Skip to main content

Enzymes for the Biofunctionalization of Poly(Ethylene Terephthalate)

  • Chapter
  • First Online:
Book cover Biofunctionalization of Polymers and their Applications

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 125))

Abstract

The functionalization of synthetic polymers such as poly(ethylene terephthalate) to improve their hydrophilicity can be achieved biocatalytically using hydrolytic enzymes. A number of cutinases, lipases, and esterases active on polyethylene terephthalate have been identified and characterized. Enzymes from Fusarium solani, Thermomyces insolens, T. lanuginosus, Aspergillus oryzae, Pseudomonas mendocina, and Thermobifida fusca have been studied in detail. Thermostable biocatalysts hydrolyzing poly(ethylene terephthalate) are promising candidates for the further optimization of suitable biofunctionalization processes for textile finishing, technical, and biomedical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

BEB:

Ethylene glycol dibenzyl ester

BHET:

bis(2-hydroxyethyl terephthalate)

BHPT:

bis(3-hydroxypropyl terephthalate)

CTR:

Cyclo-tris–ethylene terephthalate, cyclic PET trimer

DET:

Diethyl terephthalate

DMT:

Dimethyl terephthalate

DP:

Diethyl p-phthalate

DSC:

Differential scanning calorimetry

EBT:

1,2-Ethylene-bis-terephthalate

EMT:

1,2-Ethylene-mono-terephthalate-mono(2-hydroxyethyl terephthalate)

ESCA:

Electron spectroscopy for chemical analysis

FTIR:

Fourier transform infrared spectroscopy

HPLC:

High performance liquid chromatography

MEG:

Monoethylene glycol

MHET:

mono(2-hydroxyethyl) terephthalate

MHPT:

mono(3-hydroxypropyl) terephthalate

PBT:

1,2-Propylene-bis-terephthalate

PEG:

Polyethylene glycol

PET:

Poly(ethylene terephthalate)

PET dimer:

bis-(p-methylbenzoic acid)-ethylene glycol ester

PET trimer:

bis(benzoyloxyethyl) terephthalate

PTT:

Poly(trimethylene terephthalate)

PCL:

Poly(ε-caprolactone)

SEM:

Scanning electron microscopy

Triton X-100:

Octyl phenoxy polyethoxy ethanol

Tg :

Glass transition temperature

Td :

Thermal denaturation temperature

Tm :

Melting temperature

TLC:

Thin layer chromatography

TPA:

Terephthalic acid

XPS:

X-ray photoelectron spectroscopy

References

  1. Abo M, Fukuyama S, Svendsen A, Matsui T (2004) Cutinase variants. US 6815190

    Google Scholar 

  2. Alisch M, Feuerhack A, Müller H, Mensak B, Andreaus J, Zimmermann W (2004) Biocatalytic modification of polyethylene terephthalate fibres esterases from actinomycete isolates. Biocatal Biotransform 22:347–351

    Article  CAS  Google Scholar 

  3. Alisch-Mark M, Herrmann A, Zimmermann W (2006) Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi. Biotechnol Lett 28:681–685

    Article  CAS  Google Scholar 

  4. Almansa E, Heumann S, Eberl A, Fischer-Colbrie G, Martinkova L, Marek J, Cavaco-Paulo A, Guebitz GM (2008) Enzymatic surface hydrolysis of PET enhances in PVC coating. Biocatal Biotransform 26:365–370

    Article  CAS  Google Scholar 

  5. Andersen BK, Borch K, Abo M, Damgaard B (1999) Method of treating polyester fabrics. US 5997584

    Google Scholar 

  6. Araújo R, Silva C, O’Neill A, Micaelo N, Guebitz GM, Soares C, Casal M, Cavaco-Paulo A (2007) Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. J Biotechnol 128:849–857

    Article  Google Scholar 

  7. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  CAS  Google Scholar 

  8. Billig S, Oeser T, Birkemeyer C, Zimmermann W (2010) Hydrolysis of cyclic poly(ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3. Appl Microbiol Biotech 87:1753–1764

    Article  CAS  Google Scholar 

  9. Boston M, Requadt C, Danko S, Jarnagin A, Ashizawa E, Wu S, Polouse AJ, Bott R (1997) Structure and function of engineered Pseudomonas mendocina lipase. Methods Enzymol 284:298–317

    Article  CAS  Google Scholar 

  10. Bott R, Kellis JT, Morrison TB (2003) High throughput mutagenesis screening method. WO Patent 03/076580 A2

    Google Scholar 

  11. Brueckner T, Eberl A, Heumann S, Rabe M, Gübitz GM (2008) Enzymatic and chemical hydrolysis of poly(ethylene terephthalate) fabrics. J Polym Sci A Polym Chem 46:6435–6443

    Article  CAS  Google Scholar 

  12. Brzozowski AM, Derewenda U, Derewenda ZS, Dodson G, Lawson D, Turkenburg JP (1991) A model for interfacial activation in lipases from the structure of a fungal lipase–inhibitor complex. Nature 351:491–494

    Article  CAS  Google Scholar 

  13. Carvalho CM, Aires-Barros MR, Cabral JMS (1998) Cutinase structure, function and biocatalytic applications. Electron J Biotechnol 1:160–173

    Article  Google Scholar 

  14. Carvalho CM, Aires-Barros MR, Cabral JMS (1999) Cutinase: from molecular level to bioprocess development. Biotechnol Bioeng 66:17–34

    Article  CAS  Google Scholar 

  15. Chahinian H, Ali YB, Abousalham A, Petry S, Mandrich L, Manco G, Canaan S, Sarda L (2005) Substrate specificity and kinetic properties of enzymes belonging to the hormone-sensitive lipase family: comparison with non-lipolytic and lipolytic carboxylesterases. Biochim Biophys Acta 1738:29–36

    CAS  Google Scholar 

  16. Chan CM, Ko TM, Hiraoka H (1996) Polymer surface modification by plasmas and photons. Surf Sci Rep 24:3–54

    Article  Google Scholar 

  17. Chemical Market Asscociates Inc. (2010) world terephthalate and polyester analysis. http://www.cmaiglobal.com/WorldAnalysis/xylbook.aspx. Accessed 31 Mar 2010

  18. Chen S, Tong X, Woodard RW, Du G, Wu J, Chen J (2008) Identification and characterization of bacterial cutinase. J Biol Chem 283:25854–25862

    Article  CAS  Google Scholar 

  19. Chen S, Su L, Billig S, Zimmermann W, Chen J, Wu J (2010) Biochemical characterization of the cutinases from Thermobifida fusca. J Mol Catal B Enzym 63:121–127

    Article  CAS  Google Scholar 

  20. Deckwer W-D, Mueller R-J, Kleeberg I, van den Heuvel J (2006) Enzyme which cleaves ester groups and which is derived from Thermomonospora fusca. US 6995005

    Google Scholar 

  21. Derewenda ZS, Derewenda U, Dodson GG (1992) The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 Å resolution. J Mol Biol 227:818–839

    Article  CAS  Google Scholar 

  22. Derewenda U, Swenson L, Green R, Wei Y, Yamaguchi S, Joerger R, Haas MJ, Derewenda ZS (1994) Current progress in crystallographic studies of new lipases from filamentous fungi. Protein Eng 7:551–557

    Article  CAS  Google Scholar 

  23. Donelli I, Taddei P, Smet PF, Poelman D, Nierstrasz VA, Freddi G (2009) Enzymatic surface modification and functionalization of PET: a water contact angle, FTIR, and fluorescence spectroscopy study. Biotechnol Bioeng 103:845–856

    Article  CAS  Google Scholar 

  24. Dutta K, Sen S, Veeranik VD (2009) Production, characterization and applications of microbial cutinases. Process Biochem 44:127–134

    Article  CAS  Google Scholar 

  25. Dyson W, Kellis JT, Poulose AJ, Yoon MY (2005) Enzymes useful for changing the properties of polyester. US 6933140

    Google Scholar 

  26. Eberl A, Heumann S, Kotek R, Kaufmann F, Mitsche S, Cavaco-Paulo A, Gübitz GM (2008) Enzymatic hydrolysis of PTT polymers and oligomers. J Biotechnol 135:45–51

    Article  CAS  Google Scholar 

  27. Eberl A, Heumann S, Brückner T, Araújo R, Cavaco-Paulo A, Kaufmann F, Kroutil W, Guebitz GM (2009) Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. J Biotechnol 143:207–212

    Article  CAS  Google Scholar 

  28. Fett WF, Wijey C, Moreau RA, Osman SF (1999) Production of cutinase by Thermomonospora fusca ATCC 27730. J Appl Microbiol 86:561–568

    Article  CAS  Google Scholar 

  29. Fernando G, Zimmermann W, Kolattukudy PE (1984) Suberin-grown Fusarium solani f. sp. pisi generates a cutinase like esterase which depolymerizes the aliphatic components of suberin. Plant Pathol 24:143–155

    CAS  Google Scholar 

  30. Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus. Uses and prospects as an industrial biocatalyst. J Mol Cat B Enzym 62:197–212

    Article  CAS  Google Scholar 

  31. Feuerhack A, Alisch-Mark M, Kisner A, Pezzin SH, Zimmermann W, Andreaus J (2008) Biocatalytic surface modification of knitted fabrics made of poly (ethylene terephthalate) with hydrolytic enzymes from Thermobifida fusca KW3b. Biocatal Biotransform 26:357–364

    Article  CAS  Google Scholar 

  32. Figueroa Y, Hinks D, Montero GA (2006) A heterogeneous kinetic model for the cutinase-catalyzed hydrolysis of cyclo-tris–ethylene terephthalate. Biotechnol Prog 22:1209–1214

    Article  CAS  Google Scholar 

  33. Fischer-Colbrie G, Heumann S, Liebminger S, Almansa E, Cavaco-Paulo A, Guebitz GM (2004) New enzymes with potential for PET surface modification. Biocatal Biotransform 22:341–346

    Article  CAS  Google Scholar 

  34. Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725

    Article  CAS  Google Scholar 

  35. Grochulski P, Li Y, Schrag JD, Bouthillier F, Smith P, Harrison D, Cygler M (1993) Insights into interfacial activation from an open structure for Candida rugosa lipase. J Biol Chem 268:12843–12847

    CAS  Google Scholar 

  36. Guebitz GM, Cavaco-Paulo A (2008) Enzymes go big: surface hydrolysis and functionalisation of synthetic polymers. Trends Biotechnol 26:32–38

    Article  CAS  Google Scholar 

  37. Herzog K, Müller R-J, Deckwer W-D (2006) Mechanism and kinetics of the enzymatic hydrolysis of polyester nanoparticles by lipases. Polym Degrad Stab 91:2486–2498

    Article  CAS  Google Scholar 

  38. Heumann S, Eberl A, Pobeheim H, Liebminger S, Fischer-Colbrie G, Almansa E, Cavaco-Paulo A, Gübitz GM (2006) New model substrates for enzymes hydrolyzing polyethyleneterephthalate and polyamide fibres. J Biochem Biophys Methods 39:89–99

    Article  Google Scholar 

  39. Holmberg M, Hou XL (2010) Competitive protein adsorption of albumin and immunoglobulin G from human serum onto polymer surfaces. Langmuir 26:938–942

    Article  CAS  Google Scholar 

  40. Hooker J, Hinks D, Montero GA, Icherenska M (2003) Enzyme catalyzed hydrolysis of poly(ethylene terephthalate) cyclic trimer. J Appl Polym Sci 89:2545–2552

    Article  CAS  Google Scholar 

  41. Hsieh YL, Yu B (1992) Liquid wetting, transport, and retention properties of fibrous assemblies part I: water wetting properties of woven fabrics and their constituent single fibers. Text Res J 62:677–685

    CAS  Google Scholar 

  42. Hsieh YL (1995) Liquid transport in fabric structures. Text Res J 65:299–307

    Article  CAS  Google Scholar 

  43. Hsieh YL, Miller A, Thompson J (1996) Wetting, pore structure, and liquid retention of hydrolyzed polyester fabrics. Text Res J 66:1–10

    Article  CAS  Google Scholar 

  44. Hsieh YL, Cram LA (1998) Enzymatic hydrolysis to improve wetting and absorbency of polyester fabrics. Text Res J 68:311–319

    Article  CAS  Google Scholar 

  45. Hsieh YL, Hartzell MM, Boston MG, Clarkson KA, Collier KD, Graycar TP, Larenas EA (2003) Enzyme treatment to enhance wettability and absorbancy of textiles. US 2003/01191172

    Google Scholar 

  46. Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63

    Article  CAS  Google Scholar 

  47. Jelsch C, Longhi S, Cambillau C (1998) Packing forces in nine crystal forms of cutinase. Prot Struct Funct Genet 31:320–333

    Article  CAS  Google Scholar 

  48. Jump J, McCloskey S (2004) A method of treating polyester fabrics. WO 2004/059075 A1

    Google Scholar 

  49. Kellis J, Poulose AJ, Yoon MY (2001) Enzymatic modification of the surface of a polyester fiber or article. US 6254645 B1

    Google Scholar 

  50. Khoddami A, Morshed M, Tavani H (2001) Effects of enzymatic hydrolysis on drawn polyester filament yarns. Iran Polym J 10:363–370

    CAS  Google Scholar 

  51. Kim HR, Song WS (2006) Lipase treatment of polyester fabrics. Fibers Polym 7:243–339

    Google Scholar 

  52. Kim HR, Song WS (2008) Optimization of enzymatic treatment of polyester fabrics by lipase from porcine pancreas. Fibers Polym 9:423–430

    Article  CAS  Google Scholar 

  53. Kim HR, Song WS (2010) Optimization of papain treatment for improving the hydrophilicity of polyester fabrics. Fibers Polym 11:67–71

    Article  CAS  Google Scholar 

  54. Kim J, Yoon J (2002) Protein adsorption on polymer particles. In: Hubbard AT (ed) Encyclopedia of surface and colloid science, vol 4. Marcel Dekker, New York

    Google Scholar 

  55. Kint D, Monoz-Guerra M (1999) A review on the potential biodegradability of poly(ethylene terephthalate). Polym Int 48:352–364

    Article  Google Scholar 

  56. Kleeberg I, Welzel K, VandenHeuvel J, Müller R-J, Deckwer, W-D (2005) Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyester. Biomacromolecules 6:262–270

    Article  CAS  Google Scholar 

  57. Kolattukudy PE (1985) Enzymatic penetration of the plant cuticle by fungal pathogens. Annu Rev Phytopathol 23:223–250

    Article  CAS  Google Scholar 

  58. Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000

    Article  CAS  Google Scholar 

  59. Kontkanen H, Saloheimo M, Pere J, Miettinen-Oinonen A, Reinikainen T (2006) Characterization of Melanocarpus albomyces steryl esterase produced in Trichoderma reesei and modification of fibre products with the enzyme. Appl Microbiol Biotechnol 72:696–704

    Article  CAS  Google Scholar 

  60. Lee SH, Song WS (2010) Surface modification of polyester fabrics by enzyme treatment. Fibers Polym 11:54–59

    Article  CAS  Google Scholar 

  61. Liebminger S, Eberl A, Fischer-Colbrie G, Heumann S, Guebitz GM (2007) Hydrolysis of PET and bis (benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium citrinum. Biocat Biotrans 25:171–177

    Article  CAS  Google Scholar 

  62. Liu Y, Wu G, Gu L (2008) Enzymatic treatment of PET fabrics for improved hydrophilicity. AATCC Rev 8:44–48

    Google Scholar 

  63. Liu Z, Gosser Y, Baker PJ, Ravee Y, Lu Z, Alemu G, Li H, Butterfoss GL, Kong XP, Gross R, Montclare JK (2009) Structural and functional studies of Aspergillus oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. JACS 131:15711–15716

    Article  CAS  Google Scholar 

  64. Longhi S, Czjzek M, Lamizin V, Nicolas A, Cambillau C (1997) Atomic resolution (1.0 Å) crystal structure of Fusarium solani cutinase: stereochemical analysis. J Mol Biol 268:779–799

    Article  CAS  Google Scholar 

  65. Longhi S, Mannesse M, Verheij HM, Haas GH, Egmond M, Knoops-Mouthuy E, Cambillau C (1997) Crystal structure of cutinase covalently inhibited by a triglyceride analogue. Protein Sci 6:275–286

    Article  CAS  Google Scholar 

  66. Lykidis A, Mavromatis K, Ivanova I, Anderson I, Land M, DiBartolo G, Martinez M, Lapidus A, Lucas S, Copeland A, Richardson P, Wilson DB, Kyrpides N (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 189:2477–2486

    Article  CAS  Google Scholar 

  67. Mannesse MLM, Cox RC, Koops BC, Verheij HM, de Haas GH, Egmond MR, van der Hijden HTWM, de Vlieg J (1995) Cutinase from Fusarium solani pisi hydrolyzing triglyceride analogues. Effect of acyl chain length and position in the substrate molecule on activity and enantioselectivity. Biochemistry 34:6400–6407

    Article  CAS  Google Scholar 

  68. Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, Gomi K, Nakajima T (2005) Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol 67:778–788

    Article  CAS  Google Scholar 

  69. Marten E, Müller RJ, Deckwer WD (2003) Studies on the enzymatic hydrolysis of polyester: I. Low molecular mass model esters and aliphatic polyesters. Polym Degrad Stab 80:485–501

    Article  CAS  Google Scholar 

  70. Marten E, Müller RJ, Deckwer WD (2005) Studies on the enzymatic hydrolysis of polyesters: II. Aliphatic-aromatic copolyesters. Polym Degrad Stab 88:371–381

    Article  CAS  Google Scholar 

  71. Martinez C, Geus P, Lauwereys M, Matthyssens G, Cambillau C (1992) Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 356:615–618

    Article  CAS  Google Scholar 

  72. McCloskey SG, Jump JM (2005) Bio-polishing of polyester and polyester/cotton fabric. Textile Res J 75:480–484

    Article  CAS  Google Scholar 

  73. Melo EP, Aires-Barros MR, Costa L, Cabral JMS (1997) Thermal unfolding of proteins at high pH range studied by UV absorbance. J Biochem Biophys Methods 34:45–59

    Article  CAS  Google Scholar 

  74. Michels A, Pütz A, Maurer KH, Eggert T, Jäger KE (2006) Use of esterases for separating plastics. PCT/EP2006/007693

    Google Scholar 

  75. Müller RJ, Kleeberg I, Deckwer W-D (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86:87–95

    Article  Google Scholar 

  76. Müller RJ, Schrader H, Profe J, Dresler K, Deckwer WD (2005) Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca. Macromol Rapid Commun 26:1400–1405

    Article  Google Scholar 

  77. Mueller RJ (2006) Biological degradation of synthetic polyesters. Enzymes as potential catalysts for polyester recycling. Process Biochem 41:2124–2128

    Article  CAS  Google Scholar 

  78. Murphy CA, Cameron JA, Huang SJ, Vinopal RT (1996) Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol 62:456–460

    CAS  Google Scholar 

  79. Nardini M, Dijkstra BW (1999) α/β Hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737

    Article  CAS  Google Scholar 

  80. Negulescu II, Despa S, Chen J, Collier BJ, Despa M, Denes A, Sarmadi M, Denes FS (2000) Characterizing polyester fabrics treated in electrical discharges of radio-frequency plasma. Text Res J 70:1–7

    Article  CAS  Google Scholar 

  81. Nelson RM, Long GL (1989) A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction. Anal Biochem 180:147–151

    Article  CAS  Google Scholar 

  82. Nimchua T, Punnapayak H, Zimmermann W (2007) Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. pisi. Biotechnol J 2:361–364

    Article  CAS  Google Scholar 

  83. Nishida H, Tokiwa Y (1993) Effects of higher-order structure of poly(3-hydroxybutyrate) on biodegradation. ll Effects of crystal structure on microbial degradation. J Environ Polym Degrad 1:65–80

    Article  CAS  Google Scholar 

  84. O’Neill A, Cavaco-Paulo A (2004) Monitoring biotransformations in polyesters. Biocatal Biotransform 22:353–356

    Article  Google Scholar 

  85. O’Neill A, Araújo R, Casal M, Guebitz GM, Cavaco-Paulo A (2007) Effect of the agitation on the adsorption and hydrolytic efficiency of cutinases on polyethylene terephthalate fibres. Enz Microbial Technol 40:1801–1805

    Article  Google Scholar 

  86. Oeser T, Wei R, Baumgarten T, Billig S, Föllner C, Zimmermann W (2010) High level expression of a hydrophobic poly(ethylene terephthalate)-hydrolyzing carboxylesterase from Thermobifida fusca KW3 in Escherichia coli BL21(DE3). J Biotechnol 146:100–104

    Article  CAS  Google Scholar 

  87. Pütz A (2006) Isolierung, Identifizierung und biochemische Charakterisierung Dialkylphthalat spaltender Esterasen. PhD thesis, University Düsseldorf

    Google Scholar 

  88. Purdy RE, Kolattukudy PE (1973) Depolymerization of a hydroxy fatty-acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani pisi—isolation and some properties of the enzyme. Arch Biochem Biophys 159:61–69

    Article  CAS  Google Scholar 

  89. Purdy RE, Kolattukudy PE (1975) Hydrolysis of Plant Cuticle by Plant Pathogens. Properties of cutinase I, cutinase II, and a nonspecific esterase isolated from Fusarium solani pisi. Biochemistry 14:2823–2840

    Google Scholar 

  90. Riegels M, Kock R, Pedersen LS, Lund H (2001) Enzymatic hydrolysis of cyclic oligomers. US Patent 6184010

    Google Scholar 

  91. Ronkvist ÅM, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromol 42:5128–5138

    Article  CAS  Google Scholar 

  92. Sandal T, Kauppinen S, Kofod LV (1996) An enzyme with lipolytic activity. WO Patent 96/13580

    Google Scholar 

  93. Sato M (1983) Deterioration of filaments and films of polyethyleneterephthalate with enzyme of Cladosporium cladosporioides FERM J-8. Sen’i Gakkaishi 39:T209–T219

    CAS  Google Scholar 

  94. Scandola M, Focarete ML, Frisoni G (1998) Simple kinetic model for the heterogenous enzymatic hydrolysis of natural poly(3-hydroxybutyrate). Macromolecules 31:3849–3851

    Article  Google Scholar 

  95. Sebastian J, Chandra AK, Kolattukudy PE (1987) Discovery of a cutinase-producing Pseudomonas sp. cohabiting with an apparently nitrogen-fixing Corynebacterium sp. in the phyllosphere. J Bacteriol 169:131136

    Google Scholar 

  96. Sebastian J, Kolattukudy PE (1988) Purification and characterization of cutinase from a fluorescent Pseudomonas putida bacterial strain isolated from phyllosphere. Arch Biochem Biophys 263:77–85

    Article  CAS  Google Scholar 

  97. Shukla SR, Mathur MR, Hedaoo VB (1997) Alkaline weight reduction of polyester fibers. Am Dyestuff Rep 86:48–56

    CAS  Google Scholar 

  98. Silva C, Carneiro F, O’Neill A, Fonseca LP, Cabral JSM, Guebitz GM, Cavaco-Paulo A (2005) Cutinase-a new tool for biomodification of synthetic fibres. J Appl Polym Sci A Polym Chem 43:2448–2450

    Article  CAS  Google Scholar 

  99. Silva C, Matama T, Cavaco-Paulo A (2010) Biotransformation of synthetic fibers. In: Flickinger MG (ed) Enzyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York

    Google Scholar 

  100. Soane DS, Millward DB, Linford MR, Lau R, Green EG, Ware Jr W (2008) Hydrophilic finish for fibrous substrates. US patent 7427300

    Google Scholar 

  101. Svendsen A, Schroeder Gald SO, Fukuyama S, Matsui T (2005) Cutinase variants. US 6960459 B2

    Google Scholar 

  102. Vertommen MAME, Nierstrasz VA, van der Veer M, Warmoeskerken MMCG (2005) Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol 120:376–386

    Article  CAS  Google Scholar 

  103. Wang X, Lu D, Jönsson LJ, Hong F (2008) Preparation of a PET-hydrolyzing lipase from Aspergillus oryzae by the addition of bis(2-hydroxyethyl)terephthalate to the culture medium and enzymatic modification of PET fabrics. Eng Life Sci 8:268–276

    Article  CAS  Google Scholar 

  104. Welzel K, Müller R-J, Deckwer W-D (2002) Enzymatischer Abbau von Polyester-Nanopartikeln. Chem Ingenieur Tech 74:1496–1500

    Article  CAS  Google Scholar 

  105. Witt U, Müller R-J, Deckwer W-D (1997) Biodegradation behaviour and material properties of aliphatic/aromatic polyesters of commercial importance. J Environ Polym Degrad 5:81–89

    Article  CAS  Google Scholar 

  106. Yoo ES, Im SS (1999) Effect of crystalline and amorphous structures on biodegradability of poly(tetra methylene succinate). J Environ Polym Degrad 7:19–26

    Article  CAS  Google Scholar 

  107. Yoon MY, Kellis JT, Poulouse AJ (2002) Enzymatic modification of polyester. AATCC Rev 2:33–36

    CAS  Google Scholar 

  108. Zeronian SH and Collins MJ (1989) Surface modification of polyester by alkaline treatments. Text Progr 20:1–34

    Article  Google Scholar 

  109. Zhang J, Wang X, Gong J, Gu Z (2004) A study on the biodegradability of polyethylene terephthalate fiber and diethylene glycol terephthalate. J Appl Polym Sci 93:1089–1096

    Article  CAS  Google Scholar 

  110. Zhang J, Gong J, Shao S, Qin J, Gu Z (2006) Biodegradability of diethylene glycol terephthalate and poly(ethylene terephthalate) fiber by crude enzymes exracted from activated sludge. J Appl Polym Sci 100:3855–3859

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Zimmermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zimmermann, W., Billig, S. (2010). Enzymes for the Biofunctionalization of Poly(Ethylene Terephthalate). In: Nyanhongo, G., Steiner, W., Gübitz, G. (eds) Biofunctionalization of Polymers and their Applications. Advances in Biochemical Engineering / Biotechnology, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2010_87

Download citation

Publish with us

Policies and ethics