Skip to main content

Abstract

The normal esophageal swallow is a complex process requiring coordinated autonomic innervation, complex contractions of striated and smooth muscle, and appropriately timed relaxation at the lower esophageal sphincter (LES) to deliver a bolus to the stomach (Fu et al. Non-neoplastic disorders of the esophagus). Impairment of any aspect in that process can result in esophageal dysmotility, a group of disorders characterized by abnormal peristalsis of the esophageal body or impaired relaxation at the LES. Esophageal dysmotility can occur both primarily and secondarily as a feature in other disorders, and its effects can be debilitating. Appropriate management of esophageal dysmotility hinges on accurate assessment, best accomplished by a multidisciplinary team with careful history and utilization of both functional imaging as well as high-resolution manometry (HRM). Treatment ranges from conservative approaches such as dietary modification to surgical intervention including Heller myotomy. An understanding of esophageal dysmotility is important for those caring for children with dysphagia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu B, Rueda-Pedraza ME. Non-neoplastic disorders of the esophagus. In: Goldblum JR, editor. Gastrointestinal and liver pathology. Philadelphia: Elsevier; 2012.

    Google Scholar 

  2. Fiorino KN, Nurko S. Developmental anatomy and physiology of the esophagus. In: Wyllie R, Hyams J, Kay M, editors. Pediatric gastrointestinal and liver disease. Philadelphia: Elsevier; 2016.

    Google Scholar 

  3. Helm J, Dodds W, Riedel D. Determinant of esophageal acid clearance in normal subjects. Gastroenterology. 1983;85:607–12.

    Article  CAS  PubMed  Google Scholar 

  4. Milla P, Bisset W. The gastrointestinal tract. Br Med Bull. 1988;4:1010–24.

    Article  Google Scholar 

  5. Miller L, Clave P, Farre R, et al. Physiology of the upper segment, body, and lower segment of the esophagus. Ann N Y Acad Sci. 2013;1300:261–77.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Staiano A, Boccia G, Salvia G, et al. Development of esophageal peristalsis in preterm and term neonates. Gastroenterology. 2007;132(5):1718–25.

    Article  PubMed  Google Scholar 

  7. Goyal RK, Rattan S. Nature of the vagal inhibitory innervation to the lower esophageal sphincter. J Clin Invest. 1975;5:1119–26.

    Article  Google Scholar 

  8. Goyal RK, Chaudhury A. Physiology of normal esophageal motility. J Clin Gastroenterol. 2008;42(5):610–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mitre M, Katzka D. Pathophysiology of GERD: lower esophageal sphincter defects. Pract Gastroenterol. 2004:44–58.

    Google Scholar 

  10. Kahrilas PJ, Bredenoord AJ, Fox M, et al. The Chicago Classification of esophageal motility disorders, v3.0. Neurogastroenterol Motil. 2015;27(2):160–74.

    CAS  PubMed  Google Scholar 

  11. Fox MR, Bredenoord AJ. Oesophageal high-resolution manometry: moving from research into clinical practice. Gut. 2008;57(3):405–23.

    Article  CAS  PubMed  Google Scholar 

  12. Clouse R, Prakash C. Topographic esophageal manometry: an emerging clinical and investigative approach. Dig Dis. 2000;18(2):64–74.

    Article  CAS  PubMed  Google Scholar 

  13. Kessig BF, Smout AJPM, Bredenoord AJ. Clinical applications of esophageal impedance monitoring and high-resolution manometry. Curr Gastroenterol Rep. 2012;14:197–205.

    Article  Google Scholar 

  14. Rohof WOA, Bredenoord AJ. Chicago Classification of esophageal motility disorders: lessons learned. Curr Gastroenterol Rep. 2017;19(8):27. https://doi.org/10.1007/s11894-017-0576-7.

    Article  Google Scholar 

  15. Weijenborg PW, et al. Normal values for solid-state esophageal high-resolution manometry in a European population: an overview of all current metrics. Neurogastroenterol Motil. 2014;26(5):654–9.

    Article  CAS  PubMed  Google Scholar 

  16. Nikaki K, Ooi JLS, Sifrim D. Chicago classification of esophageal motility disorders: applications and limits in adults and pediatric patients with esophageal symptoms. Curr Gastroenterol Rep. 2016;18:59.

    Article  PubMed  Google Scholar 

  17. Edeani F, Malik A, Kaul A. Characterization of esophageal motility disorders in children presenting with dysphagia using high-resolution manometry. Curr Gastroenterol Rep. 2017;19(3):13.

    Article  PubMed  Google Scholar 

  18. Diniz LO, Towbin AJ. Causes of esophageal food bolus impaction in the pediatric population. Dig Dis Sci. 2012;57(3):690–3.

    Article  PubMed  Google Scholar 

  19. Gonsalves N. Eosinophilic gastrointestinal disorders. Clin Rev Allerg Immunol. 2019 Mar 22. https://doi.org/10.1007/212016-019-08732-1. [Epub ahead of print].

  20. Dellon ES, Gonsalves N, Hirano I, Furuta GT, Liacouras CA, Katzka DA. American College of Gastroenterology clinical guideline: evidence-based approach to the diagnosis and management of esophageal eosinophilia and eosinophilic esophagitis (EoE). Am J Gastroenterol. 2013;108:679–92.

    Article  PubMed  Google Scholar 

  21. Noel RJ, Putnam PE, Rothenberg ME. Eosinophilic esophagitis. N Engl J Med. 2004;351:940–1.

    Article  CAS  PubMed  Google Scholar 

  22. Liacouras CA, Spergel JM, Ruchelli E, et al. Eosinophilic esophagitis: a 10-year experience in 381 children. Clin Gastroenterol Hepatol. 2005;3:1198–206.

    Article  PubMed  Google Scholar 

  23. Assa’ad AH, Putnam PE, Collins MH, et al. Pediatric patients with eosinophilic esophagitis: an 8-year follow-up. J Allergy Clin Immunol. 2007;119:731–8.

    Article  PubMed  Google Scholar 

  24. Nurko S, Rosen R. Esophageal dysmotility in patients with eosinophilic esophagitis. Gastrointest Endosc Clin N Am. 2008;18(1):73–ix.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Spechler SJ, Konda V, Souza R. Can eosinophilic esophagitis cause achalasia and other esophageal motility disorders? Am J Gastroenterol. 2018;113:1594–9.

    Article  PubMed  Google Scholar 

  26. Cheng E, Souza RF, Spechler SJ. Tissue remodeling in eosinophilic esophagitis. Am J Physiol Gastrointest Liver Physiol. 2012;303:G1175–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gleich GJ, Adolphson CR, Leiferman KM. The biology of the eosinophilic leukocyte. Annu Rev Med. 1993;44:85–101.

    Article  CAS  PubMed  Google Scholar 

  28. Pinheiro PFM, e Silva ACS, Pereira RM. Current knowledge on esophageal atresia. World J Gastroenterol. 2012;18(28):3662–72.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Castilloux J, Fuare C. Esophageal atresia. In: Faure C, Di Lorenzo C, Thapar N, editors. Pediatric neurogastroenterology. Springer: Humana Press; New Jersey; 2013. p. 295–300.

    Google Scholar 

  30. Taylor AC, Breen KJ, Auldist A, et al. Gastroesophageal reflux and related pathology in adults who were born with esophageal atresia: a long-term follow-up study. Clin Gastroenterol Hepatol. 2007;5:702–6.

    Article  PubMed  Google Scholar 

  31. Aspirot A, Faure C. Esophageal dysmotility: characterization and pathophysiology. Dis Esophagus. 2013;26:405–9.

    Article  CAS  PubMed  Google Scholar 

  32. Lemoine C, Aspirot A, Le Henaff G, et al. Characterization of esophageal motility following esophageal atresia repair using high-resolution esophageal manometry. J Pediatr Gastroenterol Nutr. 2013;56(6):609–14.

    Article  PubMed  Google Scholar 

  33. Faure C, Grunder FR. Dysmotility in esophageal atresia: pathophysiology, characterization, and treatment. Front Pediatr. 2017;5:130.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Krishnan U, Mousa H, Dall’Oglio L, et al. EPSGHAN-NASPGHAN guidelines for the evaluation and treatment of gastrointestinal and nutritional complications in children with esophageal atresia-tracheoesophageal fistula. J Pediatr Gastroenterol Nutr. 2016;63:550–70.

    Article  PubMed  Google Scholar 

  35. Lauriti G, Lisi G, Chiesa PL, Zani A, Pierro A. Gastroesophageal reflux in children with neurological impairment: a systematic review and meta-analysis. Pediatr Surg Int. 2018;34:1139–49.

    Article  PubMed  Google Scholar 

  36. Pimpalwar A, Najmaldin A. Results of laparoscopic antireflux procedures in neurologically impaired children. Semin Laparosc Surg. 2002;9:190–6.

    Article  CAS  PubMed  Google Scholar 

  37. Iwanaka T, Kanamori Y, Sugiyama M, et al. Laparoscopic fundoplication for gastroesophageal reflux disease in infants and children. Surg Today. 2010;40:393–7.

    Article  PubMed  Google Scholar 

  38. Pacilli M, Eaton S, Maritsi D, et al. Factors predicting failure of redo Nissen fundoplication in children. Pediatr Surg Int. 2007;23:499–503.

    Article  PubMed  Google Scholar 

  39. Rossi V, Mazzola C, Leonelli L, et al. Long-term outcome and need of re-operation in gastro-esophageal reflux surgery in children. Pediatr Surg Int. 2016;32:277–83.

    Article  PubMed  Google Scholar 

  40. Galindo G, Vassalle J, Marcus SN, Triadafilopoulos G. Multimodality evaluation of patients with gastroesophageal reflux disease symptoms who have failed empiric proton pump inhibitor therapy. Dis Esophagus. 2013;26:443–50.

    Article  CAS  PubMed  Google Scholar 

  41. Baron M, Kahaleh B, Bernstein EJ, et al. An interim report of the scleroderma clinical trials consortium working groups. J Scleroderma Relat Disord. 2019;4(1):17–27.

    Article  PubMed  Google Scholar 

  42. Flick JA, Boyle JT, Tuchman DN, et al. Esophageal motor abnormalities in children and adolescents with scleroderma and mixed connective tissue disease. Pediatrics. 1988;82(1):107–11.

    CAS  PubMed  Google Scholar 

  43. Tiddens HA, van der Net JJ, de Graeff-Meeder ER, et al. Juvenile-onset mixed connective tissue disease: longitudinal follow-up. J Pediatr. 1993;122(2):191–7.

    Article  CAS  PubMed  Google Scholar 

  44. Weber P, Ganser G, Frosch M, et al. Twenty-four hour intraesophageal pH monitoring in children and adolescents with scleroderma and mixed connective tissue disease. J Rheumatol. 2000;27(11):2692–5.

    CAS  PubMed  Google Scholar 

  45. Lerner DG, Sood MR. Achalasia and other motor disorders. In: Wyllie R, Hyams J, Kay M, editors. Pediatric gastrointestinal and liver disease. Philadelphia: Elsevier; 2016.

    Google Scholar 

  46. Kocoshis SA, Goldschmidt ML, Nathan JD, et al. Esophageal dysmotility: An intrinsic feature of megacystis, microcolon, hypoperistalsis syndrome (MMIHS). J Pediatr Surg. 2018. pii: S0022-3468(18)30558-X.

    Google Scholar 

  47. Berdon WE, Baker DH, Blanc WA, et al. Megacystis-microcolon-intestinal hypoperistalsis syndrome: a new cause of intestinal obstruction in the newborn. Report of radiologic findings in five newborn girls. Am J Roentenol. 1976;126:957–64.

    Article  CAS  Google Scholar 

  48. Gosemann J-H, Puri P. Megacystis microcolon intestinal hypoperistalsis syndrome: systematic review of outcome. Pediatr Surg Int. 2011;27:1041–6.

    Article  PubMed  Google Scholar 

  49. Wangler MH, Gonzaga-Jauregui C, Gambin T, et al. Heterozygous de novo and inherited mutations in the smooth muscle actin (ACTG2) gene underlie megacystis-microcolon intestinal peristalsis syndrome. PLoS Genet. 2014;10:e1004258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. American Speech Language and Hearing Association (2004). Knowledge and skills needed by speech-language pathologists performing videofluoroscopic swallowing studies. Retrieved April 1, 2019 from www.asha.org/policy.

  51. Rosen JM, Lavenbarg T, Cocjin J, Hyman PE. Diffuse esophageal spasm in children referred for manometry. J Pediatr Gastroenterol Nutr. 2013;56(4):436–8.

    Article  PubMed  Google Scholar 

  52. Shakespear JS, Blom D, Huprich JE, Peters JH. Correlation of radiographic and manometric findings in patients with ineffective esophageal motility. Surg Endosc. 2004;18(3):459–62.

    Article  CAS  PubMed  Google Scholar 

  53. Ott DJ, Richter JE, Chen YM, Wu WC, Gelfand DW, Castell DO. Esophageal radiography and manometry: correlation in 172 patients with dysphagia. AJR Am J Roentgenol. 1987;149(2):307–11.

    Article  CAS  PubMed  Google Scholar 

  54. Massey BT, Dodds WJ, Hogan WJ, Brasseur JG, Helm JF. Abnormal esophageal motility. An analysis of concurrent radiographic and manometric findings. Gastroenterology. 1991;101(2):344–54.

    Article  CAS  PubMed  Google Scholar 

  55. Gariepy CE, Mousa H. Clinical management of motility disorders in children. Semin Pediatr Surg. 2009;18:224–38.

    Article  PubMed  Google Scholar 

  56. Rosen R, Garza JM, Tipnis N, Nurko S. An ANMS-NASPGHAN consensus document on esophageal and antroduodenal manometry in children. Neurogastroenterol Motil 2018;30(3). https://doi.org/10.1111/nmo.13239. PMID: 29178261.

    Article  Google Scholar 

  57. Van Lennep M, van Wijk MP, Omari TIM, et al. Clinical management of pediatric achalasia: a survey of current practice. J Pediatr Gastroenterol Nutr. 2019;68(4):521–6.

    Article  PubMed  Google Scholar 

  58. Singendonk MM, Kritas S, Cock C, et al. Applying the Chicago Classification criteria of esophageal motility to a pediatric cohort: effects of patient age and size. Neurogastroenterol Motil. 2014;26(9):1333–41.

    Article  CAS  PubMed  Google Scholar 

  59. Perin S, McCann CJ, Borrelli O, de Coppi P, Thapar N. Update on foregut molecular embryology and role of regenerative medicine therapies. Front Pediatr. 2017;5:1–9.

    Article  Google Scholar 

  60. Boleken M, Demirbilek S, Kirimiloglu H, et al. Reduced neuronal innervation in the distal end of the proximal esophageal atretic segment in cases of esophageal atresia with distal tracheoesophageal fistula. World J Surg. 2007;31:1512–7.

    Article  PubMed  Google Scholar 

  61. Metzger M, Caldwell C, Barlow AJ, Burns AJ, Thapar N. Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterologia. 2009;136:2214–25.

    Article  CAS  Google Scholar 

  62. Cooper JE, Natarajan D, McCann CJ, et al. In vivo transplantation of fetal human gut-derived enteric neural crest cells. Neurogastroenterol Motil. 2017;29(1). https://doi.org/10.1111/nmo.12900.

    Article  CAS  Google Scholar 

  63. Rohof WOA, Bredenoord AJ. Chicago Classification of esophageal motility disorders: lessons learned. Curr Gastroenterol Rep. 2017;19:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Hoffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoffman, M.R., Braden, M.N., McMurray, J.S. (2020). Esophageal Dysmotility. In: McMurray, J., Hoffman, M., Braden, M. (eds) Multidisciplinary Management of Pediatric Voice and Swallowing Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-26191-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26191-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26190-0

  • Online ISBN: 978-3-030-26191-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics