Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasmonics for extreme light concentration and manipulation

An Erratum to this article was published on 05 March 2010

This article has been updated

Abstract

The unprecedented ability of nanometallic (that is, plasmonic) structures to concentrate light into deep-subwavelength volumes has propelled their use in a vast array of nanophotonics technologies and research endeavours. Plasmonic light concentrators can elegantly interface diffraction-limited dielectric optical components with nanophotonic structures. Passive and active plasmonic devices provide new pathways to generate, guide, modulate and detect light with structures that are similar in size to state-of-the-art electronic devices. With the ability to produce highly confined optical fields, the conventional rules for light–matter interactions need to be re-examined, and researchers are venturing into new regimes of optical physics. In this review we will discuss the basic concepts behind plasmonics-enabled light concentration and manipulation, make an attempt to capture the wide range of activities and excitement in this area, and speculate on possible future directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fundamentals of plasmonic-light concentrators and resonators.
Figure 2: Plasmon-based subwavelength imaging and photolithography.
Figure 3: Plasmon-based detectors and modulators.
Figure 4: Light-concentration structures for strengthening nonlinear optical interactions.
Figure 5: Radiative-decay engineering and quantum plasmonics.
Figure 6: Engineering thermal emitters.

Similar content being viewed by others

Change history

  • 05 March 2010

    In all versions of this Review originally published, the upper part of Fig. 2c was incorrect. This error has been corrected in the PDF and HTML versions of this Review.

References

  1. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    CAS  Google Scholar 

  2. Wang, F. & Shen, Y. R. General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006).

    Google Scholar 

  3. Stockman, M. I., Shalaev, V. M., Moskovits, M., Botet, R. & George, T. F. Enhanced Raman scattering by fractal clusters: Scale-invariant theory. Phys. Rev. B. 46, 2821–2830 (1992).

    CAS  Google Scholar 

  4. Li, K. R., Stockman, M. I. & Bergman, D. J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402 (2003).

    Google Scholar 

  5. Novotny, L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007).

    Google Scholar 

  6. Bryant, G., Garcia de Abajo, F. J. & Aizpurua, J. Mapping the plasmon resonances of metallic nanoantennas. Nano Lett. 8, 631–636 (2008).

    CAS  Google Scholar 

  7. Ditlbacher, H. et al. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005).

    Google Scholar 

  8. Søndergaard, T. & Bozhevolnyi, S. I. Slow-plasmon resonant nanostructures: Scattering and field enhancements. Phys. Rev. B 75, 073402 (2007).

    Google Scholar 

  9. Søndergaard, T. & Bozhevolnyi, S. I. Metal nano-strip optical resonators. Opt. Express 15, 4198–4204 (2007).

    Google Scholar 

  10. Barnard, E. S., White, J. S., Chandran, A. & Brongersma, M. L. Spectral properties of plasmonic resonator antennas. Opt. Express 16, 16529–16537 (2008).

    CAS  Google Scholar 

  11. Miyazaki, H. T. & Kurokawa, Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett. 96, 097401 (2006).

    Article  Google Scholar 

  12. Thio, T., Pellerin, K. M., Linke, R. A., Lezec, H. J. & Ebbesen, T. W. Enhanced light transmission through a single subwavelength aperture. Opt. Lett. 26, 1972–1974 (2001).

    CAS  Google Scholar 

  13. Ditlbacher, H., Krenn, J. R., Hohenau, A., Leitner, A. & Aussenegg, F. R. Efficiency of local light-plasmon coupling. Appl. Phys. Lett. 83, 3665–3667 (2003).

    CAS  Google Scholar 

  14. Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

    CAS  Google Scholar 

  15. Gersten, J. & Nitzan, A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 73, 3023–3037 (1980).

    CAS  Google Scholar 

  16. Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

    Article  Google Scholar 

  17. Verhagen, E., Spasenovic, M., Polman, A. & Kuipers, L. Nanowire plasmon excitation by adiabatic mode transformation. Phys. Rev. Lett. 102, 203904 (2009).

    Google Scholar 

  18. Bethe, H. A. Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944).

    Google Scholar 

  19. Shi, X. & Hesselink, L. Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage. Jpn. J. Appl. Phys. 41, 1632–1635 (2002).

    CAS  Google Scholar 

  20. Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers Phys. Rev. Lett. 79, 645–648 (1997).

    CAS  Google Scholar 

  21. Challener, W. A. et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nature Photon. 3, 220–224 (2009).

    CAS  Google Scholar 

  22. Srituravanich, W. et al. Flying plasmonic lens in the near-field for high-speed nanolithography. Nature Nanotech. 3, 733–737 (2008).

    CAS  Google Scholar 

  23. Huber, A. J. et al. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).

    CAS  Google Scholar 

  24. Hartschuh, A., Sanchez, E. J., Xie, X. S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).

    Google Scholar 

  25. Frey, H., Witt, S., Felderer, K. & Guckenberger, R. High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. Phys. Rev. Lett. 93, 200801 (2004).

    Google Scholar 

  26. Kalkbrenner, T., Ramstein, M., Mlynek, J. & Sandoghar, V. A single gold particle as a probe for apertureless scanning near-field optical microscopy. J. Microsc. 202, 72–76 (2001).

    CAS  Google Scholar 

  27. Farahani, J. N., Pohl, D. W., Eisler, H. J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: A tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).

    CAS  Google Scholar 

  28. Taminiau, T. H. et al. λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett. 7, 28–33 (2007).

    CAS  Google Scholar 

  29. Barwicz, T. et al. Silicon photonics for compact, energy-efficient interconnects [Invited]. J. Opt. Netw. 6, 63–73 (2007).

    Google Scholar 

  30. White, J. S. et al. Extra-ordinary optical absorption through sub-wavelength slits. Opt. Lett. 34, 686–688 (2009).

    CAS  Google Scholar 

  31. Ishi, T., Fujikata, T., Makita, K., Baba, T. & Ohashi, K. Si nano-photodiode with a surface plasmon antenna. Jpn. J. Appl. Phys. 44, 364–366 (2005).

    Google Scholar 

  32. Tang, L. et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photon. 2, 226–229 (2008).

    CAS  Google Scholar 

  33. Ditlbacher, H. et al. Organic diodes as monolithically integrated surface plasmon polariton detectors. Appl. Phys. Lett. 89, 161101 (2006).

    Google Scholar 

  34. Neutens, P., Van Dorpe, P., De Vlaminck, I., Lagae, L. & Borghs, G. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nature Photon. 3, 283–286 (2009).

    CAS  Google Scholar 

  35. Ly-Gagnon, D. S., Kocabas, S. E. & Miller, D. A. B. Characteristic impedance model for plasmonic metal slot waveguides. IEEE J. Quantum Electron. 14, 1473–1478 (2008).

    CAS  Google Scholar 

  36. Laux, E., Genet, C., Skauli, T. & Ebbesen, T. W. Plasmonic photon sorters for spectral and polarimetric imaging. Nature Photon. 2, 161–164 (2008).

    CAS  Google Scholar 

  37. Nikolajsen, T., Leosson, K. & Bozhevolnyi, S. I. Surface plasmon polariton modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85, 5833–5835 (2004).

    CAS  Google Scholar 

  38. Cai, W., White, J. S. & Brongersma, M. L. High-speed and power-efficient electrooptic plasmonic modulators. Nano Lett. 9, 4403–4411 (2009).

    CAS  Google Scholar 

  39. Krasavin, A. V. & Zheludev, N. I. Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscalestructural transformations. Appl. Phys. Lett. 84, 1416–1418 (2004).

    CAS  Google Scholar 

  40. Dintinger, J., Robel, I., Kamat, P. V., Genet, C. & Ebbesen, T. W. Terahertz all-optical molecule-plasmon modulation. Adv. Mater. 18, 1645–1648 (2006).

    CAS  Google Scholar 

  41. Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

    CAS  Google Scholar 

  42. Pala, R. A., Shimizu, K. T., Melosh, N. A. & Brongersma, M. L. A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett. 8, 1506–1510 (2008).

    CAS  Google Scholar 

  43. Dicken, M. J. et al. Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano Lett. 8, 4048–4052 (2008).

    CAS  Google Scholar 

  44. MacDonald, K. F., Sámson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009).

    CAS  Google Scholar 

  45. Shen, Y. & Wang, G. P. Optical bistability in metal gap waveguide nanocavities. Opt. Express 16, 8421–8426 (2008).

    Google Scholar 

  46. Green, M. A. Recent developments in photovoltaics. Sol Energy 76, 3–8 (2004).

    CAS  Google Scholar 

  47. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    CAS  Google Scholar 

  48. Kume, T. et al. Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons. Jpn. J. Appl. Phys. 34, 6448–6451 (1995).

    CAS  Google Scholar 

  49. Stenzel, O. et al. Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters. Sol. Energy Mater. Sol. Cells 37, 337–348 (1995).

    CAS  Google Scholar 

  50. Pala, R. A., White, J., Barnard, E., Liu, J. & Brongersma, M. L. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009).

    CAS  Google Scholar 

  51. Catchpole, K. R. & Polman, A. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93, 191113 (2008).

    Google Scholar 

  52. Nitzan, A. & Brus, L. E. Theoretical model for enhanced photochemistry on rough surfaces. J. Chem. Phys. 75, 2205–2214 (1981).

    CAS  Google Scholar 

  53. Chen, C. J. & Osgood, R. M. Direct observation of the local-field-enhanced surface photochemical reactions Phys. Rev. Lett. 50, 1705–1708 (1983).

    CAS  Google Scholar 

  54. Shimizu, K. T., Pala, R. A., Fabbri, J. D., Brongersma, M. L. & Melosh, N. A. Probing molecular junctions using surface plasmon resonance spectroscopy. Nano Lett. 6, 2797–2803 (2006).

    CAS  Google Scholar 

  55. Novo, C., Funston, A. M. & Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nature Nanotech. 3, 598–602 (2008).

    CAS  Google Scholar 

  56. Baffou, G., Quidant, R. & Girard, C. Heat generation in plasmonic nanostructures: influence of morphology. Appl. Phys. Lett. 94, 153109 (2009).

    Google Scholar 

  57. Baffou, G., Kreuzer, M. P., Kulzer, F. & Quidant, R. Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Opt. Express 17, 3291–3298 (2009).

    CAS  Google Scholar 

  58. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumours under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003).

    CAS  Google Scholar 

  59. Rontzsch, L., Heinig, K. H., Schuller, J. A. & Brongersma, M. L. Thin film patterning by surface-plasmon-induced thermocapillarity. Appl. Phys. Lett. 90, 044105 (2007).

    Google Scholar 

  60. Govorov, A. O. et al. Gold nanoparticles ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84–90 (2006).

    Google Scholar 

  61. Soares, B. F., Jonsson, F. & Zheludev, N. I. All-optical phase-change memory in a single gallium nanoparticle. Phys. Rev. Lett. 98, 153905 (2007).

    Google Scholar 

  62. Cao, L., Barsic, D. N., Guichard, A. R. & Brongersma, M. L. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7, 3523–3527 (2007).

    CAS  Google Scholar 

  63. Boyd, D. A., Adleman, J. R., Goodwin, D. G. & Psaltis, D. Chemical separations by bubble-assisted interphase mass-transfer. Anal. Chem. 80, 2452–2456 (2008).

    CAS  Google Scholar 

  64. Sershen, S. R., Wescott, S. L., Halas, N. J. & West, J. L. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. A 51, 293–298 (2000).

    CAS  Google Scholar 

  65. Reismann, M., Bretschneider, J. C., von Plessen, G. & Simon, U. Reversible photothermal melting of DNA in DNA-gold-nanoparticle networks. Small 4, 607–610 (2008).

    CAS  Google Scholar 

  66. Stehr, J. et al. Gold nanostoves for microsecond DNA melting analysis. Nano Lett. 8, 619–623 (2008).

    CAS  Google Scholar 

  67. Simon, H. J., Mitchell, D. E. & Watson, J. G. Optical second-harmonic generation with surface plasmons in silver films. Phys. Rev. Lett. 33, 1531–1534 (1974).

    CAS  Google Scholar 

  68. Nahata, A., Linke, R. A., Ishi, T. & Ohashi, K. Enhanced nonlinear optical conversion from a periodically nanostructured metal film. Opt. Lett. 28, 423–425 (2003).

    Google Scholar 

  69. Lesuffleur, A., Kumar, L. & Gordon, R. Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film. Appl. Phys. Lett. 88, 261104 (2006).

    Google Scholar 

  70. Van Nieuwstadt, J. A. H. et al. Strong modification of the nonlinear optical response of metallic subwavelength hole arrays. Phys. Rev. Lett. 97, 146102 (2006).

    CAS  Google Scholar 

  71. Xu, T., Jiao, X., Zhang, G.-P. & Blair, S. Second-harmonic emission from subwavelength apertures: Effects of aperture symmetry and lattice arrangement. Opt. Express 15, 13894–13906 (2007).

    CAS  Google Scholar 

  72. Fan, W. et al. Second harmonic generation from a nanopatterned isotropic nonlinear material. Nano Lett. 6, 1027–1030 (2006).

    CAS  Google Scholar 

  73. Fan, W. et al. Second harmonic generation from patterned GaAs inside a subwavelength metallic hole array. Opt. Express 14, 9570–9575 (2006).

    CAS  Google Scholar 

  74. Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).

    CAS  Google Scholar 

  75. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    Google Scholar 

  76. Kuhn, S., Hakanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Google Scholar 

  77. Muskens, O. L. et al. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett. 7, 2871–2875 (2007).

    CAS  Google Scholar 

  78. Mertens, H., Koenderink, A. F. & Polman, A. Plasmon-enhanced luminsecence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model. Phys. Rev. B 76, 115123 (2007).

    Google Scholar 

  79. Taminiau, T. H., Stefani, F. D., Segerink, F. B. & Van Hulst, N. F. Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).

    CAS  Google Scholar 

  80. Wenger, J. et al. Emission and excitation contributions to enhance single molecule fluorescence by gold nanometric apertures. Opt. Express 16, 3008–3020 (2008).

    CAS  Google Scholar 

  81. Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

    CAS  Google Scholar 

  82. Neogi, A. et al. Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B 66, 153305 (2002).

    Google Scholar 

  83. Okamoto, K. et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Mater. 3, 601–605 (2004).

    CAS  Google Scholar 

  84. Jun, Y. C., Kekatpure, R. D., White, J. S. & Brongersma, M. L. Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures. Phys. Rev. B 78, 153111 (2008).

    Google Scholar 

  85. Chang, D. E., Sorensen, A. S., Haemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    CAS  Google Scholar 

  86. Chang, D. E., Sorensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    CAS  Google Scholar 

  87. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    CAS  Google Scholar 

  88. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

    CAS  Google Scholar 

  89. Hill, M. T. et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).

    CAS  Google Scholar 

  90. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2010).

    Google Scholar 

  91. Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    Google Scholar 

  92. Stockman, M. I. Spasers explained. Nature Photon. 2, 327–329 (2008).

    CAS  Google Scholar 

  93. Noginov, M. A. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    CAS  Google Scholar 

  94. Puscasu, I. & Schaich, W. L. Narrow-band, tunable infrared emission from arrays of microstrip patches. Appl. Phys. Lett. 92, 233102 (2008).

    Google Scholar 

  95. Miyazaki, H. T. et al. Thermal emission of two-colour polarized infrared waves from integrated plasmon cavities. Appl. Phys. Lett. 92, 141114 (2008).

    Google Scholar 

  96. Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nature Photon. 3, 658–661 (2009).

    CAS  Google Scholar 

  97. Au, Y. Y. Thermal radiation spectra of individual subwavelength microheaters. Phys. Rev. B 78, 085402 (2008).

    Google Scholar 

  98. Marquier, F. et al. Engineering infrared emission properties of silicon in the near and far field. Opt. Commun. 237, 379–388 (2004).

    CAS  Google Scholar 

  99. Greffet, J. J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    CAS  Google Scholar 

  100. Shchegrov, A. V., Joulain, K., Carminati, R. & Greffet, J. J. Near-field spectral effects due to electromagnetic surface excitations. Phys. Rev. Lett. 85, 1548–1551 (2000).

    CAS  Google Scholar 

  101. Wilde, Y. D. et al. Thermal radiation scanning tunneling microscopy. Nature 444, 740–743 (2006).

    Google Scholar 

  102. Volokitin, A. I. & Persson, B. N. J. Near-field radiative heat transfer and non-contact friction. Rev. Mod. Phys. 79, 1291–1329 (2007).

    CAS  Google Scholar 

  103. Mulet, J. P., Joulain, K., Carminati, R. & Greffet, J. J. Nanoscale radiative heat transfer between a small particle and a plane surface. Appl. Phys. Lett. 78, 2931–2933 (2001).

    CAS  Google Scholar 

  104. Kittel, A. et al. Near-field heat transfer in a scanning thermal microscope. Phys. Rev. Lett. 95, 224301 (2005).

    Google Scholar 

  105. Cai, W. S. et al. Metamagnetics with rainbow colours. Opt. Express 15, 3333–3341 (2007).

    Google Scholar 

  106. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    CAS  Google Scholar 

  107. Plum, E. et al. Giant optical gyrotropy due to electromagnetic coupling. Appl. Phys. Lett. 90, 223113 (2007).

    Google Scholar 

  108. Ward, A. J. & Pendry, J. B. Refraction and geometry in Maxwell's equations. J. Mod. Opt. 43, 773–793 (1996).

    Google Scholar 

  109. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    CAS  Google Scholar 

  110. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).

    Google Scholar 

  111. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    CAS  Google Scholar 

  112. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    CAS  Google Scholar 

  113. Cai, W. S., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with metamaterials. Nature Photon. 1, 224–227 (2007).

    CAS  Google Scholar 

  114. Valentine, J., Li, J., Zentgraf, T., Bartal, G. & Zhang, X. An optical cloak made of dielectrics. Nature Mater. 8, 568–571 (2009).

    CAS  Google Scholar 

  115. Rahm, M. et al. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations. Photonic. Nanostruct. 6, 87–95 (2008).

    Google Scholar 

  116. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley Inter-Science, 1998).

    Google Scholar 

  117. Verhagen, E., Polman, A. & Kuipers, L. K. Nanofocusing in laterally tapered plasmonic waveguides. Opt. Express 16, 45–57 (2008).

    Google Scholar 

  118. Mühlschlegel, P., Eisler, H. J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Google Scholar 

  119. Schurig, D., Pendry, J. B. & Smith, D. R. Calculation of material properties and ray tracing in transformation media. Opt. Express. 14, 9794–9804 (2006).

    CAS  Google Scholar 

  120. Cai, W. S. et al. Nonmagnetic cloak with minimized scattering. Appl. Phys. Lett. 91, 111105 (2007).

    Google Scholar 

Download references

Acknowledgements

The authors of this article would like to acknowledge support from a US Department of Defense Multidisciplinary University Research Initiative sponsored by the Air Force Office of Scientific Research (F49550-04-1-0437). The authors also thank the Centre on Nanostructuring for Efficient Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Brongersma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuller, J., Barnard, E., Cai, W. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater 9, 193–204 (2010). https://doi.org/10.1038/nmat2630

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2630

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing