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Abstract

COVID-19 pandemic is a global crisis of an unprecedented global scale. Governments
were faced with the challenge of designing and implementing policies with great uncertainties
concerning their direct impacts and externalities. The effects of so called “policies” were
often negative and in some cases further exacerbated the compounding healthcare and
€conomic crises.

This paper presents how computer simulations can be used to test various policies in
Yerevan, Armenia, before applying them in real life. Further, it is demonstrated how to
identify the features that need to be collected to train well-performing and ethical AT models
for healthcare management. Additionally, a machine learning model is introduced that helps
to reduce the number of necessary PCR tests by around 98.7%.

Key words: covid-19, simulation, machine learning, disease modeling, strategic
management, agent-based modeling, healthcare management.

Introduction

The COVID-19 pandemic has had a formative impact on the daily lives of people
around the world since December 2019 at such a scale and velocity that is arguably
unprecedented in modern history [1]. Numerous lockdowns were implemented by the
governments to combat the spread of the virus since then [2]. Approaches to control the
pandemic varied from country to country, and although some measures were successful in
reducing the speed with which the virus spread, they also had a negative impact on
economies, often resulting in recessions [3]. Hence there is a trade-off between the health
risks posed by COVID-19 and the economic restrictions resulting from lockdowns and other
limitations on economic activity. Therefore, it is important to determine the optimal policies
that will minimize the death toll while maximizing economic activity.
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Interest in agent-based simulations increased dramatically since the start of the
pandemic, primarily because of the freedom and flexibility that they provide. In some cases,
models for other infections were re-purposed for COVID-19, in other cases models were
developed from scratch [4, 5]. In TU Berlin the MATSim transport mobility simulator was
extended to also model the infection spread [6]. While MATSim uses spatial information
from real cities for modeling, we opted for an approach that is less computationally complex,
more scalable and more “tweakable”. The Covasim [7] simulator was developed from scratch
to be fast and highly customizable. Covasim uses contact networks for virus transmission.
While Covasim is much easier to use, more customizable and can use real-world demographic
information, it doesn't take into account the spatial information of real cities. This means that
while it is possible to generate simulations for abstract cities, it is not possible to adapt the
simulations for specific real-world cities.

Conflict setting

In this paper, we introduce the Evid open-source and agent-based epidemic simulator
written in Python. The simulator leverages spatial and demographic information of real cities
while ensuring customizability and ease of use. The simulator allows us to model various
types of government interventions aimed at reducing the likelihood of a healthcare system
becoming overloaded beyond its capacity. We use the number of occupied ICU beds as a
metric for healthcare system capacity and usage. The simulator outputs high-level statistics, as
well as more granular information. The most granular outcome of the simulator is made
similar to the contact tracing methods used by governments.

In the following sections, we demonstrate the structure and logic of the simulator and
present an example of the data that it produces. We run the simulator in Armenia's capital city
Yerevan with different policy scenarios and show how it can be used by governments for
policy testing. We then demonstrate how Machine Learning methods can be used to predict
the spread of a virus based on the contact tracing data generated by the simulator. We show
that in the case of available data it is possible to reduce the number of necessary PCR tests by
around 98.7% and still discover around 96% of the positive cases.

Materials and Methods

Environment

We want to create a virtual environment that will resemble the spatial and demographic
structure of a real city. The environment defines the space where agents will live and interact
with each other.

To include the spatial information of real cities in our environment, we use data
retrieved from OpenStreetMap.org [8]. It is also possible to use data from other sources, as
long as the format meets the requirements: the data is in a tabular form, where each row
contains the building's unique ID, district name, district id, coordinates and building type.
Based on that data we build a virtual environment resembling the spatial structure of the city.
An example of a virtual environment created on the data of the capital city of Armenia
Yerevan is presented in Fig. 1.

Buildings can be public (restaurants, cafes, schools, etc) or residential. Residential
buildings are divided into apartments. The number of apartments in each building is sampled
from a predefined distribution. While it is possible to add more public buildings to the
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configuration, the simulator must always have public buildings of the following types: school,
university, work and hospital.
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Fig. 1 The visualization of the geospatial data of Yerevan, Armenia used for creating the virtual
environment. The orange boxes are the buildings belonging to their administrative districts. The
color of each district represents the population in the respective district.

Agents

After creating the buildings, agents are distributed by district, according to the
predefined demographic statistics for each district. During the distribution, each agent is
assigned an apartment, age group, and gender. Age groups also determine whether the agent
will have a location for work or study.

To simulate the mobility of the agents, we need them to move between districts and
buildings and interact with agents. For this, we use the Mesa agent-based modeling
framework [9]. Mesa uses discrete steps for simulation. During one simulation step, every
agent performs a predefined set of instructions. In our case, each step corresponds to one
hour, hence, we need to do 24 simulation steps to simulate one day.

In each step each of the agents does two operations: move and infect. Agents move to a
building based on a probability distribution conditioned on the age group of the agent, day of
the week, and the time of the day. By adjusting the probabilities it is also possible to enforce a
lockdown by setting the probabilities of respective facilities to 0.

Disease transmission

After an agent finishes the moving step, a portion of agents which are in the same
building or apartment is sampled as contacted agents (the contact probability is defined for
each building type). If the agent is infected, we calculate the probability of its contacts getting
infected according to [10]. Some of the parameters that contribute to the calculation of the
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probability are room size, speaking frequency, loudness, whether people wear masks, etc. By
default, the parameters are adapted for COVID-19 according to [10], but they can be adjusted
for other diseases.

After infection, agents go through an incubation period, during which they don’t have
any symptoms and cannot infect other people. The incubation period is a random number of
steps, sampled from a normal distribution with a default mean of 48 and a standard deviation
of 7. After the incubation period is over, agents get severity status, which can be
asymptomatic, mild, or severe, based on a predefined probability distribution. If the status is
asymptomatic, agents continue to move as usual but can infect other agents. In case of mild
severity, agents are quarantined in their apartments, and if the status is severe, they are taken
to a hospital, where the possibility of dying is much lower. Hospitals have a finite maximum
capacity. If there are no ICU beds available, agents are quarantined in their homes, until space
becomes available and they are moved to a hospital.

If the infected agent does not die within a predefined number of days (about 10), they
become more healthy, and cannot infect others or get infected. In that case, they are removed
from the simulator, since they cannot affect the outcome of the simulator anymore.

Research results

We configured the simulator for the capital of Armenia, Yerevan. The city is divided
into 12 districts, with a total population of 1080311 people [11]. We also configured
information such as the age and sex distribution [12], and the number of residential buildings
and apartments in each district [13] for the simulator. The number of cafes, universities,
schools, offices, shops and other buildings is retrieved from the OpenStreetMap [8].

For the parameters that we couldn’t find in open source databases (such as areas or
volumes of the facilities, probability of having a contact in the facility, number of the total
ICU beds, etc.), we used our judgment to assign approximate values, which later can be tuned
to get the more accurate output.

We ran the simulator for 30 simulation days (i.e. 1440 steps) and logged only contacts
of infected people. This generated around 3.4 GB of data.

Within those 60 days, we had 75333 infections 1631 of which died. We can also
observe a higher death rate when there are no ICU beds available (Fig. 2).

To demonstrate how the simulator can be used for testing policies, we run the simulator
for 31 days with different parameters and policies and with 100 initially infected agents. We
summarize the results of the experiments below.

Death probability of infected agents Available ICU beds
0.0040 2000
00035 1750
0.0030 1500
0.0025 1250
0.0020 1000
0.0015 750
0.0010 500
0.0005 250
0.0000 ]
] 10 20 30 40 50 60 ] 10 20 0 40 50 &0
day day

a

Fig. 2 There exists a moderate negative correlation of 0.625 between the
probability of dying of infected agents (a) and the number of available ICU beds (b).
When there are no beds available the probability of dying is higher.
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e Experiment 1 (Fig. 3 (a)): We run the simulator as usual without any restrictions. In 31
days around 7500 agents were infected and without any measures to stop the virus, the
number of infections kept increasing.

e Experiment 2 (Fig. 3 (b)): We introduced the mandatory mask policy from the first day
till the last. In this case, the total number of infections was under 1000, and the infection
wave died in around 20 days.

e Experiment 3 (Fig. 3 (c)): the simulation started as usual and in day 15 we introduced
the mandatory mask policy. We can see how the trend of infection changes from
increasing to decreasing right after the mask mandate.

e Experiment 4 (Fig. 3 (d)): the simulation started as usual, from day 15 cafes and gyms
were closed. In this scenario no one wears masks, and we can see that while the trend
changes after the policy change, the cases are still much higher compared to the
mandatory mask mandate in experiment 3.

e Experiment 5 (Fig. 3 (¢)): There is a mandatory mask mandate from the first day, and
the gyms and cafes are closed from day 15. In this scenario, closing gyms and cafes
didn't have much impact, as on day 15 the infection wave was dying already.

e Experiment 6 (Fig. 3 (f)): In this scenario, a full lockdown on all public facilities was
introduced from day 15. As expected a full lockdown is effective and reduces the
number of active cases to almost 0 within 15 days.

e Experiment 7 (Fig. 3 (g)): In this scenario, there is a full lockdown and mask mandate
from day 15. The mask mandate is not having an impact because of full lockdown
agents don't have contact with other agents other outside their household.

e Experiment 8 (Fig. 3 (h)): In this experiment, we enforce a mask mandate from the first
day and a full lockdown from day 15. The full lockdown doesn't affect the curve for the
same reason mentioned in experiment 5.

Next, we use the synthetic data generated by the simulator to train Machine Learning
models for predicting the risks of people catching the virus, given that they had contact with
an infected person.

The real-life scenario that we try to replicate with synthetic data is the following: a
government is using a contact tracing application to identify contacts with infected people.
The people who have contact with an infected person are tested for COVID-19 using a PCR
test. For the sake of simplicity and without loss of generality we assume that everyone in the
city uses the contact tracing application.

The government would like to reduce the number of necessary tests by using machine
learning algorithms on the contact tracing data. The data has to be granular enough to give
good enough predictions but at the same time needs to use features that are within ethical and
legal bounds. For example, it cannot contain any information that can be used for personal
identification.

For this, we clean and preprocess the 60-day data described in the previous subsection.

After the preprocessing the data for training has the structure shown in Table 1. As we can see
the data doesn't hold any personal features and cannot be used for personal identification.
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Fig. 3 Experiment results of different policies:
(a) No policies, (b) Mask mandate from day 1, (c)
Mask mandate from day 15, (d) Cafes and gyms are closed from day 15, (¢) Mask mandate from day 1,
and cafes and gyms are closed from day 15, (f) Full lockdown from day 15, (g) Mask mandate and full
lockdown from day 15, (h) Mask mandate from day 1 and full lockdown from day 15

Table 1
Confusion matrix on the test set

0 1
0 | 7521327 950469
1 |12624 12624

We use an XGBoost [14] model for training, with a max-depth of 4 and use positive
class scaling to deal with class imbalance. We choose to use XGBoost as even after several
years of its introduction, it is still one of the state-of-the-art methods for tabular data [15].
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From the model’s confusion matrix (Table 1) on the test set, we can see that we get

around 96% of True Positive Rate (TPR) and 89% of True Negative Rate. This means that if

we perform tests only on the agents predicted as positive by the model, we will need to do

only 963093 tests instead of 8484957 and will miss only 537 positive cases. This means that

we can reduce the number of required tests by around 98.7% and still detect 96% of the
positive cases.

Conclusions

In this paper we introduced the novel Evid open-source, agent-based pandemic
simulator that allows us to simulate pandemics on virtual replicas of real cities and tests
policies before applying them in real life.

We also demonstrated with an example that the synthetic dataset can be used to develop
ethical Al models for managing the pandemic. We developed an example model that helps us
to reduce the number of necessary tests by around 98.7%. It is important to note that while
this holds on a synthetic dataset, the number will be different in a real-world scenario because
of less data availability and more noisy datasets.
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BBIYNCJIMTEJIBHOE MOAEJINPOBAHUE NHOEKIIMOHHbIX
3ABOJIEBAHUM U ITPOTHO3UPOBAHUE UX PACITIPOCTPAHEHUS B
KPYIIHBIX I'OPOJAX

1 2
be3upraunsu I'.B.", Ceprosin I'.T.
"Mionxencruii mexnuueckuii ynusepcumem
?Epesanckuii 2ocydapcmeentuiii yHusepcumen

[Mangemuss COVID-19 - rnoGaneHBI  Kpu3uc OecHperieIeHTHOTO — MaciiTada.
[IpaBuUTENHCTBA CTOJKHYIUCH C TPOOIEMON Pa3paObOTKU U peaTu3aiy MOJUTHKU ¢ OOTBIION
HEOIPEENIEHHOCTbI0 B OTHOUICHHM €€ MPSMOT0 BO3JCHCTBUS U BHEHIHHX (DaKTOPOB.
[TocneacTBus yka3aHHOM MOJIMTUKU YacTO ObUIM HETaTUBHBIMU, a B HEKOTOPBIX CIy4asx elle
Oomplie yCyryOmsiii KpU3HCHI B cdepe 3apaBOOXpaHEHUS W SKOHOMHUKH. B 3Toil cTaThe
MOKa3aHO, KaK MOYKHO HCIIOJb30BaTh KOMIIBIOTEPHOE MOJAEIUPOBAHUE MJiI IPOBEPKU
pa3IMuHbIX NOIUTUK B EpeBaHe, mepen HMX NPUMEHEHHEM B pealbHOM »ku3HU. [lanee
JEMOHCTPHUPYETCS, KaK OMNpPENSIUTh MapaMeTphl, KOTOpPbIE HYKHBI IS Ppa3padOTKu
3¢ (HEeKTHBHBIX W OTUYHBIX MOJENIed MCKYCCTBEHHOTO WHTEIUICKTa Ui YIPaBJICHUS
3npaBooxpaHeHueM. Kpome Toro, mpejcraBiieHa MOJIENbh MAIIUHHOTO OOYYEHHs, KOTOpas
MIOMOTaeT COKpaTUTh KojauuecTBo Heooxoaumbix [1I{P-tecToB nmpumepno Ha 98,7%.

Knroueewie cnosa: COVID-19, monenupoBanne, MallInHHOE 00y4YeHUE, MOICTUPOBAHUE
3a00JIeBaHUN, CTpPATETUUYECKUM MEHEIKMEHT, AareHTHOE MOJIeIMpOBaHUe, YIIpaBJICHUE
3/IpaBOOXPAHEHUEM.
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