and chromogranins/secretogranins–widespread constituents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis. Virchows Arch B Cell Pathol Incl Mol Pathol 58: 95-121, 1989.

    Article  PubMed  CAS  Google Scholar 

  30. Wiedenmann B, Waldherr R, Buhr H, Hille A, Rosa P, Huttner WB Identification of gastroenteropancreatic neuroendocrine cells in normal and neoplastic human tissue with antibodies against synaptophysin, chromogranin A, secretogranin I (chromogranin B), and secretogranin II. Gastroenterology 95: 1364-1374, 1988.

    PubMed  CAS  Google Scholar 

  31. Buffa R, Rindi G, Sessa F et al. Synaptophysin immunoreactivity and small clear vescicles in neuroendocrine cells and related tumours. Mol Cell Probes 1: 367-381, 1988.

    Article  Google Scholar 

  32. Rindi G, Buffa R, Sessa F, Tortora O, Solcia E Chromogranin A, B and C immunoreactivities of mammalian endocrine cells. Distribution, distinction from costored hormones/prohormones and relationship with the argyrophil component of secretory granules. Histochemistry 85: 19-28, 1986.

    Article  PubMed  CAS  Google Scholar 

  33. Williams ED, Siebenmann RE, Sobin LH, eds.: Types hystologiques des tumeurs endocriniennes, Geneve, 1980, Pages.

  34. Solcia E, Klöppel G, Sobin LH: Histological typing of endocrine tumours., New York: Springer-Verlag, 2000.

    Book  Google Scholar 

  35. DeLellis RA, Lloyd RV, Heitz PU, Eng C, eds.: World Health Organization classification of tumours, pathology and genetics of tumours of endocrine organs., Lyon: IARC Press, 2004, Pages.

    Google Scholar 

  36. Levi F, Randimbison L, Franceschi S, La Vecchia C Descriptive epidemiology of malignant carcinoids in the Swiss Canton of Vaud. Int J Cancer 53: 1036–1037, 1993.

    Article  PubMed  CAS  Google Scholar 

  37. Hemminki K, Li X Incidence trends and risk factors of carcinoid tumors: a nationwide epidemiologic study from Sweden. Cancer 92: 2204-2210, 2001.

    Article  PubMed  CAS  Google Scholar 

  38. Lepage C, Rachet B, Coleman MP Survival from malignant digestive endocrine tumors in England and Wales: a population-based study. Gastroenterology 132: 899-904, 2007.

    Article  PubMed  Google Scholar 

  39. Yao JC, Hassan M, Phan A et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 26: 3063-3072, 2008.

    Article  PubMed  Google Scholar 

  40. Scarpa A, Mantovani W, Capelli P et al. Pancreatic endocrine tumors: improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients. Mod Pathol 23: 824-833, 2010.

    Article  PubMed  CAS  Google Scholar 

  41. Bosman F, Carneiro F: World Health Organization classification of tumours, pathology and genetics of tumours of the digestive system., Lyon: IARC Press, 2010.

    Google Scholar 

  42. Rindi G, Kloppel G, Alhman H et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 449: 395-401, 2006.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Rindi G, Arnold R, Capella C et al. . Nomenclature and classification of digestive neuroendocrine tumours. In: Bosman F, Carneiro F, eds. World Health Organization classification of tumours, pathology and genetics of tumours of the digestive system. Lyon: IARC Press, 2010; 10-12.

    Google Scholar 

  44. Pape UF, Jann H, Muller-Nordhorn J et al. Prognostic relevance of a novel TNM classification system for upper gastroenteropancreatic neuroendocrine tumors. Cancer 113: 256-265, 2008.

    Article  PubMed  Google Scholar 

  45. Jann H, Roll S, Couvelard A et al. Neuroendocrine tumors of midgut and hindgut origin: Tumor-node-metastasis classification determines clinical outcome. Cancer, 2011.

  46. Dhall D, Mertens R, Bresee C et al. Ki-67 proliferative index predicts progression-free survival of patients with well-differentiated ileal neuroendocrine tumors. Hum Pathol 43: 489-495, 2012.

    Article  PubMed  CAS  Google Scholar 

  47. Landerholm K, Zar N, Andersson RE, Falkmer SE, Jarhult J Survival and prognostic factors in patients with small bowel carcinoid tumour. Br J Surg 98: 1617-1624, 2011.

    Article  PubMed  CAS  Google Scholar 

  48. Norlen O, Stalberg P, Oberg K et al. Long-term results of surgery for small intestinal neuroendocrine tumors at a tertiary referral center. World journal of surgery 36: 1419-1431, 2012.

    Article  PubMed  Google Scholar 

  49. Liu E, Telem DA, Hwang J, Warner RR, Dikman A, Divino CM The clinical utility of Ki-67 in assessing tumor biology and aggressiveness in patients with appendiceal carcinoids. Journal of surgical oncology 102: 338-341, 2010.

    Article  PubMed  CAS  Google Scholar 

  50. La Rosa S, Inzani F, Vanoli A et al. Histologic characterization and improved prognostic evaluation of 209 gastric neuroendocrine neoplasms. Hum Pathol 42: 1373-1384, 2011.

    Article  PubMed  CAS  Google Scholar 

  51. Soga J, Tazawa K Pathologic analysis of carcinoids; histologic reevaluation of 62 cases. Cancer 28: 990-998, 1971.

    Article  PubMed  CAS  Google Scholar 

  52. Rindi G, Kloppel G, Couvelard A et al. TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch 451: 757-762, 2007.

    Article  PubMed  CAS  Google Scholar 

  53. Klimstra DS, Modlin IR, Adsay NV et al. Pathology reporting of neuroendocrine tumors: application of the Delphic consensus process to the development of a minimum pathology data set. The American journal of surgical pathology 34: 300-313, 2010.

    Article  PubMed  Google Scholar 

  54. Jiao Y, Shi C, Edil BH et al. DAXX/ATRX, MEN1, and mTOR Pathway Genes Are Frequently Altered in Pancreatic Neuroendocrine Tumors. Science, 2011.

  55. Banck MS, Kanwar R, Kulkarni AA et al. The genomic landscape of small intestine neuroendocrine tumors. The Journal of clinical investigation 123: 2502–2508, 2013.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Rindi G, Capella C, Solcia E. Pathobiology and classification of digestive endocrine tumors. In: Colombel MMaJ, ed.^, eds. Recent advances in the pathophysiology of inflammatory bowel disease and digestive endocrine tumors. Montrouge-London-Rome: John Libbey Eurotext, 1999; 177–191.

Download references

Acknowledgments

This work was in part supported by internal university grants to GR (line D1/2011-2012, Università Cattolica).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rindi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rindi, G., Petrone, G. & Inzani, F. 25 Years of Neuroendocrine Neoplasms of the Gastrointestinal Tract. Endocr Pathol 25, 59–64 (2014). https://doi.org/10.1007/s12022-013-9292-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-013-9292-5

Keywords

Navigation