Skip to main content
Log in

Nonurologic applications of phosphodiesterase type 5 inhibitors

  • Published:
Current Sexual Health Reports Aims and scope Submit manuscript

Abstract

Phosphodiesterase type 5 (PDE5) is an enzyme that catalyzes hydrolytic degradation of cyclic guanosine monophosphate, an essential intracellular second messenger that modulates diverse biologic processes in living cells. Three selective inhibitors of PDE5, sildenafil, vardenafil, and tadalafil, have been successfully used by millions of people worldwide for the treatment of male erectile dysfunction. Also, sildenafil is currently approved for the treatment of pulmonary hypertension in patients. Recent basic and clinical studies suggest potential nonurologic applications of PDE5 inhibitors, including ischemia and reperfusion injury, myocardial infarction, cardiac hypertrophy, cardiomyopathy, heart failure, stroke, neurodegenerative diseases, and other circulatory disorders. These drugs may delay or reduce the pathologic damage and also improve the overall well being and quality of life in patients. Future clinical trials on the US Food and Drug Administration-approved PDE5 inhibitors are needed, which will hopefully expedite their expanding nonurologic therapeutic use in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Beavo JA: Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev 1995, 75:725–748.

    PubMed  CAS  Google Scholar 

  2. Bender AT, Beavo JA: Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 2006, 58:488–520.

    Article  PubMed  CAS  Google Scholar 

  3. Corbin JD, Francis SH, Webb DJ: Phosphodiesterase type 5 as a pharmacologic target in erectile dysfunction. Urology 2002, 60:4–11.

    Article  PubMed  Google Scholar 

  4. Corbin JD, Francis SH: Pharmacology of phosphodiesterase-5 inhibitors. Int J Clin Pract 2002, 56:453–459.

    PubMed  CAS  Google Scholar 

  5. Wallis RM, Corbin JD, Francis SH, Ellis P: Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol 1999, 83:3C–12C.

    Article  PubMed  CAS  Google Scholar 

  6. Coquil JF, Franks DJ, Wells JN, Dupuis M, Hamet P: Characteristics of a new binding protein distinct from the kinase for guanosine 3′:5′-monophosphate in rat platelets. Biochim Biophys Acta 1980, 631:148–165.

    PubMed  CAS  Google Scholar 

  7. Francis SH, Lincoln TM, Corbin JD: Characterization of a novel cGMP binding protein from rat lung. J Biol Chem 1980, 255:620–626.

    PubMed  CAS  Google Scholar 

  8. Das A, Xi L, Kukreja RC: Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem 2005, 280:12944–12955.

    Article  PubMed  CAS  Google Scholar 

  9. Senzaki H, Smith CJ, Juang GJ, et al.: Cardiac phosphodiesterase 5 (cGMP-specific) modulates beta-adrenergic signaling in vivo and is down-regulated in heart failure. FASEB J 2001, 15:1718–1726.

    Article  PubMed  CAS  Google Scholar 

  10. Loughney K, Hill TR, Florio VA, et al.: Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3′,5′-cyclic nucleotide phosphodiesterase. Gene 1998, 216:139–147.

    Article  PubMed  CAS  Google Scholar 

  11. Saenz dT, I, Angulo J, Cuevas P, et al.: The phosphodiesterase inhibitory selectivity and the in vitro and in vivo potency of the new PDE5 inhibitor vardenafil. Int J Impot Res 2001, 13:282–290.

    Article  Google Scholar 

  12. Porst H, Rosen R, Padma-Nathan H, et al.: The efficacy and tolerability of vardenafil, a new, oral, selective phosphodiesterase type 5 inhibitor, in patients with erectile dysfunction: the first at-home clinical trial. Int J Impot Res 2001, 13:192–199.

    Article  PubMed  CAS  Google Scholar 

  13. Eardley I, Cartledge J: Tadalafil (Cialis) for men with erectile dysfunction. Int J Clin Pract 2002, 56:300–304.

    PubMed  CAS  Google Scholar 

  14. Rotella DP: Phosphodiesterase 5 inhibitors: current status and potential applications. Nat Rev Drug Discov 2002, 1:674–682.

    Article  PubMed  CAS  Google Scholar 

  15. Ockaili R, Salloum F, Hawkins J, Kukreja RC: Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial KATP channels in rabbits. Am J Physiol Heart Circ Physiol 2002, 283:H1263–H1269.

    PubMed  CAS  Google Scholar 

  16. Salloum F, Yin C, Xi L, Kukreja RC: Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circ Res 2003, 92:595–597.

    Article  PubMed  CAS  Google Scholar 

  17. Bremer YA, Salloum F, Ockaili R, et al.: Sildenafil citrate (viagra) induces cardioprotective effects after ischemia/reperfusion injury in infant rabbits. Pediatr Res 2005, 57:22–27.

    Article  PubMed  CAS  Google Scholar 

  18. Das S, Maulik N, Das DK, et al.: Cardioprotection with sildenafil, a selective inhibitor of cyclic 3′,5′-monophosphate-specific phosphodiesterase 5. Drugs Exp Clin Res 2002, 28:213–219.

    PubMed  CAS  Google Scholar 

  19. du Toit EF, Rossouw E, Salie R, et al.: Effect of sildenafil on reperfusion function, infarct size, and cyclic nucleotide levels in the isolated rat heart model. Cardiovasc Drugs Ther 2005, 19:23–31.

    Article  PubMed  CAS  Google Scholar 

  20. Rosanio S, Ye Y, Atar S, et al.: Enhanced cardioprotection against ischemia-reperfusion injury with combining sildenafil with low-dose atorvastatin. Cardiovasc Drugs Ther 2006, 20:27–36.

    Article  PubMed  CAS  Google Scholar 

  21. Salloum FN, Ockaili RA, Wittkamp M, et al.: Vardenafil: a novel type 5 phosphodiesterase inhibitor reduces myocardial infarct size following ischemia/reperfusion injury via opening of mitochondrial K(ATP) channels in rabbits. J Mol Cell Cardiol 2006, 40:405–411.

    Article  PubMed  CAS  Google Scholar 

  22. Sesti C, Florio V, Johnson EG, Kloner RA: The phosphodiesterase-5 inhibitor tadalafil reduces myocardial infarct size. Int J Impot Res 2007, 19:55–61.

    Article  PubMed  CAS  Google Scholar 

  23. Nagy O, Hajnal A, Parratt JR, Vegh A: Sildenafil (Viagra) reduces arrhythmia severity during ischaemia 24 h after oral administration in dogs. Br J Pharmacol 2004, 141:549–551.

    Article  PubMed  CAS  Google Scholar 

  24. Elrod JW, Greer JJ, Lefer DJ: Sildenafil-mediated acute cardioprotection is independent of the NO/cGMP pathway. Am J Physiol Heart Circ Physiol 2007, 292:H342–H347.

    Article  PubMed  CAS  Google Scholar 

  25. Salloum FN, Takenoshita Y, Ockaili RA, et al.: Sildenafil and vardenafil but not nitroglycerin limit myocardial infarction through opening of mitochondrial K(ATP) channels when administered at reperfusion following ischemia in rabbits. J Mol Cell Cardiol 2007, 42:453–458.

    Article  PubMed  CAS  Google Scholar 

  26. Shakir SA, Wilton LV, Boshier A, et al.: Cardiovascular events in users of sildenafil: results from first phase of prescription event monitoring in England. BMJ 2001, 322:651–652.

    Article  PubMed  CAS  Google Scholar 

  27. Das A, Smolenski A, Lohmann SM, Kukreja RC: Cyclic GMP-dependent protein kinase Ialpha attenuates necrosis and apoptosis following ischemia/reoxygenation in adult cardiomyocyte. J Biol Chem 2006, 281:38644–38652.

    Article  PubMed  CAS  Google Scholar 

  28. Cayatte AJ, Palacino JJ, Horten K, Cohen RA: Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler Thromb 1994, 14:753–759.

    PubMed  CAS  Google Scholar 

  29. Katz SD, Balidemaj K, Homma S, et al.: Acute type 5 phosphodiesterase inhibition with sildenafil enhances flow-mediated vasodilation in patients with chronic heart failure. J Am Coll Cardiol 2000, 36:845–851.

    Article  PubMed  CAS  Google Scholar 

  30. Halcox JP, Nour KR, Zalos G, et al.: The effect of sildenafil on human vascular function, platelet activation, and myocardial ischemia. J Am Coll Cardiol 2002, 40:1232–1240.

    Article  PubMed  CAS  Google Scholar 

  31. Traverse JH, Chen YJ, Du R, Bache RJ: Cyclic nucleotide phosphodiesterase type 5 activity limits blood flow to hypoperfused myocardium during exercise. Circulation 2000, 102:2997–3002.

    PubMed  CAS  Google Scholar 

  32. Gori T, Sicuro S, Dragoni S, et al.: Sildenafil prevents endothelial dysfunction induced by ischemia and reperfusion via opening of adenosine triphosphate-sensitive potassium channels: a human in vivo study. Circulation 2005, 111:742–746.

    Article  PubMed  CAS  Google Scholar 

  33. Chen Y, Traverse JH, Hou M, et al.: Effect of PDE5 inhibition on coronary hemodynamics in pacing-induced heart failure. Am J Physiol Heart Circ Physiol 2003, 284:H1513–H1520.

    PubMed  CAS  Google Scholar 

  34. Hislop A, Reid L: New findings in pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. Br J Exp Pathol 1976, 57:542–554.

    PubMed  CAS  Google Scholar 

  35. Sebkhi A, Strange JW, Phillips SC, et al.: Phosphodiesterase type 5 as a target for the treatment of hypoxia-induced pulmonary hypertension. Circulation 2003, 107:3230–3235.

    Article  PubMed  CAS  Google Scholar 

  36. Wilkins MR, Paul GA, Strange JW, et al.: Sildenafil versus Endothelin Receptor Antagonist for Pulmonary Hypertension (SERAPH) study. Am J Respir Crit Care Med 2005, 171:1292–1297.

    Article  PubMed  Google Scholar 

  37. Bhatia S, Frantz RP, Severson CJ, et al.: Immediate and long-term hemodynamic and clinical effects of sildenafil in patients with pulmonary arterial hypertension receiving vasodilator therapy. Mayo Clin Proc 2003, 78:1207–1213.

    Article  PubMed  CAS  Google Scholar 

  38. Schulze-Neick I, Hartenstein P, Li J, et al.: Intravenous sildenafil is a potent pulmonary vasodilator in children with congenital heart disease. Circulation 2003, 108(Suppl 1):II167–II173.

    PubMed  Google Scholar 

  39. Ghofrani HA, Reichenberger F, Kohstall MG, et al.: Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: a randomized, double-blind, placebo-controlled crossover trial. Ann Intern Med 2004, 141:169–177.

    PubMed  CAS  Google Scholar 

  40. Takimoto E, Champion HC, Li M, et al.: Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 2005, 11:214–222.

    Article  PubMed  CAS  Google Scholar 

  41. Al Hesayen A, Floras JS, Parker JD: The effects of intravenous sildenafil on hemodynamics and cardiac sympathetic activity in chronic human heart failure. Eur J Heart Fail 2006.

  42. Kaye DM, Lefkovits J, Jennings GL, et al.: Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol 1995, 26:1257–1263.

    Article  PubMed  CAS  Google Scholar 

  43. Lewis GD, Lachmann J, Camuso J, et al.: Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation 2007, 115:59–66.

    Article  PubMed  CAS  Google Scholar 

  44. Fisher PW, Salloum F, Das A, et al.: Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation 2005, 111:1601–1610.

    Article  PubMed  CAS  Google Scholar 

  45. Ferreira-Melo SE, Yugar-Toledo JC, Coelho OR, et al.: Sildenafil reduces cardiovascular remodeling associated with hypertensive cardiomyopathy in NOS inhibitor-treated rats. Eur J Pharmacol 2006, 542:141–147.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang R, Wang Y, Zhang L, et al.: Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke 2002, 33:2675–2680.

    Article  PubMed  CAS  Google Scholar 

  47. Chan CW, Hoar H, Pattinson K, et al.: Effect of sildenafil and acclimatization on cerebral oxygenation at altitude. Clin Sci (Lond) 2005, 109:319–324.

    Article  CAS  Google Scholar 

  48. Nagdyman N, Fleck T, Bitterling B, et al.: Influence of intravenous sildenafil on cerebral oxygenation measured by near-infrared spectroscopy in infants after cardiac surgery. Pediatr Res 2006, 59:462–465.

    Article  PubMed  CAS  Google Scholar 

  49. Rosengarten B, Schermuly RT, Voswinckel R, et al.: Sildenafil improves dynamic vascular function in the brain: studies in patients with pulmonary hypertension. Cerebrovasc Dis 2006, 21:194–200.

    Article  PubMed  CAS  Google Scholar 

  50. Wareing M, Myers JE, O’Hara M, Baker PN: Sildenafil citrate (Viagra) enhances vasodilatation in fetal growth restriction. J Clin Endocrinol Metab 2005, 90:2550–2555.

    Article  PubMed  CAS  Google Scholar 

  51. Erceg S, Monfort P, Hernandez-Viadel M, et al.: Oral administration of sildenafil restores learning ability in rats with hyperammonemia and with portacaval shunts. Hepatology 2005, 41:299–306.

    Article  PubMed  CAS  Google Scholar 

  52. Kukreja RC, Salloum F, Das A, et al.: Pharmacological preconditioning with sildenafil: basic mechanisms and clinical implications. Vascul Pharmacol 2005, 42:219–232.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh C. Kukreja PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukreja, R.C., Salloum, F.N. & Xi, L. Nonurologic applications of phosphodiesterase type 5 inhibitors. Curr sex health rep 4, 64–70 (2007). https://doi.org/10.1007/s11930-007-0004-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11930-007-0004-3

Keywords

Navigation