Skip to main content
Log in

On non-objective citation to scientific publications on mechanics and control systems

  • Published:
International Applied Mechanics Aims and scope

The problem of non-objective citation to scientific publications on mechanics and control systems that arose with the advent of the global scientific information environment is discussed. Examples demonstrating the importance of this problem are presented. It is concluded that non-objective citation is not always due to the language barrier

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Aliev, B. A. Bordyug, and V. B. Larin, H 2-Optimization and State-Space Method in the Synthesis of Optimal Controllers [in Russian], Elm, Baku (1991).

    Google Scholar 

  2. F. A. Aliev, V. B. Larin, K. I. Naumenko, and V. N. Suntsev, Optimization of Time-Invariant Linear Control Systems [in Russian], Naukova Dumka, Kyiv (1978).

    Google Scholar 

  3. V. B. Larin, “Frequency-domain methods for the synthesis of optimal control systems,” Izv. AN SSSR, Tech. Kibern., No. 4, 80–91 (1989).

  4. V. B. Larin, “Comments on the review [1],” Izv. AN SSSR, Tech. Kibern., No. 4, 224 (1990).

  5. V. B. Larin, K. I. Naumenko, and V. N. Suntsev, Spectral Methods for the Synthesis of Linear Feedback Systems [in Russian], Naukova Dumka, Kyiv (1971).

    Google Scholar 

  6. V. B. Larin, K. I. Naumenko, and V. N. Suntsev, “Synthesis of optimal linear stabilization systems,” Dokl. AN SSSR, 204, No. 2, 306–308 (1972).

    Google Scholar 

  7. V. B. Larin, K. I. Naumenko, and V. N. Suntsev, Synthesis of Optimal Linear Feedback Systems [in Russian], Naukova Dumka, Kyiv (1973).

    Google Scholar 

  8. V. B. Larin and V. N. Suntsev, “Problem of analytic design of controllers,” Avtom. Telemekh., No. 12, 142–145 (1968).

    Google Scholar 

  9. V. B. Larin and V. N. Suntsev, “Robustness of a system in analytic design of controllers (on Nadezhdin’s letter),” Avtom. Telemekh., No. 5, 199–200 (1973).

    Google Scholar 

  10. P. V. Nadezhdin, “Practical instability (nonrobustness) of systems obtained by the method of the paper [1],” Avtomat. Telemekh., No. 5, 196–198 (1973).

  11. V. V. Nalimov and Z. M. Mul’chenko, Scientometrics [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  12. Ya. S. Yatskiv (ed.), Ukrainian Science in the Global Information Environment [in Ukrainian], Issue 1, Kyiv (2008).

  13. G. C. Newton, Jr., L. A. Gould, and J. F. Kaiser, Analytical Design of Linear Feedback Controls, Wiley, New York (1957).

    Google Scholar 

  14. G. G. Sebryakov and A. V. Semenov, “Design of linear multivariable systems based on input–output maps: H∞ methods (review),” Izv. AN SSSR, Tekhn. Kibern., No. 2, 3–16 (1989).

    Google Scholar 

  15. F. A. Aliev, B. A. Bordyug, and V. B. Larin, “Comments on ‘A stability-enhancing scaling procedure for Schur–Riccati solvers,’” Systems & Control Letters, No. 14, 453 (1990).

  16. F. A. Aliev and V. B. Larin, “On connection of parametrizations of a stable regulator set [1–3],” Bull. Techn. Univ. Istanbul, 46, 439–449 (1993).

    MathSciNet  Google Scholar 

  17. F. A. Aliev and V. B. Larin, “Comments on ‘H 2-optimal seros,’” IEEE Trans. Autom. Contr., 41, No. 7, 1086 (1996).

    Article  MathSciNet  Google Scholar 

  18. F. A. Aliev and V. B. Larin, Optimization of Linear Control Systems: Analytical Methods and Computational Algorithms, Ser. Stability and Control: Theory, Methods and Applications, Vol. 8, Gordon & Breach, Amsterdam (1998).

    Google Scholar 

  19. F. A. Aliev and V. B. Larin, “Special cases in optimization problems for stationary linear closed-loop systems,” Int. Appl. Mech., 39, No. 3, 251–273 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  20. F. A. Aliev and V. B. Larin, “Comments on ‘Structure-preserving algorithms for periodic discrete-time algebraic Riccati equations,’” Appl. Comp. Math., 5, No. 1, 119 (2006).

    MathSciNet  Google Scholar 

  21. F. A. Aliev and V. B. Larin, “Comments on ‘Optimizing simultaneously over the numerator and denominator polynomials in the Youla–Kucera parameterization,’” IEEE Trans. Autom. Contr., 52, No. 4, 763 (2007).

    Article  MathSciNet  Google Scholar 

  22. F. A. Aliev and V. B. Larin, “Parameterization of feasible solutions in problems of control and signal filtering (survey),” Appl. Comp. Math., 6, No. 2, 126–142 (2007).

    MathSciNet  MATH  Google Scholar 

  23. F. A. Aliev and V. B. Larin, “Parameterization of sets of stabilizing contollers in mechanical systems,” Int. Appl. Mech., 44, No. 6, 599–618 (2008).

    Article  ADS  Google Scholar 

  24. F. A. Aliev and V. B. Larin, “Comments on ‘Computing the positive stabilizing solution to algebraic Riccati equations with an indefinite quadratic term via a recursive method,’” Appl. Comp. Math., 8, No. 2, 268–269 (2009).

    MathSciNet  MATH  Google Scholar 

  25. F. A. Aliev and V. B. Larin, “Comment on ‘Persistent inputs and the standard H 2-multivariable control problems’ by K. Park and J. J. Bongiorno Jr.,” Int. J. Control, 83, No. 6, 1296–1298 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Bremermann, Distribution, Complex Variables and Fourier Transforms, Addison-Wesley, Reading, MA (1965).

    Google Scholar 

  27. L. Cheng and J. B. Pearson, “Frequency domain synthesis of multivariable linear regulators,” IEEE Trans. Autom. Contr., 23, No. 1, 3–15 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. N. Guz, “On the evolution of the scientific information environment,” Int. Appl. Mech., 42, No. 11, 1203–1222 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  29. A. N. Guz and J. J. Rushchitsky, “Presentation of the monographs of the S. P. Timoshenko Institute of Mechanics to the scientific community,” Int. Appl. Mech., 42, No. 3, 247–290 (2006).

    Article  ADS  Google Scholar 

  30. A. N. Guz and J. J. Rushchitsky, “On the problem of evaluation of scientific publications,” Int. Appl. Mech., 45, No. 3, 233–244 (2009).

    Article  ADS  Google Scholar 

  31. A. N. Guz and J. J. Rushchitsky, “Scopus: A system for the evaluation of scientific journals,” Int. Appl. Mech., 45, No. 4, 351–362 (2009).

    Article  ADS  Google Scholar 

  32. A. N. Guz and J. J. Rushchitsky, “Citation snalysis of publications of NASU mechanicians in the database of the Thomson Reuters Institute for Scientific Information,” Int. Appl. Mech., 45, No. 7, 699–707 (2009).

    Article  ADS  Google Scholar 

  33. A. N. Guz and J. J. Rushchitsky, “On the level of coverage and citation of publications by mechanicians of the National Academy of Sciences of Ukraine in the Scopus database,” Int. Appl. Mech., 45, No. 11, 1153–1161 (2009).

    Article  ADS  Google Scholar 

  34. A. N. Guz, J. J. Rushchitsky, and I. S. Chernyshenko, “On a modern philosophy of evaluating scientific publications,” Int. Appl. Mech., 41, No. 10, 1085–1091 (2005).

    Article  ADS  Google Scholar 

  35. T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ (1980).

    MATH  Google Scholar 

  36. V. B. Larin, “Parametrization of the set of stabilizing regulators in a standard synthesis problem,” J. Autom. Inform. Sci., 23, No. 2, 21–26 (1990).

    MathSciNet  MATH  Google Scholar 

  37. V. B. Larin, “The Wiener–Kolmogorov method in problems of synthesizing multidimensional control systems,” J. Autom. Inform. Sci., 23, No. 5, 36–41 (1990).

    MathSciNet  MATH  Google Scholar 

  38. V. B. Larin, “Frequency methods of synthesizing optimal linear control systems,” Soviet J. Comp. Syst. Sci., 28, No. 1, 128–139 (1990).

    MathSciNet  MATH  Google Scholar 

  39. V. B. Larin, “Optimization in the Hardy space and the problem of the parametrization of controllers (survey),” Int. Appl. Mech., 28, No. 2, 67–84 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  40. V. B. Larin, “Connections between different variants of parametrizing a set of stabilizing regulators,” J. Autom. Inform. Sci., 24, No. 6, 33–38 (1993).

    MathSciNet  ADS  Google Scholar 

  41. V. B. Larin, “A connection among different parametrization variants,” J. Comp. Syst. Sci. Int., 32, No. 2, 127–133 (1994).

    MathSciNet  ADS  Google Scholar 

  42. V. B. Larin, “Linear quadratic problem with a singular Hamiltonian matrix,” J. Autom. Inform. Sci., 27, No. 3–4, 152–163 (1995).

    Google Scholar 

  43. V. B. Larin, “Algorithm for solving algebraic Riccati equation which has singular hamiltonian matrix,” Systems & Control Letters, 36, 231–239 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  44. V. B. Larin, “About the Newton iteration for spectral factorization,” Systems & Control Letters, 37, 243–246 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  45. V. B. Larin, “Algorithm of J-factorization of rational matrices with zeros and poles on the imaginary axis,” Int. J. Math. Math. Sci., No. 45, 2873–2885 (2003).

    Article  MathSciNet  Google Scholar 

  46. V. B. Larin, “Comments on ‘Approximated Gramians and balanced realizatin of lightly damped flexible structures,’” Appl. Comp. Math., 4, No. 2, 152–154 (2004).

    MathSciNet  Google Scholar 

  47. V. B. Larin, “Comments on ‘The set of positive semi-definite solution of the algebraic Riccati equation of discrete-time optimal control,’” Appl. Comp. Math., 4, No. 1, 84–85 (2005).

    MathSciNet  MATH  Google Scholar 

  48. V. B. Larin, “Comments on design of robust static output feedback for large-scale systems,” Appl. Comp. Math., 6, No. 1, 97–98 (2007).

    MathSciNet  Google Scholar 

  49. V. B. Larin, K. I. Naumenko, and V. N. Suntsev, “Synthesis of optimal linear stabilization systems,” Soviet Physics—Doklady, 17, No. 5, 438–440 (1972).

    ADS  MATH  Google Scholar 

  50. K. Mori, “Parametrization of all strictly causal stabilizing controllers,” IEEE Trans. Autom. Contr., 54, No. 9, 2211–2215 (2009).

    Article  Google Scholar 

  51. H. Ozbay, “Book review: ‘Optimization of linear control systems: Analytical methods and computational algorithms – F. A. Aliev and V. B. Larin (Amsterdam: Gordon and Breach. 1998),’” IEEE Trans. Autom. Contr., 45, No. 10, 1937–1938 (2000).

    Article  Google Scholar 

  52. K. Park and J. J. Bongiorno, “A general theory of the Wiener–Hopf design of multivariable control systems,” IEEE Trans. Autom. Contr., 34, No. 6, 619–626 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  53. K. Park and J. J. Bongiorno, “Persistent inputs and the standard H 2-multivariable control problem,” Int. J. Control, 82, No. 11, 2002–2012 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  54. K. Park and J. J. Bongiorno, “Response to comment on ‘Persistent inputs and the standard H2-multivariable control problem’” Int. J. Control, 83, No. 6, 1299–1302 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  55. H. W. Sorenson, “Least-squares estimation: From Gauss to Kalman,” IEEE Spectrum, July, 63–68 (1970).

  56. H. S. Tsein, Engineering Cybernetics, McGraw-Hill, New York (1954).

    Google Scholar 

  57. D. C. Youla, H. A. Jabr, and J. J. Borgiorno, “Modern Wiener–Hopf design of optimal controllers, Pt. 2: The multivariable case,” IEEE Trans. Autom. Contr., 21, No. 3, 319–338 (1976).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Aliev.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 46, No. 12, pp. 76–87, December 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliev, F.A., Larin, V.B. On non-objective citation to scientific publications on mechanics and control systems. Int Appl Mech 46, 1400–1409 (2011). https://doi.org/10.1007/s10778-011-0434-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-011-0434-5

Keywords

Navigation