Skip to main content
Log in

Molecular Characterization of Microbial Population Dynamics during Sildenafil Citrate Degradation

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Little is known about pharmaceutical and personal care products pollutants (PPCPs), but there is a growing interest in how they might impact the environment and microbial communities. The widespread use of Viagra (sildenafil citrate) has attracted great attention because of the high usage rate, the unpredictable disposal and the unknown potential effects on wildlife and the environment. Until now information regarding the impact of Viagra on microbial community in water environment has not been reported. In this research, for the first time, the genetic profile of the microbial community, developing in a Viagra polluted water environment, was evaluated by means of the 16S and 18S rRNA genes, for bacteria and fungi, respectively, amplified by polymerase chain reaction (PCR) and separated using the denaturing gradient gel electrophoresis (DGGE) technique. The DGGE results revealed a complex microbial community structure with most of the population persisting throughout the experimental period. DNA sequences from bands observed in the different denaturing gradient gel electrophoresis profiles exhibited the highest degree of identity to uncultured bacteria and fungi found previously mainly in polluted environmental and treating bioreactors. Biotransformation ability of sildenafil citrate by the microbial pool was studied and the capability of these microorganisms to detoxify a polluted water ecosystem was assessed. The bacterial and fungal population was able to degrade sildenafil citrate entirely. Additionally, assays conducted on Daphnia magna, algal growth inhibition assay and cell viability determination on HepG2 human cells showed that biotransformation products obtained from the bacterial growth was not toxic. The higher removal efficiency for sildenafil citrate and the lack of toxicity by the biotransformation products obtained showed that the microbial community identified here represented a composite population that might have biotechnological relevance to retrieve sildenafil citrate contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wilson, E. K. (1998). Impotence drugs: More than Viagra. Chemical and Engineering News, 29, 29–33.

    Google Scholar 

  2. Colores, G. M., Macur, R. E., Ward, D. M., & Inskeep, W. P. (2000). Molecular analysis of surfactant-driven microbial population shifts in hydrocarbon contaminated soil. Applied and Environmental Microbiology, 66, 2959–2964.

    Article  CAS  Google Scholar 

  3. Macnaughton, S. J., Stephen, J. R., Venosa, A. D., Davis, G. A., Chang, Y.-J., & White, D. C. (1999). Microbial population changes during bioremediation of an experimental oil spill. Applied and Environmental Microbiology, 65, 3566–3574.

    CAS  Google Scholar 

  4. Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. In E. Rosenberg (Ed.), Microorganisms to combat pollution (pp. 351–368). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  5. Laurie, A. D., & Lloyd-Jones, G. (2000). Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Applied and Environmental Microbiology, 66, 1814–1817.

    Article  CAS  Google Scholar 

  6. LIoyd-Jones, G., Laurie, A. D., Hunter, D. W. F., & Fraser, R. (1999). Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand soils. FEMS Microbiology Ecology, 29, 69–79.

    Article  Google Scholar 

  7. Mesarch, M. B., Nakatsu, C. H., & Nies, L. (2000). Development of catechol 2, 3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Applied and Environmental Microbiology, 66, 678–683.

    Article  CAS  Google Scholar 

  8. Stapleton, R. D., & Sayler, G. S. (1998). Assessment of the microbiological potential for the natural attenuation of petroleum hydrocarbons in a shallow aquifer system. Microbial Ecology, 36, 349–361.

    Article  CAS  Google Scholar 

  9. Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695–700.

    CAS  Google Scholar 

  10. Muyzer, G. (1998). DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology, 2, 317–322.

    Article  Google Scholar 

  11. Liu, W.-T., Marsh, T. L., Chen, H., & Forney, L. J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of gene encoding 16S rRNA. Applied and Environmental Microbiology, 63, 4516–4522.

    CAS  Google Scholar 

  12. Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. M. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 63, 3233–3241.

    CAS  Google Scholar 

  13. Ferris, M. J., Muyzer, G., & Ward, D. M. (1996). Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Applied and Environmental Microbiology, 62, 340–346.

    CAS  Google Scholar 

  14. Nielsen, A. T., Liu, W.-T., Philips, C., Grady, L., Jr., Molin, S., & Stahl, D. A. (1999). Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal process. Applied and Environmental Microbiology, 65, 1251–1258.

    CAS  Google Scholar 

  15. van Elsas, J. D., Duarte, G. F., Keijzer-Wolters, A., & Smit, E. (2000). Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. Journal of Microbiological Methods, 43, 133–151.

    Article  Google Scholar 

  16. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal w: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  17. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  18. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  19. APHA, AWWA,WEF. (1995). Standard methods for the examination of water and wastewater (Vol. 8, pp. 43–46). Washington, DC.

  20. Guida, M., Inglese, M., Meriç, S. (2007). A multi-battery toxicity investigation on fungicides. Desalination DIPCON2006 Special issue.

  21. Curtis, T. P., Head, I. M., & Graham, W. D. (2003). Theoretical ecology for engineering biology. Environmental Science & Technology, 37, 65A–70A.

    Article  CAS  Google Scholar 

  22. Fernandez, A., Huang, S., Seston, S., Xing, H., Hickey, R., Criddle, C., et al. (1999). How stable is stable? Function versus community composition. Applied and Environmental Microbiology, 65, 3697–3704.

    CAS  Google Scholar 

  23. Godon, J.-J., Zumstein, E., Dabert, P., Habouzit, F., & Moletta, R. (1997). Molecular microbial diversity of an anaerobic digester as determined by small-subunit rDNA sequence analysis. Applied and Environmental Microbiology, 63, 2802–2813.

    CAS  Google Scholar 

  24. Pereira, M. A., Roest, K., Stams, A. J., Mota, M., Alves, M., & Akkermans, A. D. L. (2002). Molecular monitoring of microbial diversity in expanded granular sludge bed (EGSB) reactors treating oleic acid. FEMS Microbiology Ecology, 41, 95–103.

    Article  CAS  Google Scholar 

  25. Ringelberg, D. B., Talley, J. W., Perkins, E. J., et al. (2001). Succession of phenotypic, genotypic, and metabolic community characteristics during in vitro bioslurry treatment of polycyclic aromatic hydrocarbon-contaminated sediments. Applied and Environmental Microbiology, 67, 1542–1550.

    Article  CAS  Google Scholar 

  26. Zucchi, M., Angiolini, L., Borin, S., et al. (2003). Response of bacterial community during bioremediation of an oil-polluted soil. Journal of Applied Microbiology, 94, 248–257.

    Article  CAS  Google Scholar 

  27. Leys, N. M., Ryngaert, A., Bastiaens, L., et al. (2004). Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 70, 1944–1955.

    Article  CAS  Google Scholar 

  28. Vinas, M., Jordi Sabate, J., Espuny, M. J., & Solanas, A. M. (2005). Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote contaminated soil. Applied and Environmental Microbiology, 71, 7008–7018.

    Article  CAS  Google Scholar 

  29. Dejonghe, W., Boon, N., Seghers, D., Top, M. E., & Verstraete, W. (2001). Bioaugmentation of soils by increasing microbial richness: missing links. Environmental Microbiology, 3, 649–657.

    Article  CAS  Google Scholar 

  30. Wagner, M., & Taylor, W. (2005). Isotopic-labelling methods for deciphering the function of uncultured micro-organisms. In: SGM Symposium 65, micro-organisms and earth systems—advances in geomicrobiology.

  31. Atlas, R. M. (1981). Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiological Reviews, 45, 180–209.

    CAS  Google Scholar 

  32. Trindade, P. V. O., Sobral, L. G., Rizzo, A. C. L., Leite, S. G. F., & Soriano, A. U. (2005). Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: A comparison study. Chemosphere, 58, 515–522.

    Article  CAS  Google Scholar 

  33. Field, J. A., De Jong, E., Feijoo Costa, G., & De Bont, J. A. M. (1992). Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white-rot fungi. Applied and Environmental Microbiology, 58, 2219–2226.

    CAS  Google Scholar 

  34. Sack, U., & Gunther, T. (1993). Metabolism of PAH by fungi and correlation with extracellular enzymatic activities. Journal of Basic Microbiology, 33, 269–277.

    Article  CAS  Google Scholar 

  35. Rafin, C., Potin, O., Veignie, E., Lounes-Hadj Sahraoui, A., & Sancholle, M. (2000). Degradation of benzo[a]pyrene as sole carbon source by a non white-rot-fungus Fusarium solani. Polycyclic Aromatic Compounds, 21, 311–329.

    Article  CAS  Google Scholar 

  36. Martins, J., Soares, M. L., Saker, M. L., Oliva Teles, L., & Vasconcelos, V. M. (2006). Phototactic behavior in Daphnia magna straus as an indicator of toxicants in the aquatic environment. Ecotoxicology and Environmental Safety, 67, 417–422.

    Article  CAS  Google Scholar 

  37. Fotakis, G., & Timbrell, J. A. (2006). In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters, 160, 171–177.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruna De Felice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Felice, B., Argenziano, C., Guida, M. et al. Molecular Characterization of Microbial Population Dynamics during Sildenafil Citrate Degradation. Mol Biotechnol 41, 123–132 (2009). https://doi.org/10.1007/s12033-008-9112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9112-1

Keywords

Navigation