Skip to main content
Log in

Effects of elements in human blood pressure control

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This review enumerates and discusses the elements involved in the control of human blood pressure via a historical evolutionary form. The older and most recent element literature presentations were researched using MEDLINE and a manual review of documents cited. Independent data extraction and cross-referencing was performed. Of the 28 known elements that can influence blood pressure, 15 were found to be involved in human blood pressure regulation. The elements were divided into four groups: electrolyte, composed of sodium, potassium, calcium, and magnesium; metal, which included zinc, copper, and iron; toxic, made up of lead, mercury, cadmium, barium, thallium, arsenic; miscellaneous (lithium and selenium). Evolutionary historical data, possible mechanisms of actions, and interactions between elements that have been shown to influence blood pressure are discussed. Controversy exists over the therapeutic use of elements to alter blood pressure but is absent in the case of the toxic group where preventive control is a proven public health matter. The significance of these 15 elements in the regulation of human blood pressure has been established and ongoing studies will continue to reinforce their influence and importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. F. Loyke, Effects of elements on blood pressure, Biol. Trace Element Res. 58, 1–11 (1997).

    Article  CAS  Google Scholar 

  2. L. Ambord, and E. Beaujard, Causes de l’hypertension anterielle, Arch. Gen. Med. 1, 520–533 (1904).

    Google Scholar 

  3. W. Kempner, Treatment of kidney disease and hypertensive vascular disease with rice diet, NC Med. J. 5, 125–133 (1944).

    Google Scholar 

  4. F. C. Luft and M. H. Weinberger, Sodium intake and essential hypertension, Hypertension 4(Suppl. III), 14–19 (1982).

    CAS  Google Scholar 

  5. L. B. Page, A. Damon, and R. C. Moellering, Jr., Anticedents of cardiovascular disease in six Solomon Islands societies, Circulation 49, 1132–1146 (1974).

    PubMed  CAS  Google Scholar 

  6. M. Reusser, D. McCarron, Micronutrient Effects on Blood Pressure Regulation. Nutrt. Rev, 52, 367–75 (1994).

    Article  CAS  Google Scholar 

  7. N. Groudal, A. Galloc, and P. Gerred, Effects of sodium restriction on blood pressure, renin, aldosterone, catacholamine and trygliceride, JAMA 279(17), 1383–1389 (1998).

    Article  Google Scholar 

  8. F. Cappuccio, N. Murkandu, C. Carney, et al., Double-blind study randomized trial of modest salt restriction in older people, Lancet 350, 850–854 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. P. Friberg, I. Meredith, G. Jennings, G. Lambert, V. Fazio, and M. Esler, Evidence for increased renal norepinephrine overflow during sodium restriction in humans, Hypertension 16, 121–130 (1990).

    PubMed  CAS  Google Scholar 

  10. F. H. Messerli, R. E. Schmieder, and M. R. Weir, Salt: a perpetrator of hypertension target organ disease? Arch. Int. Med. 157, 2449–2452 (1997).

    Article  CAS  Google Scholar 

  11. T. Kawasaki, E. S. Dlea, F. C. Porter, et al., The effect of high-sodium and low-sodium intake on blood pressure and other related variables in human subjects with idiopathic hypertension, Am. J. Med. 64, 193–198 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. L. M. Resnick, J. H. Laragh, J. E. Sealey, et al., Deviate cations in essential hypertension, N. Engl. J. Med. 309, 888–891 (1983).

    Article  PubMed  CAS  Google Scholar 

  13. V. M. Campese, M. S. Romoff, D. Levitan, et al., Abnormal relationship between sodium intake and sympathetic nervous system activity in salt sensitive patients with essential hypertension, Kidney Int. 21, 371–378 (1992).

    Google Scholar 

  14. J. P. Midgley, A. Glenday, G. Matthew, et al., Effects of reduced dietary sodium on blood pressure, JAMA 275, 1590–1597 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. T. Uzu, F. Kazembe, K. Ishikawa, et al., High sodium sensitivity implicates nocturnal hypertension in essential hypertension, Hypertension 28(Suppl. I), 139–143 (1996).

    PubMed  CAS  Google Scholar 

  16. M. H. Alderman, S. Madhaven, H. Cohen, J. E. Sealey, and J. H. Laragh, Low urinary sodium is associated with greater risk of myorcardial infarction among treated hypertensive men, Hypertension 25, 1144–1152 (1995).

    PubMed  CAS  Google Scholar 

  17. P. Elliot, J. Stamler, R. Nichels, et al., INTERSALT revisited, Br. Med. J. 312, 1249–1253 (1996).

    Google Scholar 

  18. A. Sharma, U. Schorr, and R. Distler, Insulin resistance in young salt-sensitive normotensive subjects, Hypertension 21, 273–279 (1993).

    PubMed  CAS  Google Scholar 

  19. The Trials of Hypertension Prevention Collaborative Research Group, Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high normal blood pressure, Arch. Intern. Med. 157, 657–667 (1997).

    Article  Google Scholar 

  20. G. Bunge, Textbook of Physiological and Pathological Chemistry, McGraw-Hill, New York (1902).

    Google Scholar 

  21. W. Thompson, and I. McQuerrie, Effect of various salts on carbohydrate metabolism and blood pressure in diabetic children, Proc. Soc. Exp. Biol. Med. 31, 907–909 (1934).

    Google Scholar 

  22. N. Sasak, T. Mitsuhash, and S. Fukushi, Effects of the ingestion of large amount of apples on blood pressure in farmers in Akita Prefecture, Igaku to Seibutsugaku 51, 103–105 (1959).

    Google Scholar 

  23. G. Krishna, and S. Kapoor, Potassium depletion exacerbates essential hypertension, Ann. Intern. Med. 115, 77–83 (1991).

    PubMed  CAS  Google Scholar 

  24. G. Krishna, Effects of potassium intake on blood pressure, J. Am. Soc. Nephrol. 1, 43–52 (1990).

    PubMed  CAS  Google Scholar 

  25. R. Watson, H. Landford, J. Abernethy, et al., Urinary electrolytes body weight in blood pressure, Hypertension 21(42), 93–98 (1980).

    Google Scholar 

  26. P. Whelton, J. He, J. Cutler, et al., Effects of oral potassium on blood pressure, JAMA 277, 1624–1632 (1997).

    Article  PubMed  CAS  Google Scholar 

  27. The Trials of Hypertension Prevention Collaborative Research Group, The effects of nonpharmacologic intervention on blood pressure of persons with high normal levels: results of the trials of Preventive Phase 1, JAMA 267, 1213–1220 (1992).

    Article  Google Scholar 

  28. D. Wilson, D. Sica, and S. Miller, Effect of potassium on blood pressure in salt-sensitive and salt-resistant black adolescents, Hypertension 34(2), 181–186 (1999).

    PubMed  CAS  Google Scholar 

  29. L. Tobian, J. Lange, K. Ulm, et al., Potassium reduces cerebral hemorrhage and death rate in hypertensive rats, even when blood pressure is not lowered, Hypertension 7(Suppl. 1), 110–114 (1985).

    CAS  Google Scholar 

  30. K. T. Khaw, and E. Barrett-Connor, Dietary potassium and stroke-associated mortality, N. Engl. J. Med. 316, 235–240 (1987).

    Article  PubMed  CAS  Google Scholar 

  31. F. Luft, M. Weinberger, C. Grim, and N. Fineberg, Effect of volume expansion and contraction on potassium homeostasis in normal and hypertensive humans, J. Am. Coll. Nutr. 5, 357–369 (1986).

    PubMed  CAS  Google Scholar 

  32. H. Schroeder, and H. Perry, Antihypertensive effects of metal binding agents, J. Lab. Clin. Med. 46, 416–522 (1955).

    PubMed  CAS  Google Scholar 

  33. O. Cope, Hyperparathyroidism, Am. J. Surg. 99, 394–403 (1960).

    Article  PubMed  CAS  Google Scholar 

  34. L. Neri, J. Mandel, and D. Hewitt, Relation between mortality and water hardness in Canada, Lancet 1, 931–934 (1972).

    Article  PubMed  CAS  Google Scholar 

  35. W. Harlan, A. Hull, R. Schmouder, et al., High blood pressure in older Americans: The First National Health and Nutrition Survey, Hypertension 6, 802–809 (1989).

    Google Scholar 

  36. P. Weidmann, S. Massry, J. Coburn, et al., Blood pressure effects of acute hypercalcemia, Ann. Intern. Med. 76, 741–745 (1978).

    Google Scholar 

  37. D. McCarron, Calcium metabolism and hypertension, Kidney Int. 35, 717–736 (1989).

    Article  PubMed  CAS  Google Scholar 

  38. K. Belizoon, and J. Villar, The relationship between calcium intake and edema-protenuria- and hypertension gestosis, Am. J. Clin. Nutr. 33, 2202–2210 (1980).

    Google Scholar 

  39. H. Bucher, G. Guyett, R. Cook, et al., Effect of calcium supplementation on pregnancy-induced hypertension and preeclampsia, JAMA 275, 1113–1118 (1996).

    Article  PubMed  CAS  Google Scholar 

  40. R. Lyle, C. Melby, G. Ayner, et al., Blood pressure and metabolic effects of calcium supplementation in normotensive white and black men, JAMA 257, 1772–1776 (1987).

    Article  PubMed  CAS  Google Scholar 

  41. L. Resnick, J. Nicholson, and J. Laragh, Calcium metabolism and the renin-aldosterone system in essential hypertension, J. Cardiovasc. Pharmacol. 7(Suppl. 6), S187-S193 (1985).

    Article  PubMed  Google Scholar 

  42. M. Weinberger, U. Wagner, and N. Fineberg, The blood pressure effects of calcium supplementation in humans of known salt responsiveness, Am. J. Hypertens. 6, 799–805 (1993).

    PubMed  CAS  Google Scholar 

  43. J. Dwyer, K. Dwyer, R. Scribner, et al., Dietary calcium, calcium supplementation and blood pressure in African American adolescents, Am. J. Clin. Nutr. 68, 648–655 (1998).

    PubMed  CAS  Google Scholar 

  44. L. Griffith, G. Guyatt, R. Cook, et al., The influence of dietary and nondietary calcium supplementation on blood pressure: an updated meta-analysis of randomized controlled trials, Am. J. Hypertens. 12, 84–92 (1999).

    Article  PubMed  CAS  Google Scholar 

  45. K. Blackfan, and B. Hamilton, Treatment of hypertensive diseases, Boston Med. Surg. J. 193, 617–621 (1925).

    Google Scholar 

  46. M. Stenchever, Magnesium, its relationship to obstetrics, Obstet. Gynec. Survey 16, 297–308 (1961).

    Article  CAS  Google Scholar 

  47. M. Rubin, and M. Rappaport, The mode of action of magnesium in reducing the blood pressure of glomerular nephritis, Am. J. Med. Sci. 201(Suppl., 734–745 (1941).

    Article  CAS  Google Scholar 

  48. D. Albert, Y. Morita, and L. Iseri, Serum magnesium and plasma sodium levels in essential vascular hypertension, Circulation 17(Pt. 2), 761–764 (1958).

    PubMed  CAS  Google Scholar 

  49. B. T. Altura, and B. M. Altura, Cardiovascular actions of magnesium, Magnesium Bull. 9, 6–21 (1987).

    CAS  Google Scholar 

  50. R. Lim and W. Herzog, Magnesium for cardiac patients, Contemp. Intern. Med. 10, 6–9 (1998).

    Google Scholar 

  51. L. Resnick, J. Nicholson, and J. Laragh, Calcium metabolism and the renin-aldosterone system in essential hypertension, J. Cardiovasc. Pharmacol. 7(Suppl. 6), S187-S193 (1985).

    Article  PubMed  Google Scholar 

  52. C. Yang and H. Chiu, Calcium and magnesium in drinking water and the risk of death from hypertension, Am. J. Hypertens. 12, 894–899 (1999).

    Article  PubMed  CAS  Google Scholar 

  53. T. Fujita, Y. Ito, K. Ando, H. Noda, and E. Ogata, Attenuated vasodilator responses to Mg2+ in young patients with borderline hypertension, Circulation 82, 384–393 (1990).

    PubMed  CAS  Google Scholar 

  54. M. Joffres, D. Reed, and K. Yano, Relationship of magnesium intake and other dietary factors to blood pressure, Am. J. Clin. Nutr. 45, 469–475 (1987).

    PubMed  CAS  Google Scholar 

  55. P. Zemel, M. Zemel, M. Urberg, et al., Metabolic and hemodynamic effects on magnesium supplementation in patients with essential hypertension, Am. J. Clin. Nutr. 51, 665–669 (1990).

    PubMed  CAS  Google Scholar 

  56. R. Rude, C. Mannoogian, L. Ehrlich, et al., Mechanics of blood pressure regulation by magnesium in man, Magnesium 8, 266–273 (1989).

    PubMed  CAS  Google Scholar 

  57. K. Saito, K. Hattori, T. Omatsu, et al., Effects of oral magnesium on blood pressure and red cell sodium transport in patients receiving long-term thiazide diuretics for hypertension, Am. J. Hypertens. 1, 71S-74S (1988).

    PubMed  CAS  Google Scholar 

  58. R. N. Stevenson, C. Keywood, A. Amadi, and D. J. Davies, Angiotensin converting enzyme inhibitors and conservation in patients with congestive heart failure, Br. Heart J. 66, 19–21 (1991).

    PubMed  CAS  Google Scholar 

  59. H. Ventura, F. Malik, M. Mehra, D. Stapelton, and F. Smart, Mechanisms of hypertension in cardiac transplantation and the role of cyclosporine, Curr. Opin. Cardiol. 12, 375–381 (1997).

    PubMed  CAS  Google Scholar 

  60. S. Vannini, B. Mazzola, L. Rodini, et al., Permanently reduced plasma ionized magnesium among recipients on cyclosporine, Transplant Int. 12, 244–249 (1999).

    Article  CAS  Google Scholar 

  61. T. Nguyen and R. Steiner, A trial of magnesium supplementation in renal transplant recipients receiving cyclosporine, Transplant Proc. 30, 4317–4319 (1998).

    Article  PubMed  CAS  Google Scholar 

  62. A. Prasad and D. Oberfeas, Zinc, Ann. Intern. Med. 73, 631–636 (1970).

    CAS  Google Scholar 

  63. H. Perry, Jr., R. Masironi, and J. Miller, Concentrations of trace metals (Cd, Zn, Sc, Cu, Cr, and Fe) in organs (heart, kidney and liver) of subjects with myocardial infarction on hypertension, J. Trace Elements Exp. Med. 4, 109–128 (1991).

    Google Scholar 

  64. G. Vivoli, M. Bergomi, S. Roverti, M. Pinotti, and E. Caselgrands, Zinc, copper and zinc- or copper-dependent enzymes in human hypertension, Biol. Trace Element Res. 49, 97–103 (1995).

    Article  CAS  Google Scholar 

  65. Y. Bakhle and A. Reynard, Characteristics of the angiotensin I converting enzyme from dog lung, Nature New Biol. 229, 187–189 (1971).

    Article  PubMed  CAS  Google Scholar 

  66. R. Hummelwright, N. Eickman, C. LuBien, K. Larch, and E. Solomen, Chemical and spectrographic studies of the binuclear copper active site of neurospora tyrosinase comparison to hemocyanins, J. Am. Chem. Soc. 102, 7339–7340 (1980).

    Article  Google Scholar 

  67. P. Samuels, E. Main, M. Mennuti, and S. Gabbe, The origin of increased serum iron in pregnancy induced hypertension, Am. J. Obstet. Gynecol. 157, 721–725 (1987).

    PubMed  CAS  Google Scholar 

  68. S. S. Entman, R. M. Moore, L. D. Richardson, and A. P. Killam, Elevated serum in toxemia of pregnancy, Am. J. Obstet. Gynecol. 143, 398–402 (1983).

    Google Scholar 

  69. M. Rabinowitz, D. Bellinger, A. Leviton, et al., Pregnancy hypertension, blood pressure during labor, and blood lead levels, Hypertension 10, 447–451 (1987).

    PubMed  CAS  Google Scholar 

  70. W. Harlan, R. Landis, R. Schmouder, et al., Blood lead and blood pressure, JAMA 253, 530–534 (1985).

    Article  PubMed  CAS  Google Scholar 

  71. V. Batuman, E. Landy, J. Maesaka, et al., Contribution of lead to hypertension with renal impairment, N. Engl. J. Med. 309, 17–21 (1983).

    Article  PubMed  CAS  Google Scholar 

  72. A. Stern, Derivation of a target concentration of Ph in soil based on elevation of adult blood pressure, Risk Anal. 16, 201–210 (1996).

    Article  PubMed  CAS  Google Scholar 

  73. H. Sandstead, A. Michelakis, and T. Temple, Lead intoxication, Arch. Environ. Health 20, 356–363 (1970).

    PubMed  CAS  Google Scholar 

  74. M. Amdur, J. Doull, and C. Klaasen, (eds.) Toxicology, Pergamon. New York, pp. 646–672 (1991).

    Google Scholar 

  75. S. Harvey, Heavy metals, in The Pharmacological Basis of Therapeutics, L. Goodman and A. Gilman, eds., MacMillan, New York, pp. 1598–1604 (1975).

    Google Scholar 

  76. Y. El-Sadik and A. El-Dakhakhny, Effects of exposure of workers to mercury at a sodium hydroxide producing plant, Am. Ind. Hyg. Assoc. J. 6, 705–710 (1970).

    Google Scholar 

  77. L. Shiryaev, On arterial hypertension in subjects exposed occupationally to the effect of metallic mercury, Gigiena Truda Professionalnye Zabalevaniia 15, 3–6 (1971).

    Google Scholar 

  78. M. Barni, et al., Resenti prospective sulla anatomica pathologica della intossicazione cronica da mercario, Fol Medica (Naples) 50, 641 (1967).

    CAS  Google Scholar 

  79. C. Huggins, K. Corcoran, J. Gordon, et al., Kenetics of the plasma and lung angiotensin I converting enzymes, Circ. Res. 27(Suppl. 1), I93-I108 (1970).

    Google Scholar 

  80. D. Roza and L. Berman, The pathophysiology of barium, J. Pharmacol. Exp. Ther. 177, 433–439 (1971).

    PubMed  CAS  Google Scholar 

  81. C. Brenniman, T. Namekata, C. Kozolo, et al., Cardiovascular death rates in communities with elevated levels of barium in drinking water, Environ. Res. 20, 318–324 (1979).

    Article  PubMed  CAS  Google Scholar 

  82. R. Rubin, The role of calcium in the release of neurotransmitter substances and hormones, Pharmacol. Rev. 22, 398–428 (1970).

    Google Scholar 

  83. H. Perry, Jr., S. Koop, E. Perry, and W. Erlanger, Hypertension and associated cardiovascular abnormalities induced by chronic barium feedings, J. Toxicol. Environ. Health 28, 373–384 (1989).

    Article  PubMed  CAS  Google Scholar 

  84. H. Schroeder, Cadmium as a factor in hypertension, J. Chronic Dis. 18, 647–656 (1965).

    Article  CAS  Google Scholar 

  85. H. Schroeder, A. Nason, and I. Tipton, Essential trace metals in man, J. Chronic Dis. 20, 769–770 (1967).

    Article  Google Scholar 

  86. T. Syverson, T. Stray, G. Syverson, and J. Opstad, Cadmium and zinc in human liver and kidney, Scand. J. Clin. Lab. Invest. 36, 251–256 (1976).

    Google Scholar 

  87. J. Morgan, Tissue cadmium concentration in men, Arch. Intern. Med. 123, 405–408 (1969).

    Article  PubMed  CAS  Google Scholar 

  88. H. Perry, Jr. and M. Erlander, Metal-induced hypertension following chronic feeding of low doses of cadmium and mercury, J. Lab. Clin. Med. 83, 541–547 (1974).

    PubMed  CAS  Google Scholar 

  89. H. Perry, Jr. and M. Erlander, Reversal of cadmium-induced hypertension by d-myoinositol-1,2,6-trisphosphate, J. Toxicol. Environ. Health 28, 151–159 (1999).

    Google Scholar 

  90. World Health Organization, Environmental Health Criteria. Volume 18 Arsenic, World Health Organization, Geneva, pp. 43–102 (1981).

    Google Scholar 

  91. L. Goodman and A. Gilman. The Pharmacological Basis of Therapeutics, Pergamon, New York, pp. 1602 (1990).

    Google Scholar 

  92. C. Chen, Y. Hsuch, M. Lai, et al., Increased prevalence of hypertension and long-term arsenic exposure, Hypertension 25(1), 53–60 (1995).

    PubMed  Google Scholar 

  93. B. Upshaw, and J. Clayborn, Mechanical arsenic poisoning, South. Med. J. 88, 892 (1995).

    PubMed  Google Scholar 

  94. D. Reed, J. Crawley, S. Faro, et al., Thallotoxicosis acute manifestatious and sequelae, JAMA 183, 480–490 (1969).

    Google Scholar 

  95. W. Bank, D. Pleasure, K. Suziki, et al., Thallium poisoning, Arch. Neurol. 26, 456–464 (1972).

    PubMed  CAS  Google Scholar 

  96. K. Stark, A. Burger, and H. Schummann, Thallium and Brenzcateckinaminstoffwechsel: thallium and catacholamine metabolism, Naunym Schmiedeberg Arch. Pharm. 264, 310–311 (1969).

    Article  Google Scholar 

  97. L. Hanlon, M. Romaine III, F. Gilroy, and J. Dertrick, Lithium chloride as a substitute for sodium chloride in the diet, JAMA 139, 688–692 (1949).

    CAS  Google Scholar 

  98. A. Corcoran, R. Taylor, and I. Page, Lithium poisoning from the use of salt substitutes, JAMA 139, 685–692 (1949).

    CAS  Google Scholar 

  99. H. Hansen, and A. Amdisen, Lithium intoxication, Q. J. Med. 47, 123–144 (1978).

    PubMed  CAS  Google Scholar 

  100. J. Michaeli, D. Bentshay, R. Kidron, and H. Dasberg, Severe hypertension and lithium intoxication, JAMA 251, 1680 (1984).

    Article  PubMed  CAS  Google Scholar 

  101. P. Zachariah and A. Rosenbaum, Stabilization of high blood pressure with tricyclic antidepressants and lithium combinations in hypertensive patients, Mayo Clin. Proc. 57, 625–628 (1982).

    PubMed  CAS  Google Scholar 

  102. J. Schildkraut, S. Schanberg, and I. Kopia, The effects of lithium ion on H3-norepinephrine, Life Sci. 5, 1479–1483 (1966).

    Article  PubMed  CAS  Google Scholar 

  103. C. Wilbur, Toxicology of selenium, Clin. Toxicol. 17, 198 (1980).

    Google Scholar 

  104. X. Chen, G. Yang, and J. Chen, Studies on the relationship of selenium and Keshan disease, Biol. Trace Element Res. 2, 91–107 (1980).

    CAS  Google Scholar 

  105. V. Lavine, Biological studies of selenium, Ann. NY Acad. Sci. 26, 385–394 (1915).

    Article  Google Scholar 

  106. J. Tuomilehto, Nutrition related determinants of blood pressure, Prev. Med. 14, 413–427 (1985).

    Article  PubMed  CAS  Google Scholar 

  107. Y. Deguchi, Relationships between blood selenium concentrations and grasping power, blood pressure, hematocrit and hemoglobin concentrations in Japanese rural residents, Jpn. J. Hyg. 39, 924–929 (1985).

    CAS  Google Scholar 

  108. L. Han and S. Zhou, Selenium supplementtion in the prevention of pregnancy induced hypertension, Chin. Med. J. 107, 870–871 (1994).

    PubMed  CAS  Google Scholar 

  109. H. Perry, Jr., R. Masironi, Q. Parr, and J. Miller, Concentrations of trace metals (Cd, Zn, Se, Cu, Cr and Fe) in organs (heart, kidney and liver) of subjects with myocardial infarction or hypertension: WHO/AEA myocardial infarction and hypertension on autopsy study, J. Trace Elements Exp. Med. 4, 109–128. (1991).

    Google Scholar 

  110. H. Hilse, P. Ochme, W. Krause, and K. Hecht, Effect of sodium selenite on experimental hypertension in rat, Acta Physiol. Pharmacol. Bulg. 5, 47–50 (1979).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loyke, H.F. Effects of elements in human blood pressure control. Biol Trace Elem Res 85, 193–209 (2002). https://doi.org/10.1385/BTER:85:3:193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:85:3:193

Index Entries

Navigation