
29

Priority-aware Job Scheduling Algorithm in
Cloud Computing: A Multi-criteria Approach
Shamsollah Ghanbari
Islamic Azad University, Ashtian Branch, Ashtian, Iran, myrshg@gmai.com

*Correspondence:
Shamsollah Ghanbari,

Islamic Azad University,
Ashtian Branch, Ashtian,
Iran, myrshg@gmai.com

Abstract
Job scheduling is one of the most problematic theoretical issues in
the area of cloud computing. The existing scheduling methods at-
tempt to consider only a few criteria of scheduling without covering
other sufficient criteria. Since, cloud computing faces a large scale
resource for allocating to a large number of jobs, due to optimiz-
ing the users’ requirements; therefore, a suitable cloud-based job
scheduling method must satisfy a wide range of criteria. Besides,
in cloud computing, the jobs come with different priorities. Thus, in
the cloud environment, a suitable job scheduling algorithm should
be able to combine several priorities. This paper proposes a new
multi-criteria priority-aware job scheduling algorithm in cloud com-
puting. Experimental results indicate that the proposed method is
able to consider different criteria for scheduling.

Keywords: cloud computing, multi-criteria, priority-aware job
scheduling.

Azerbaijan Journal of High Performance Computing, Vol 2, Issue 1, 2019, pp.29-38
https://doi.org/10.32010/26166127.2019.2.1.29.38

1. Introduction
Cloud computing is a large-scale distributed computing assumption that is

motivated by economies of scope, in which a pool of abstracted, dynamically-
scalable, simulated, storage, platforms, managed computing power, and services
are given on demand to external consumers through the internet. Scheduling of jobs
is one of the most problematic theoretical issues in the area of cloud computing. The
main goal of job scheduling is to obtain high performance computing and the best
system throughput [1]. The primary job scheduling algorithms including First Come
First Serve(FCFS), Shortest Job First (SJF) [2], Shortest Remaining Job First (SRJF)
[3, 4] and Round Robin [5] are not suitable methods for scheduling in the area of
cloud computing. Because the basic job scheduling algorithms can fulfill a few
metrics of scheduling. There is considerable literature to concern the scheduling of
jobs in cloud computing. According to [6], the related algorithms can be categorized
into two significant classes, including batch mode and online mode algorithms. In the
batch mode algorithms, jobs are collected from the different users and queued when
they arrive in the system. The scheduling will start after a fixed period. The other
possible type of scheduling algorithms is called “Online mode heuristic”
scheduling algorithm. In online mode algorithms, jobs are immediately scheduled
when they arrive in the system. The online mode algorithms are more appropriate for
the cloud environment because the cloud environment is a heterogeneous system.
Since, cloud computing considers a large scale resource to allocate a large number
of jobs, in order to optimize the users' requirements. Therefore, a suitable cloud-
based job scheduling method must fulfill different criteria [7, 8, 9, 10, 11, 12].
According to our knowledge, the following criteria can be considered for job
scheduling algorithms in cloud-based environments.

• Performance criteria including makespan, throughput, latency, total
completion time, total communication time, total cost, system utilization ant Qos [13].

• Job criteria including divisible load vs. nondivisible load [14], sequentially
dependent vs. sequentially independent, priority based vs. non-priority based [15].

• Strategies criteria including batch mode vs online mode [6], predictable vs
non-predictable [16], deterministic vs non deterministic [17].

• Resource criteria including heterogonous vs. homogenous [18], preemptive
vs non-preemptive, dynamic vs static.

• Reliability and validity criteria including trust [19], fairness [20]
• Algorithm criteria including time complexity, space complexity [21].
In general, it is not possible to optimize all criteria for job scheduling using any

algorithm. Typically, the criteria are prioritized, with most attention paid to the most
important criterion. The existing algorithms can consider some particular criteria
because of its nature. A multiple criteria algorithm can be much more useful for job
scheduling in cloud computing. Accordingly, we need a multi-criteria approach for
scheduling in the cloud environment. The two main types of multi-criteria decision-
making model are multi-objective decision-making and multi-attribute decision-
making. A multi-objective scheduling algorithm which is suitable for scheduling in big
data, e.g., cloud computing has been proposed in [22].

In this paper, we have a multi-attribute decision-making approach to the problem.
We propose a multi-level priority-based method of scheduling. The proposed method
uses the theory of Analytical Hierarchy Process (AHP).

2. Analytical Hierarchy Process
In this section, we describe the Analytical Hierarchy Process (AHP). Generally, the

AHP contains three major levels, including objective, attributes, and alternatives
levels. Each level uses the comparison matrices to compare the priorities [23, 24].
Assume that 𝐴𝐴 = [𝑎𝑎%&] is a comparison matrix. Every entry in matrix 𝐴𝐴 is positive. In
this occasion, A is a square matrix (𝐴𝐴*×*) There is only one vector of weights such as
𝑢𝑢 = (𝑢𝑢., 𝑢𝑢0, … , 𝑢𝑢*) in association with any arbitrary comparison matrix including 𝐴𝐴.
This vector also is named priority vector. The relationship between the elements of
the comparison matrix (𝐴𝐴) and its vector of weights (𝑢𝑢) is demonstrated by Eq. (1).

𝑎𝑎%& = 2
34
35
				𝑟𝑟 ≠ 𝑡𝑡

1						𝑟𝑟 = 𝑡𝑡
 (1)

According to [23, 24], the priority vector of matrix 𝐴𝐴 can be computed with the
following equation:

𝐴𝐴𝐴𝐴 = 𝜆𝜆=>? ⋅ 𝑣𝑣 (2)	
where 𝜆𝜆=>? and v are the principal eigenvalue and the equivalent priority vector of 𝐴𝐴,
respectively. If 𝐴𝐴 is wholly consistent, then 𝜆𝜆=>? = 𝑛𝑛. There are diverse methods for
clarifying the consistency of a comparison matrix [23, 24].

3. Preliminaries
We present a multi-criteria priority-aware method for scheduling the jobs in the

area of cloud computing. The proposed method can assign jobs to resources based
on the best priority. We consider that the users submit their request via sum
cloudlets. A is mobility- enhanced small-scale cloud that is located at the edge of the
Internet. The cloudlets put diverse priority label to the requests. The proposed
method can combine the criteria of cloudlets for computing the best priority. Theorem
1 demonstrates how to mix the priorities of the jobs to assign the resources based on
criteria of diverse cloudlets.

Theorem 1. Assume that 𝜋𝜋D = (𝜋𝜋.
D , 𝜋𝜋0

D , … , 𝜋𝜋ED, … , 𝜋𝜋=
D) is a priority vector. We

suppose that 𝜋𝜋., 𝜋𝜋0, … , 𝜋𝜋F are 𝑘𝑘 priority vectors and 𝑟𝑟., 𝑟𝑟0, … , 𝑟𝑟D, … , 𝑟𝑟F are
corresponding priority values, respectively. The best-approximated priority
can be calculated as follows:

𝜋𝜋 =

⎝

⎛
𝜋𝜋.
. 𝜋𝜋.

0 ⋯ 𝜋𝜋.
F

𝜋𝜋0
. 𝜋𝜋0

0 ⋯ 𝜋𝜋0
F

⋮ ⋮ ⋮ ⋮
𝜋𝜋=
. 𝜋𝜋=

0 ⋯ 𝜋𝜋=
F ⎠

⎞N

𝑟𝑟.
𝑟𝑟0
⋮
𝑟𝑟F

O =

⎝

⎜
⎜
⎜
⎜
⎛
Q 𝜋𝜋.

E𝑟𝑟E
F

ER.

Q 𝜋𝜋0
E𝑟𝑟E

F

ER.
⋮

Q 𝜋𝜋=
E 𝑟𝑟E

F

ER. ⎠

⎟
⎟
⎟
⎟
⎞

 (3)

Proof. Assume that 𝑅𝑅 = (𝑟𝑟., 𝑟𝑟0, … , 𝑟𝑟D, … , 𝑟𝑟F) be the equivalence eigenvector of a
given comparison matrix denoted by 𝐷𝐷F×F. In fact, 𝐷𝐷F×F is the comparison matrix of
k criteria. We are going to compare m alternatives based on the k mentioned criteria.
We also assume that 𝜋𝜋., 𝜋𝜋0, … , 𝜋𝜋F are the corresponding eigenvectors of 𝑘𝑘
comparison matrices. By using the theory of AHP and proposed theorem in [25], the
best priority for the mentioned vectors can be computed.

The following theorem is a method for calculating the priority vector of a
comparison matrix.

Theorem 2. Suppose 𝐴𝐴 be a comparison matrix and let= (1, 1, … ,1)X . Also
supposed that u and λZ[\ are principal eigenvector and corresponding
eigenvalue of 𝐴𝐴, respectively. The principal eigenvector of 𝐴𝐴 can be
computed as follows:

𝑢𝑢 = 𝑙𝑙𝑙𝑙𝑙𝑙
`→b

.
`
Q c4d

dec4d

`

%R.
 (4)

𝜆𝜆=>? = 𝑙𝑙𝑙𝑙𝑙𝑙
`→b

decfghd
decfd

 (5)

Proof. A proof for this theorem can be found in [23].

4. Proposed Method
A general framework for the proposed method has been depicted in Fig. 1. The

proposed method consists of the following three phases:
1. Initializing. In the first phase, the jobs are sent by the users to the cloudlets.

30

1. Introduction
Cloud computing is a large-scale distributed computing assumption that is

motivated by economies of scope, in which a pool of abstracted, dynamically-
scalable, simulated, storage, platforms, managed computing power, and services
are given on demand to external consumers through the internet. Scheduling of jobs
is one of the most problematic theoretical issues in the area of cloud computing. The
main goal of job scheduling is to obtain high performance computing and the best
system throughput [1]. The primary job scheduling algorithms including First Come
First Serve(FCFS), Shortest Job First (SJF) [2], Shortest Remaining Job First (SRJF)
[3, 4] and Round Robin [5] are not suitable methods for scheduling in the area of
cloud computing. Because the basic job scheduling algorithms can fulfill a few
metrics of scheduling. There is considerable literature to concern the scheduling of
jobs in cloud computing. According to [6], the related algorithms can be categorized
into two significant classes, including batch mode and online mode algorithms. In the
batch mode algorithms, jobs are collected from the different users and queued when
they arrive in the system. The scheduling will start after a fixed period. The other
possible type of scheduling algorithms is called “Online mode heuristic”
scheduling algorithm. In online mode algorithms, jobs are immediately scheduled
when they arrive in the system. The online mode algorithms are more appropriate for
the cloud environment because the cloud environment is a heterogeneous system.
Since, cloud computing considers a large scale resource to allocate a large number
of jobs, in order to optimize the users' requirements. Therefore, a suitable cloud-
based job scheduling method must fulfill different criteria [7, 8, 9, 10, 11, 12].
According to our knowledge, the following criteria can be considered for job
scheduling algorithms in cloud-based environments.

• Performance criteria including makespan, throughput, latency, total
completion time, total communication time, total cost, system utilization ant Qos [13].

• Job criteria including divisible load vs. nondivisible load [14], sequentially
dependent vs. sequentially independent, priority based vs. non-priority based [15].

• Strategies criteria including batch mode vs online mode [6], predictable vs
non-predictable [16], deterministic vs non deterministic [17].

• Resource criteria including heterogonous vs. homogenous [18], preemptive
vs non-preemptive, dynamic vs static.

• Reliability and validity criteria including trust [19], fairness [20]
• Algorithm criteria including time complexity, space complexity [21].
In general, it is not possible to optimize all criteria for job scheduling using any

algorithm. Typically, the criteria are prioritized, with most attention paid to the most
important criterion. The existing algorithms can consider some particular criteria
because of its nature. A multiple criteria algorithm can be much more useful for job
scheduling in cloud computing. Accordingly, we need a multi-criteria approach for
scheduling in the cloud environment. The two main types of multi-criteria decision-
making model are multi-objective decision-making and multi-attribute decision-
making. A multi-objective scheduling algorithm which is suitable for scheduling in big
data, e.g., cloud computing has been proposed in [22].

In this paper, we have a multi-attribute decision-making approach to the problem.
We propose a multi-level priority-based method of scheduling. The proposed method
uses the theory of Analytical Hierarchy Process (AHP).

2. Analytical Hierarchy Process
In this section, we describe the Analytical Hierarchy Process (AHP). Generally, the

AHP contains three major levels, including objective, attributes, and alternatives
levels. Each level uses the comparison matrices to compare the priorities [23, 24].
Assume that 𝐴𝐴 = [𝑎𝑎%&] is a comparison matrix. Every entry in matrix 𝐴𝐴 is positive. In
this occasion, A is a square matrix (𝐴𝐴*×*) There is only one vector of weights such as
𝑢𝑢 = (𝑢𝑢., 𝑢𝑢0, … , 𝑢𝑢*) in association with any arbitrary comparison matrix including 𝐴𝐴.
This vector also is named priority vector. The relationship between the elements of
the comparison matrix (𝐴𝐴) and its vector of weights (𝑢𝑢) is demonstrated by Eq. (1).

𝑎𝑎%& = 2
34
35
				𝑟𝑟 ≠ 𝑡𝑡

1						𝑟𝑟 = 𝑡𝑡
 (1)

According to [23, 24], the priority vector of matrix 𝐴𝐴 can be computed with the
following equation:

𝐴𝐴𝐴𝐴 = 𝜆𝜆=>? ⋅ 𝑣𝑣 (2)	
where 𝜆𝜆=>? and v are the principal eigenvalue and the equivalent priority vector of 𝐴𝐴,
respectively. If 𝐴𝐴 is wholly consistent, then 𝜆𝜆=>? = 𝑛𝑛. There are diverse methods for
clarifying the consistency of a comparison matrix [23, 24].

3. Preliminaries
We present a multi-criteria priority-aware method for scheduling the jobs in the

area of cloud computing. The proposed method can assign jobs to resources based
on the best priority. We consider that the users submit their request via sum
cloudlets. A is mobility- enhanced small-scale cloud that is located at the edge of the
Internet. The cloudlets put diverse priority label to the requests. The proposed
method can combine the criteria of cloudlets for computing the best priority. Theorem
1 demonstrates how to mix the priorities of the jobs to assign the resources based on
criteria of diverse cloudlets.

Theorem 1. Assume that 𝜋𝜋D = (𝜋𝜋.
D , 𝜋𝜋0

D , … , 𝜋𝜋ED, … , 𝜋𝜋=
D) is a priority vector. We

suppose that 𝜋𝜋., 𝜋𝜋0, … , 𝜋𝜋F are 𝑘𝑘 priority vectors and 𝑟𝑟., 𝑟𝑟0, … , 𝑟𝑟D, … , 𝑟𝑟F are
corresponding priority values, respectively. The best-approximated priority
can be calculated as follows:

𝜋𝜋 =

⎝

⎛
𝜋𝜋.
. 𝜋𝜋.

0 ⋯ 𝜋𝜋.
F

𝜋𝜋0
. 𝜋𝜋0

0 ⋯ 𝜋𝜋0
F

⋮ ⋮ ⋮ ⋮
𝜋𝜋=
. 𝜋𝜋=

0 ⋯ 𝜋𝜋=
F ⎠

⎞N

𝑟𝑟.
𝑟𝑟0
⋮
𝑟𝑟F

O =

⎝

⎜
⎜
⎜
⎜
⎛
Q 𝜋𝜋.

E𝑟𝑟E
F

ER.

Q 𝜋𝜋0
E𝑟𝑟E

F

ER.
⋮

Q 𝜋𝜋=
E 𝑟𝑟E

F

ER. ⎠

⎟
⎟
⎟
⎟
⎞

 (3)

Proof. Assume that 𝑅𝑅 = (𝑟𝑟., 𝑟𝑟0, … , 𝑟𝑟D, … , 𝑟𝑟F) be the equivalence eigenvector of a
given comparison matrix denoted by 𝐷𝐷F×F. In fact, 𝐷𝐷F×F is the comparison matrix of
k criteria. We are going to compare m alternatives based on the k mentioned criteria.
We also assume that 𝜋𝜋., 𝜋𝜋0, … , 𝜋𝜋F are the corresponding eigenvectors of 𝑘𝑘
comparison matrices. By using the theory of AHP and proposed theorem in [25], the
best priority for the mentioned vectors can be computed.

The following theorem is a method for calculating the priority vector of a
comparison matrix.

Theorem 2. Suppose 𝐴𝐴 be a comparison matrix and let= (1, 1, … ,1)X . Also
supposed that u and λZ[\ are principal eigenvector and corresponding
eigenvalue of 𝐴𝐴, respectively. The principal eigenvector of 𝐴𝐴 can be
computed as follows:

𝑢𝑢 = 𝑙𝑙𝑙𝑙𝑙𝑙
`→b

.
`
Q c4d

dec4d

`

%R.
 (4)

𝜆𝜆=>? = 𝑙𝑙𝑙𝑙𝑙𝑙
`→b

decfghd
decfd

 (5)

Proof. A proof for this theorem can be found in [23].

4. Proposed Method
A general framework for the proposed method has been depicted in Fig. 1. The

proposed method consists of the following three phases:
1. Initializing. In the first phase, the jobs are sent by the users to the cloudlets.

Shamsollah Ghanbari

31

Azerbaijan Journal of High Performance Computing, 2(1), 2019

1. Introduction
Cloud computing is a large-scale distributed computing assumption that is

motivated by economies of scope, in which a pool of abstracted, dynamically-
scalable, simulated, storage, platforms, managed computing power, and services
are given on demand to external consumers through the internet. Scheduling of jobs
is one of the most problematic theoretical issues in the area of cloud computing. The
main goal of job scheduling is to obtain high performance computing and the best
system throughput [1]. The primary job scheduling algorithms including First Come
First Serve(FCFS), Shortest Job First (SJF) [2], Shortest Remaining Job First (SRJF)
[3, 4] and Round Robin [5] are not suitable methods for scheduling in the area of
cloud computing. Because the basic job scheduling algorithms can fulfill a few
metrics of scheduling. There is considerable literature to concern the scheduling of
jobs in cloud computing. According to [6], the related algorithms can be categorized
into two significant classes, including batch mode and online mode algorithms. In the
batch mode algorithms, jobs are collected from the different users and queued when
they arrive in the system. The scheduling will start after a fixed period. The other
possible type of scheduling algorithms is called “Online mode heuristic”
scheduling algorithm. In online mode algorithms, jobs are immediately scheduled
when they arrive in the system. The online mode algorithms are more appropriate for
the cloud environment because the cloud environment is a heterogeneous system.
Since, cloud computing considers a large scale resource to allocate a large number
of jobs, in order to optimize the users' requirements. Therefore, a suitable cloud-
based job scheduling method must fulfill different criteria [7, 8, 9, 10, 11, 12].
According to our knowledge, the following criteria can be considered for job
scheduling algorithms in cloud-based environments.

• Performance criteria including makespan, throughput, latency, total
completion time, total communication time, total cost, system utilization ant Qos [13].

• Job criteria including divisible load vs. nondivisible load [14], sequentially
dependent vs. sequentially independent, priority based vs. non-priority based [15].

• Strategies criteria including batch mode vs online mode [6], predictable vs
non-predictable [16], deterministic vs non deterministic [17].

• Resource criteria including heterogonous vs. homogenous [18], preemptive
vs non-preemptive, dynamic vs static.

• Reliability and validity criteria including trust [19], fairness [20]
• Algorithm criteria including time complexity, space complexity [21].
In general, it is not possible to optimize all criteria for job scheduling using any

algorithm. Typically, the criteria are prioritized, with most attention paid to the most
important criterion. The existing algorithms can consider some particular criteria
because of its nature. A multiple criteria algorithm can be much more useful for job
scheduling in cloud computing. Accordingly, we need a multi-criteria approach for
scheduling in the cloud environment. The two main types of multi-criteria decision-
making model are multi-objective decision-making and multi-attribute decision-
making. A multi-objective scheduling algorithm which is suitable for scheduling in big
data, e.g., cloud computing has been proposed in [22].

In this paper, we have a multi-attribute decision-making approach to the problem.
We propose a multi-level priority-based method of scheduling. The proposed method
uses the theory of Analytical Hierarchy Process (AHP).

2. Analytical Hierarchy Process
In this section, we describe the Analytical Hierarchy Process (AHP). Generally, the

AHP contains three major levels, including objective, attributes, and alternatives
levels. Each level uses the comparison matrices to compare the priorities [23, 24].
Assume that 𝐴𝐴 = [𝑎𝑎%&] is a comparison matrix. Every entry in matrix 𝐴𝐴 is positive. In
this occasion, A is a square matrix (𝐴𝐴*×*) There is only one vector of weights such as
𝑢𝑢 = (𝑢𝑢., 𝑢𝑢0, … , 𝑢𝑢*) in association with any arbitrary comparison matrix including 𝐴𝐴.
This vector also is named priority vector. The relationship between the elements of
the comparison matrix (𝐴𝐴) and its vector of weights (𝑢𝑢) is demonstrated by Eq. (1).

𝑎𝑎%& = 2
34
35
				𝑟𝑟 ≠ 𝑡𝑡

1						𝑟𝑟 = 𝑡𝑡
 (1)

According to [23, 24], the priority vector of matrix 𝐴𝐴 can be computed with the
following equation:

𝐴𝐴𝐴𝐴 = 𝜆𝜆=>? ⋅ 𝑣𝑣 (2)	
where 𝜆𝜆=>? and v are the principal eigenvalue and the equivalent priority vector of 𝐴𝐴,
respectively. If 𝐴𝐴 is wholly consistent, then 𝜆𝜆=>? = 𝑛𝑛. There are diverse methods for
clarifying the consistency of a comparison matrix [23, 24].

3. Preliminaries
We present a multi-criteria priority-aware method for scheduling the jobs in the

area of cloud computing. The proposed method can assign jobs to resources based
on the best priority. We consider that the users submit their request via sum
cloudlets. A is mobility- enhanced small-scale cloud that is located at the edge of the
Internet. The cloudlets put diverse priority label to the requests. The proposed
method can combine the criteria of cloudlets for computing the best priority. Theorem
1 demonstrates how to mix the priorities of the jobs to assign the resources based on
criteria of diverse cloudlets.

Theorem 1. Assume that 𝜋𝜋D = (𝜋𝜋.
D , 𝜋𝜋0

D , … , 𝜋𝜋ED, … , 𝜋𝜋=
D) is a priority vector. We

suppose that 𝜋𝜋., 𝜋𝜋0, … , 𝜋𝜋F are 𝑘𝑘 priority vectors and 𝑟𝑟., 𝑟𝑟0, … , 𝑟𝑟D, … , 𝑟𝑟F are
corresponding priority values, respectively. The best-approximated priority
can be calculated as follows:

𝜋𝜋 =

⎝

⎛
𝜋𝜋.
. 𝜋𝜋.

0 ⋯ 𝜋𝜋.
F

𝜋𝜋0
. 𝜋𝜋0

0 ⋯ 𝜋𝜋0
F

⋮ ⋮ ⋮ ⋮
𝜋𝜋=
. 𝜋𝜋=

0 ⋯ 𝜋𝜋=
F ⎠

⎞N

𝑟𝑟.
𝑟𝑟0
⋮
𝑟𝑟F

O =

⎝

⎜
⎜
⎜
⎜
⎛
Q 𝜋𝜋.

E𝑟𝑟E
F

ER.

Q 𝜋𝜋0
E𝑟𝑟E

F

ER.
⋮

Q 𝜋𝜋=
E 𝑟𝑟E

F

ER. ⎠

⎟
⎟
⎟
⎟
⎞

 (3)

Proof. Assume that 𝑅𝑅 = (𝑟𝑟., 𝑟𝑟0, … , 𝑟𝑟D, … , 𝑟𝑟F) be the equivalence eigenvector of a
given comparison matrix denoted by 𝐷𝐷F×F. In fact, 𝐷𝐷F×F is the comparison matrix of
k criteria. We are going to compare m alternatives based on the k mentioned criteria.
We also assume that 𝜋𝜋., 𝜋𝜋0, … , 𝜋𝜋F are the corresponding eigenvectors of 𝑘𝑘
comparison matrices. By using the theory of AHP and proposed theorem in [25], the
best priority for the mentioned vectors can be computed.

The following theorem is a method for calculating the priority vector of a
comparison matrix.

Theorem 2. Suppose 𝐴𝐴 be a comparison matrix and let= (1, 1, … ,1)X . Also
supposed that u and λZ[\ are principal eigenvector and corresponding
eigenvalue of 𝐴𝐴, respectively. The principal eigenvector of 𝐴𝐴 can be
computed as follows:

𝑢𝑢 = 𝑙𝑙𝑙𝑙𝑙𝑙
`→b

.
`
Q c4d

dec4d

`

%R.
 (4)

𝜆𝜆=>? = 𝑙𝑙𝑙𝑙𝑙𝑙
`→b

decfghd
decfd

 (5)

Proof. A proof for this theorem can be found in [23].

4. Proposed Method
A general framework for the proposed method has been depicted in Fig. 1. The

proposed method consists of the following three phases:
1. Initializing. In the first phase, the jobs are sent by the users to the cloudlets.

Each cloudlet puts a set of priority-stamp to the jobs for allocating the requested
resources.

2. Priority-aware Resource Allocation. This phase is the main part of the proposed
method. In this phase, a global scheduler combines the jobs based on the priority-
stamps of the local cloudlets. This phase contains the following five steps:

• Step 1: (Initializing). Assume that 𝛷𝛷 = {𝐽𝐽., 𝐽𝐽0, … , 𝐽𝐽l} is a collection of jobs that
demands resources in a cloud-based environment. We also assume that 𝛹𝛹 = {𝑅𝑅.,
𝑅𝑅0, … , 𝑅𝑅D} is a collection of resources obtainable in cloud environment (𝑑𝑑 ≥ 𝑙𝑙). Each
job demands a subset of resources. At first, these queries are sent to the local
cloudlets. Each local cloudlet puts a set of priority stamps based on different criteria
on the requested jobs. Now assume that 𝛶𝛶?(𝐽𝐽D, 𝑅𝑅E) is the priority-stamp of the ist job
for assigning jst reSource based on xst criterion.

• Step 2: (Computing the Criteria Matrix). This step computes the priority-stamp of
criteria for assigning the kst resource. The criteria matrix is denoted by 𝛶𝛶F. This
matrix compares the priority-stamps of criteria based on the criterion of the global
scheduler. The following equation can compute the 𝛶𝛶F matrix:

𝛶𝛶F[𝑥𝑥, 𝑦𝑦] = yz({|)
y}({|)

 (6)
where x,y=l, 2, . . . ,s (s is the number of cloudlets). Moreover, 𝑃𝑃?(𝛶𝛶F) and 𝑃𝑃�(𝛶𝛶F)

in Eq. 6, are the priority stamp of the xst and yst criteria based on the global
scheduler.

• Step 3: (Making Comparison Matrices of the Jobs). This step, computes the
comparison matrices for the jobs to assign the resources based on the criteria of the
cloudlets. The comparison matrices indicate the priorities of jobs based on different
cloudlets.

The comparison matrices can be computed by the following equation:

𝛬𝛬%&
F? = 2

{Ç(É4,Ñ|)
{Ç(É5,Ñ|)

					𝑟𝑟 ≠ 𝑡𝑡
1																			𝑟𝑟 = 𝑡𝑡

 (7)

where 𝛬𝛬F? is the comparison matrix of the kst(k = 1,2, … , s) resource based on the
criteria of xst(k = 1,2, … , s) cloudlet.

• Step 4: (Computing the Priority Vector). This step computes priority vectors
for the matrices of jobs. For this purpose, was used Algorithm 1.

Algorithm 1 Corresponding Principal Eigenvector ()
1: D ← Υã
2: µ ← 1
3: e ← (1,1, … ,1)
4: h. ←

Dë
í

eìDë
í

5: h0 ← h.
6:while	(|‖h.‖ − ‖h0‖| ≥∈)	do
7: µ ← µ + 1
8: h. ← h0
9: h0 ← h +

Dë
í

eìDë
í

10: Return	
h
µ

Now, suppose that qã., 	qã0, … , qã© are the priority vectors of 𝛬𝛬F., 𝛬𝛬F0, … , 𝛬𝛬Fl.
Therefore, we have d priority vectors have associated with the d comparison matrices
for assigning the kst resource.

• Step 5: (Computing the Priority of Jobs). By using Theorem 1, the priority of
jobs for kst resource denoted by δã, can be calculated by the following equation:

𝛿𝛿F = 𝛥𝛥F × 𝛤𝛤F (8)
where 𝛤𝛤F is the priority vector of 𝛶𝛶F and 𝛥𝛥F is defined as the following equation:

𝛥𝛥F 	= [𝑞𝑞F.𝑞𝑞F0 … 𝑞𝑞Fl] = 	

⎝

⎛
𝑞𝑞.. 𝑞𝑞.0 ⋯ 𝑞𝑞.F

𝑞𝑞0. 𝑞𝑞00 ⋯ 𝑞𝑞0F
⋮ ⋮ ⋮ ⋮
𝑞𝑞l. 𝑞𝑞l0 ⋯ 𝑞𝑞lF⎠

⎞ (9)

3. Assigning the Final Priority Stamp. This step assigns the final priority stamp on
the jobs. The jobs with the highest priority-stamps will be assigned to VMs for
allocating the appropriate resources. Algorithm 2 indicates the details of the
proposed method.

5. Performance Evaluation
In this section, were provided some experimental results. Now assume that 𝛷𝛷 =

{𝐽𝐽., 𝐽𝐽0, 𝐽𝐽Ø, 𝐽𝐽∞} is a collection of jobs that demand resources in a cloud-based
environment. We also suppose

Algorithm 2 Calculation Priority of Processors ()
Description:

1: 𝐿𝐿𝐿𝐿𝐿𝐿	𝛷𝛷 = {𝑗𝑗., 𝑗𝑗0, … , 𝑗𝑗l}
2: 𝐿𝐿𝐿𝐿𝐿𝐿	𝛹𝛹 = {𝑅𝑅., 𝑅𝑅0, … , 𝑅𝑅¥}
3: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑡𝑡ℎ𝑒𝑒	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆	𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏	𝑜𝑜𝑜𝑜	𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	
4: 𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
5:𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖	𝑇𝑇	𝑑𝑑𝑑𝑑
6:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛶𝛶F)	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 6
7: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝛤𝛤F	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉	𝑜𝑜𝑜𝑜	𝛶𝛶F	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚	1	
8:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛬𝛬F?); (𝑘𝑘 = 1,2, … , 𝑙𝑙)	𝑎𝑎𝑎𝑎𝑎𝑎	(𝑥𝑥 = 1,2, … , 𝑠𝑠)	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 7	
9: 𝐹𝐹𝐹𝐹𝐹𝐹	𝑎𝑎𝑎𝑎𝑎𝑎	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛬𝛬F?); (𝑘𝑘 = 1,2, … , 𝑙𝑙)	𝑎𝑎𝑎𝑎𝑎𝑎	(𝑥𝑥 = 1,2, … , 𝑠𝑠)	
				𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚	1	
9:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝛥𝛥F	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 9
10: 𝑒𝑒𝑒𝑒𝑒𝑒	𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖;

that 𝛹𝛹 = {𝑅𝑅., 𝑅𝑅0, … , 𝑅𝑅∞} is a set of resources available for the global scheduler. Also
was considered four cloudlets with different criteria, including makes pan,
throughput, time complexity, and trust, respectively.

Let.»𝑥𝑥, 𝑝𝑝𝑝𝑝(𝑥𝑥)…𝜖𝜖{(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0.8), (𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝𝑝𝑝, 0.3), (𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0.2), (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 0.5)}
Thus the comparison matrix for the criteria of a good assignment to the 𝑘𝑘&À resource
can be computed as follows:

𝛶𝛶F = N

1.000		0.375		0.250		0.625
2.667		1.000		0.667		1.667
4.000		1.500		1.000		2.500
1.600		0.600		0.400		1.000

O

By using Algorithm 1, the corresponding priority vector of 𝛶𝛶F denoted by 𝛤𝛤F can
be computed by using the following equation:

𝛤𝛤F = N

0.108
0.288
0.431
0.173

O

Moreover, the comparison matrices of jobs based on different criteria for
assigning the 𝑘𝑘&À resource are shown in Tables 1-4.

By using Algorithm 1, the priority of jobs (denoted by 𝛿𝛿F) for assigning the 𝑘𝑘&À	
resource can be calculated by the following equation:

𝛿𝛿F = 𝛥𝛥F × 𝛤𝛤F = N

0.160		0.126		0.158		0.533
0.240		0.107		0.210		0.267
0.480		0.646		0.316		0.133
0.120		0.121		0.316		0.067

ON

0.108
0.288
0.431
0.173

O = N

0.214
0.193
0.397
0.196

O

The priority of jobs based on different criteria for assigning 𝑘𝑘&À	 resource has been
shown in Fig. 2. The figure demonstrates how alternatives act on each criterion. The
total priority (proposed method) of each alternative is where it intersects the axis on
the right. The priority of each criterion is demonstrated by the rectangular box on that
criterion’s vertical fine, as read from the axis at the left.

32

Each cloudlet puts a set of priority-stamp to the jobs for allocating the requested
resources.

2. Priority-aware Resource Allocation. This phase is the main part of the proposed
method. In this phase, a global scheduler combines the jobs based on the priority-
stamps of the local cloudlets. This phase contains the following five steps:

• Step 1: (Initializing). Assume that 𝛷𝛷 = {𝐽𝐽., 𝐽𝐽0, … , 𝐽𝐽l} is a collection of jobs that
demands resources in a cloud-based environment. We also assume that 𝛹𝛹 = {𝑅𝑅.,
𝑅𝑅0, … , 𝑅𝑅D} is a collection of resources obtainable in cloud environment (𝑑𝑑 ≥ 𝑙𝑙). Each
job demands a subset of resources. At first, these queries are sent to the local
cloudlets. Each local cloudlet puts a set of priority stamps based on different criteria
on the requested jobs. Now assume that 𝛶𝛶?(𝐽𝐽D, 𝑅𝑅E) is the priority-stamp of the ist job
for assigning jst reSource based on xst criterion.

• Step 2: (Computing the Criteria Matrix). This step computes the priority-stamp of
criteria for assigning the kst resource. The criteria matrix is denoted by 𝛶𝛶F. This
matrix compares the priority-stamps of criteria based on the criterion of the global
scheduler. The following equation can compute the 𝛶𝛶F matrix:

𝛶𝛶F[𝑥𝑥, 𝑦𝑦] = yz({|)
y}({|)

 (6)
where x,y=l, 2, . . . ,s (s is the number of cloudlets). Moreover, 𝑃𝑃?(𝛶𝛶F) and 𝑃𝑃�(𝛶𝛶F)

in Eq. 6, are the priority stamp of the xst and yst criteria based on the global
scheduler.

• Step 3: (Making Comparison Matrices of the Jobs). This step, computes the
comparison matrices for the jobs to assign the resources based on the criteria of the
cloudlets. The comparison matrices indicate the priorities of jobs based on different
cloudlets.

The comparison matrices can be computed by the following equation:

𝛬𝛬%&
F? = 2

{Ç(É4,Ñ|)
{Ç(É5,Ñ|)

					𝑟𝑟 ≠ 𝑡𝑡
1																			𝑟𝑟 = 𝑡𝑡

 (7)

where 𝛬𝛬F? is the comparison matrix of the kst(k = 1,2, … , s) resource based on the
criteria of xst(k = 1,2, … , s) cloudlet.

• Step 4: (Computing the Priority Vector). This step computes priority vectors
for the matrices of jobs. For this purpose, was used Algorithm 1.

Algorithm 1 Corresponding Principal Eigenvector ()
1: D ← Υã
2: µ ← 1
3: e ← (1,1, … ,1)
4: h. ←

Dë
í

eìDë
í

5: h0 ← h.
6:while	(|‖h.‖ − ‖h0‖| ≥∈)	do
7: µ ← µ + 1
8: h. ← h0
9: h0 ← h +

Dë
í

eìDë
í

10: Return	
h
µ

Now, suppose that qã., 	qã0, … , qã© are the priority vectors of 𝛬𝛬F., 𝛬𝛬F0, … , 𝛬𝛬Fl.
Therefore, we have d priority vectors have associated with the d comparison matrices
for assigning the kst resource.

• Step 5: (Computing the Priority of Jobs). By using Theorem 1, the priority of
jobs for kst resource denoted by δã, can be calculated by the following equation:

𝛿𝛿F = 𝛥𝛥F × 𝛤𝛤F (8)
where 𝛤𝛤F is the priority vector of 𝛶𝛶F and 𝛥𝛥F is defined as the following equation:

𝛥𝛥F 	= [𝑞𝑞F.𝑞𝑞F0 … 𝑞𝑞Fl] = 	

⎝

⎛
𝑞𝑞.. 𝑞𝑞.0 ⋯ 𝑞𝑞.F

𝑞𝑞0. 𝑞𝑞00 ⋯ 𝑞𝑞0F
⋮ ⋮ ⋮ ⋮
𝑞𝑞l. 𝑞𝑞l0 ⋯ 𝑞𝑞lF⎠

⎞ (9)

3. Assigning the Final Priority Stamp. This step assigns the final priority stamp on
the jobs. The jobs with the highest priority-stamps will be assigned to VMs for
allocating the appropriate resources. Algorithm 2 indicates the details of the
proposed method.

5. Performance Evaluation
In this section, were provided some experimental results. Now assume that 𝛷𝛷 =

{𝐽𝐽., 𝐽𝐽0, 𝐽𝐽Ø, 𝐽𝐽∞} is a collection of jobs that demand resources in a cloud-based
environment. We also suppose

Algorithm 2 Calculation Priority of Processors ()
Description:

1: 𝐿𝐿𝐿𝐿𝐿𝐿	𝛷𝛷 = {𝑗𝑗., 𝑗𝑗0, … , 𝑗𝑗l}
2: 𝐿𝐿𝐿𝐿𝐿𝐿	𝛹𝛹 = {𝑅𝑅., 𝑅𝑅0, … , 𝑅𝑅¥}
3: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑡𝑡ℎ𝑒𝑒	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆	𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏	𝑜𝑜𝑜𝑜	𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	
4: 𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
5:𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖	𝑇𝑇	𝑑𝑑𝑑𝑑
6:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛶𝛶F)	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 6
7: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝛤𝛤F	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉	𝑜𝑜𝑜𝑜	𝛶𝛶F	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚	1	
8:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛬𝛬F?); (𝑘𝑘 = 1,2, … , 𝑙𝑙)	𝑎𝑎𝑎𝑎𝑎𝑎	(𝑥𝑥 = 1,2, … , 𝑠𝑠)	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 7	
9: 𝐹𝐹𝐹𝐹𝐹𝐹	𝑎𝑎𝑎𝑎𝑎𝑎	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛬𝛬F?); (𝑘𝑘 = 1,2, … , 𝑙𝑙)	𝑎𝑎𝑎𝑎𝑎𝑎	(𝑥𝑥 = 1,2, … , 𝑠𝑠)	
				𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚	1	
9:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝛥𝛥F	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 9
10: 𝑒𝑒𝑒𝑒𝑒𝑒	𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖;

that 𝛹𝛹 = {𝑅𝑅., 𝑅𝑅0, … , 𝑅𝑅∞} is a set of resources available for the global scheduler. Also
was considered four cloudlets with different criteria, including makes pan,
throughput, time complexity, and trust, respectively.

Let.»𝑥𝑥, 𝑝𝑝𝑝𝑝(𝑥𝑥)…𝜖𝜖{(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0.8), (𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝𝑝𝑝, 0.3), (𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0.2), (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 0.5)}
Thus the comparison matrix for the criteria of a good assignment to the 𝑘𝑘&À resource
can be computed as follows:

𝛶𝛶F = N

1.000		0.375		0.250		0.625
2.667		1.000		0.667		1.667
4.000		1.500		1.000		2.500
1.600		0.600		0.400		1.000

O

By using Algorithm 1, the corresponding priority vector of 𝛶𝛶F denoted by 𝛤𝛤F can
be computed by using the following equation:

𝛤𝛤F = N

0.108
0.288
0.431
0.173

O

Moreover, the comparison matrices of jobs based on different criteria for
assigning the 𝑘𝑘&À resource are shown in Tables 1-4.

By using Algorithm 1, the priority of jobs (denoted by 𝛿𝛿F) for assigning the 𝑘𝑘&À	
resource can be calculated by the following equation:

𝛿𝛿F = 𝛥𝛥F × 𝛤𝛤F = N

0.160		0.126		0.158		0.533
0.240		0.107		0.210		0.267
0.480		0.646		0.316		0.133
0.120		0.121		0.316		0.067

ON

0.108
0.288
0.431
0.173

O = N

0.214
0.193
0.397
0.196

O

The priority of jobs based on different criteria for assigning 𝑘𝑘&À	 resource has been
shown in Fig. 2. The figure demonstrates how alternatives act on each criterion. The
total priority (proposed method) of each alternative is where it intersects the axis on
the right. The priority of each criterion is demonstrated by the rectangular box on that
criterion’s vertical fine, as read from the axis at the left.

Each cloudlet puts a set of priority-stamp to the jobs for allocating the requested
resources.

2. Priority-aware Resource Allocation. This phase is the main part of the proposed
method. In this phase, a global scheduler combines the jobs based on the priority-
stamps of the local cloudlets. This phase contains the following five steps:

• Step 1: (Initializing). Assume that 𝛷𝛷 = {𝐽𝐽., 𝐽𝐽0, … , 𝐽𝐽l} is a collection of jobs that
demands resources in a cloud-based environment. We also assume that 𝛹𝛹 = {𝑅𝑅.,
𝑅𝑅0, … , 𝑅𝑅D} is a collection of resources obtainable in cloud environment (𝑑𝑑 ≥ 𝑙𝑙). Each
job demands a subset of resources. At first, these queries are sent to the local
cloudlets. Each local cloudlet puts a set of priority stamps based on different criteria
on the requested jobs. Now assume that 𝛶𝛶?(𝐽𝐽D, 𝑅𝑅E) is the priority-stamp of the ist job
for assigning jst reSource based on xst criterion.

• Step 2: (Computing the Criteria Matrix). This step computes the priority-stamp of
criteria for assigning the kst resource. The criteria matrix is denoted by 𝛶𝛶F. This
matrix compares the priority-stamps of criteria based on the criterion of the global
scheduler. The following equation can compute the 𝛶𝛶F matrix:

𝛶𝛶F[𝑥𝑥, 𝑦𝑦] = yz({|)
y}({|)

 (6)
where x,y=l, 2, . . . ,s (s is the number of cloudlets). Moreover, 𝑃𝑃?(𝛶𝛶F) and 𝑃𝑃�(𝛶𝛶F)

in Eq. 6, are the priority stamp of the xst and yst criteria based on the global
scheduler.

• Step 3: (Making Comparison Matrices of the Jobs). This step, computes the
comparison matrices for the jobs to assign the resources based on the criteria of the
cloudlets. The comparison matrices indicate the priorities of jobs based on different
cloudlets.

The comparison matrices can be computed by the following equation:

𝛬𝛬%&
F? = 2

{Ç(É4,Ñ|)
{Ç(É5,Ñ|)

					𝑟𝑟 ≠ 𝑡𝑡
1																			𝑟𝑟 = 𝑡𝑡

 (7)

where 𝛬𝛬F? is the comparison matrix of the kst(k = 1,2, … , s) resource based on the
criteria of xst(k = 1,2, … , s) cloudlet.

• Step 4: (Computing the Priority Vector). This step computes priority vectors
for the matrices of jobs. For this purpose, was used Algorithm 1.

Algorithm 1 Corresponding Principal Eigenvector ()
1: D ← Υã
2: µ ← 1
3: e ← (1,1, … ,1)
4: h. ←

Dë
í

eìDë
í

5: h0 ← h.
6:while	(|‖h.‖ − ‖h0‖| ≥∈)	do
7: µ ← µ + 1
8: h. ← h0
9: h0 ← h +

Dë
í

eìDë
í

10: Return	
h
µ

Now, suppose that qã., 	qã0, … , qã© are the priority vectors of 𝛬𝛬F., 𝛬𝛬F0, … , 𝛬𝛬Fl.
Therefore, we have d priority vectors have associated with the d comparison matrices
for assigning the kst resource.

• Step 5: (Computing the Priority of Jobs). By using Theorem 1, the priority of
jobs for kst resource denoted by δã, can be calculated by the following equation:

𝛿𝛿F = 𝛥𝛥F × 𝛤𝛤F (8)
where 𝛤𝛤F is the priority vector of 𝛶𝛶F and 𝛥𝛥F is defined as the following equation:

𝛥𝛥F 	= [𝑞𝑞F.𝑞𝑞F0 … 𝑞𝑞Fl] = 	

⎝

⎛
𝑞𝑞.. 𝑞𝑞.0 ⋯ 𝑞𝑞.F

𝑞𝑞0. 𝑞𝑞00 ⋯ 𝑞𝑞0F
⋮ ⋮ ⋮ ⋮
𝑞𝑞l. 𝑞𝑞l0 ⋯ 𝑞𝑞lF⎠

⎞ (9)

3. Assigning the Final Priority Stamp. This step assigns the final priority stamp on
the jobs. The jobs with the highest priority-stamps will be assigned to VMs for
allocating the appropriate resources. Algorithm 2 indicates the details of the
proposed method.

5. Performance Evaluation
In this section, were provided some experimental results. Now assume that 𝛷𝛷 =

{𝐽𝐽., 𝐽𝐽0, 𝐽𝐽Ø, 𝐽𝐽∞} is a collection of jobs that demand resources in a cloud-based
environment. We also suppose

Algorithm 2 Calculation Priority of Processors ()
Description:

1: 𝐿𝐿𝐿𝐿𝐿𝐿	𝛷𝛷 = {𝑗𝑗., 𝑗𝑗0, … , 𝑗𝑗l}
2: 𝐿𝐿𝐿𝐿𝐿𝐿	𝛹𝛹 = {𝑅𝑅., 𝑅𝑅0, … , 𝑅𝑅¥}
3: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑡𝑡ℎ𝑒𝑒	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆	𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏	𝑜𝑜𝑜𝑜	𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	
4: 𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
5:𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖	𝑇𝑇	𝑑𝑑𝑑𝑑
6:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛶𝛶F)	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 6
7: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝛤𝛤F	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉	𝑜𝑜𝑜𝑜	𝛶𝛶F	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚	1	
8:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛬𝛬F?); (𝑘𝑘 = 1,2, … , 𝑙𝑙)	𝑎𝑎𝑎𝑎𝑎𝑎	(𝑥𝑥 = 1,2, … , 𝑠𝑠)	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 7	
9: 𝐹𝐹𝐹𝐹𝐹𝐹	𝑎𝑎𝑎𝑎𝑎𝑎	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛬𝛬F?); (𝑘𝑘 = 1,2, … , 𝑙𝑙)	𝑎𝑎𝑎𝑎𝑎𝑎	(𝑥𝑥 = 1,2, … , 𝑠𝑠)	
				𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚	1	
9:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝛥𝛥F	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 9
10: 𝑒𝑒𝑒𝑒𝑒𝑒	𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖;

that 𝛹𝛹 = {𝑅𝑅., 𝑅𝑅0, … , 𝑅𝑅∞} is a set of resources available for the global scheduler. Also
was considered four cloudlets with different criteria, including makes pan,
throughput, time complexity, and trust, respectively.

Let.»𝑥𝑥, 𝑝𝑝𝑝𝑝(𝑥𝑥)…𝜖𝜖{(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0.8), (𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝𝑝𝑝, 0.3), (𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0.2), (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 0.5)}
Thus the comparison matrix for the criteria of a good assignment to the 𝑘𝑘&À resource
can be computed as follows:

𝛶𝛶F = N

1.000		0.375		0.250		0.625
2.667		1.000		0.667		1.667
4.000		1.500		1.000		2.500
1.600		0.600		0.400		1.000

O

By using Algorithm 1, the corresponding priority vector of 𝛶𝛶F denoted by 𝛤𝛤F can
be computed by using the following equation:

𝛤𝛤F = N

0.108
0.288
0.431
0.173

O

Moreover, the comparison matrices of jobs based on different criteria for
assigning the 𝑘𝑘&À resource are shown in Tables 1-4.

By using Algorithm 1, the priority of jobs (denoted by 𝛿𝛿F) for assigning the 𝑘𝑘&À	
resource can be calculated by the following equation:

𝛿𝛿F = 𝛥𝛥F × 𝛤𝛤F = N

0.160		0.126		0.158		0.533
0.240		0.107		0.210		0.267
0.480		0.646		0.316		0.133
0.120		0.121		0.316		0.067

ON

0.108
0.288
0.431
0.173

O = N

0.214
0.193
0.397
0.196

O

The priority of jobs based on different criteria for assigning 𝑘𝑘&À	 resource has been
shown in Fig. 2. The figure demonstrates how alternatives act on each criterion. The
total priority (proposed method) of each alternative is where it intersects the axis on
the right. The priority of each criterion is demonstrated by the rectangular box on that
criterion’s vertical fine, as read from the axis at the left.

Fig. 1: The architecture of the proposed method.

Shamsollah Ghanbari

33

Each cloudlet puts a set of priority-stamp to the jobs for allocating the requested
resources.

2. Priority-aware Resource Allocation. This phase is the main part of the proposed
method. In this phase, a global scheduler combines the jobs based on the priority-
stamps of the local cloudlets. This phase contains the following five steps:

• Step 1: (Initializing). Assume that 𝛷𝛷 = {𝐽𝐽., 𝐽𝐽0, … , 𝐽𝐽l} is a collection of jobs that
demands resources in a cloud-based environment. We also assume that 𝛹𝛹 = {𝑅𝑅.,
𝑅𝑅0, … , 𝑅𝑅D} is a collection of resources obtainable in cloud environment (𝑑𝑑 ≥ 𝑙𝑙). Each
job demands a subset of resources. At first, these queries are sent to the local
cloudlets. Each local cloudlet puts a set of priority stamps based on different criteria
on the requested jobs. Now assume that 𝛶𝛶?(𝐽𝐽D, 𝑅𝑅E) is the priority-stamp of the ist job
for assigning jst reSource based on xst criterion.

• Step 2: (Computing the Criteria Matrix). This step computes the priority-stamp of
criteria for assigning the kst resource. The criteria matrix is denoted by 𝛶𝛶F. This
matrix compares the priority-stamps of criteria based on the criterion of the global
scheduler. The following equation can compute the 𝛶𝛶F matrix:

𝛶𝛶F[𝑥𝑥, 𝑦𝑦] = yz({|)
y}({|)

 (6)
where x,y=l, 2, . . . ,s (s is the number of cloudlets). Moreover, 𝑃𝑃?(𝛶𝛶F) and 𝑃𝑃�(𝛶𝛶F)

in Eq. 6, are the priority stamp of the xst and yst criteria based on the global
scheduler.

• Step 3: (Making Comparison Matrices of the Jobs). This step, computes the
comparison matrices for the jobs to assign the resources based on the criteria of the
cloudlets. The comparison matrices indicate the priorities of jobs based on different
cloudlets.

The comparison matrices can be computed by the following equation:

𝛬𝛬%&
F? = 2

{Ç(É4,Ñ|)
{Ç(É5,Ñ|)

					𝑟𝑟 ≠ 𝑡𝑡
1																			𝑟𝑟 = 𝑡𝑡

 (7)

where 𝛬𝛬F? is the comparison matrix of the kst(k = 1,2, … , s) resource based on the
criteria of xst(k = 1,2, … , s) cloudlet.

• Step 4: (Computing the Priority Vector). This step computes priority vectors
for the matrices of jobs. For this purpose, was used Algorithm 1.

Algorithm 1 Corresponding Principal Eigenvector ()
1: D ← Υã
2: µ ← 1
3: e ← (1,1, … ,1)
4: h. ←

Dë
í

eìDë
í

5: h0 ← h.
6:while	(|‖h.‖ − ‖h0‖| ≥∈)	do
7: µ ← µ + 1
8: h. ← h0
9: h0 ← h +

Dë
í

eìDë
í

10: Return	
h
µ

Now, suppose that qã., 	qã0, … , qã© are the priority vectors of 𝛬𝛬F., 𝛬𝛬F0, … , 𝛬𝛬Fl.
Therefore, we have d priority vectors have associated with the d comparison matrices
for assigning the kst resource.

• Step 5: (Computing the Priority of Jobs). By using Theorem 1, the priority of
jobs for kst resource denoted by δã, can be calculated by the following equation:

𝛿𝛿F = 𝛥𝛥F × 𝛤𝛤F (8)
where 𝛤𝛤F is the priority vector of 𝛶𝛶F and 𝛥𝛥F is defined as the following equation:

𝛥𝛥F 	= [𝑞𝑞F.𝑞𝑞F0 … 𝑞𝑞Fl] = 	

⎝

⎛
𝑞𝑞.. 𝑞𝑞.0 ⋯ 𝑞𝑞.F

𝑞𝑞0. 𝑞𝑞00 ⋯ 𝑞𝑞0F
⋮ ⋮ ⋮ ⋮
𝑞𝑞l. 𝑞𝑞l0 ⋯ 𝑞𝑞lF⎠

⎞ (9)

3. Assigning the Final Priority Stamp. This step assigns the final priority stamp on
the jobs. The jobs with the highest priority-stamps will be assigned to VMs for
allocating the appropriate resources. Algorithm 2 indicates the details of the
proposed method.

5. Performance Evaluation
In this section, were provided some experimental results. Now assume that 𝛷𝛷 =

{𝐽𝐽., 𝐽𝐽0, 𝐽𝐽Ø, 𝐽𝐽∞} is a collection of jobs that demand resources in a cloud-based
environment. We also suppose

Algorithm 2 Calculation Priority of Processors ()
Description:

1: 𝐿𝐿𝐿𝐿𝐿𝐿	𝛷𝛷 = {𝑗𝑗., 𝑗𝑗0, … , 𝑗𝑗l}
2: 𝐿𝐿𝐿𝐿𝐿𝐿	𝛹𝛹 = {𝑅𝑅., 𝑅𝑅0, … , 𝑅𝑅¥}
3: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑡𝑡ℎ𝑒𝑒	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆	𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏	𝑜𝑜𝑜𝑜	𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	
4: 𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
5:𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖	𝑇𝑇	𝑑𝑑𝑑𝑑
6:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛶𝛶F)	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 6
7: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝛤𝛤F	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉	𝑜𝑜𝑜𝑜	𝛶𝛶F	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚	1	
8:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛬𝛬F?); (𝑘𝑘 = 1,2, … , 𝑙𝑙)	𝑎𝑎𝑎𝑎𝑎𝑎	(𝑥𝑥 = 1,2, … , 𝑠𝑠)	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 7	
9: 𝐹𝐹𝐹𝐹𝐹𝐹	𝑎𝑎𝑎𝑎𝑎𝑎	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛬𝛬F?); (𝑘𝑘 = 1,2, … , 𝑙𝑙)	𝑎𝑎𝑎𝑎𝑎𝑎	(𝑥𝑥 = 1,2, … , 𝑠𝑠)	
				𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚	1	
9:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝛥𝛥F	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 9
10: 𝑒𝑒𝑒𝑒𝑒𝑒	𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖;

that 𝛹𝛹 = {𝑅𝑅., 𝑅𝑅0, … , 𝑅𝑅∞} is a set of resources available for the global scheduler. Also
was considered four cloudlets with different criteria, including makes pan,
throughput, time complexity, and trust, respectively.

Let.»𝑥𝑥, 𝑝𝑝𝑝𝑝(𝑥𝑥)…𝜖𝜖{(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0.8), (𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝𝑝𝑝, 0.3), (𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0.2), (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 0.5)}
Thus the comparison matrix for the criteria of a good assignment to the 𝑘𝑘&À resource
can be computed as follows:

𝛶𝛶F = N

1.000		0.375		0.250		0.625
2.667		1.000		0.667		1.667
4.000		1.500		1.000		2.500
1.600		0.600		0.400		1.000

O

By using Algorithm 1, the corresponding priority vector of 𝛶𝛶F denoted by 𝛤𝛤F can
be computed by using the following equation:

𝛤𝛤F = N

0.108
0.288
0.431
0.173

O

Moreover, the comparison matrices of jobs based on different criteria for
assigning the 𝑘𝑘&À resource are shown in Tables 1-4.

By using Algorithm 1, the priority of jobs (denoted by 𝛿𝛿F) for assigning the 𝑘𝑘&À	
resource can be calculated by the following equation:

𝛿𝛿F = 𝛥𝛥F × 𝛤𝛤F = N

0.160		0.126		0.158		0.533
0.240		0.107		0.210		0.267
0.480		0.646		0.316		0.133
0.120		0.121		0.316		0.067

ON

0.108
0.288
0.431
0.173

O = N

0.214
0.193
0.397
0.196

O

The priority of jobs based on different criteria for assigning 𝑘𝑘&À	 resource has been
shown in Fig. 2. The figure demonstrates how alternatives act on each criterion. The
total priority (proposed method) of each alternative is where it intersects the axis on
the right. The priority of each criterion is demonstrated by the rectangular box on that
criterion’s vertical fine, as read from the axis at the left.

Azerbaijan Journal of High Performance Computing, 2(1), 2019

34

Each cloudlet puts a set of priority-stamp to the jobs for allocating the requested
resources.

2. Priority-aware Resource Allocation. This phase is the main part of the proposed
method. In this phase, a global scheduler combines the jobs based on the priority-
stamps of the local cloudlets. This phase contains the following five steps:

• Step 1: (Initializing). Assume that 𝛷𝛷 = {𝐽𝐽., 𝐽𝐽0, … , 𝐽𝐽l} is a collection of jobs that
demands resources in a cloud-based environment. We also assume that 𝛹𝛹 = {𝑅𝑅.,
𝑅𝑅0, … , 𝑅𝑅D} is a collection of resources obtainable in cloud environment (𝑑𝑑 ≥ 𝑙𝑙). Each
job demands a subset of resources. At first, these queries are sent to the local
cloudlets. Each local cloudlet puts a set of priority stamps based on different criteria
on the requested jobs. Now assume that 𝛶𝛶?(𝐽𝐽D, 𝑅𝑅E) is the priority-stamp of the ist job
for assigning jst reSource based on xst criterion.

• Step 2: (Computing the Criteria Matrix). This step computes the priority-stamp of
criteria for assigning the kst resource. The criteria matrix is denoted by 𝛶𝛶F. This
matrix compares the priority-stamps of criteria based on the criterion of the global
scheduler. The following equation can compute the 𝛶𝛶F matrix:

𝛶𝛶F[𝑥𝑥, 𝑦𝑦] = yz({|)
y}({|)

 (6)
where x,y=l, 2, . . . ,s (s is the number of cloudlets). Moreover, 𝑃𝑃?(𝛶𝛶F) and 𝑃𝑃�(𝛶𝛶F)

in Eq. 6, are the priority stamp of the xst and yst criteria based on the global
scheduler.

• Step 3: (Making Comparison Matrices of the Jobs). This step, computes the
comparison matrices for the jobs to assign the resources based on the criteria of the
cloudlets. The comparison matrices indicate the priorities of jobs based on different
cloudlets.

The comparison matrices can be computed by the following equation:

𝛬𝛬%&
F? = 2

{Ç(É4,Ñ|)
{Ç(É5,Ñ|)

					𝑟𝑟 ≠ 𝑡𝑡
1																			𝑟𝑟 = 𝑡𝑡

 (7)

where 𝛬𝛬F? is the comparison matrix of the kst(k = 1,2, … , s) resource based on the
criteria of xst(k = 1,2, … , s) cloudlet.

• Step 4: (Computing the Priority Vector). This step computes priority vectors
for the matrices of jobs. For this purpose, was used Algorithm 1.

Algorithm 1 Corresponding Principal Eigenvector ()
1: D ← Υã
2: µ ← 1
3: e ← (1,1, … ,1)
4: h. ←

Dë
í

eìDë
í

5: h0 ← h.
6:while	(|‖h.‖ − ‖h0‖| ≥∈)	do
7: µ ← µ + 1
8: h. ← h0
9: h0 ← h +

Dë
í

eìDë
í

10: Return	
h
µ

Now, suppose that qã., 	qã0, … , qã© are the priority vectors of 𝛬𝛬F., 𝛬𝛬F0, … , 𝛬𝛬Fl.
Therefore, we have d priority vectors have associated with the d comparison matrices
for assigning the kst resource.

• Step 5: (Computing the Priority of Jobs). By using Theorem 1, the priority of
jobs for kst resource denoted by δã, can be calculated by the following equation:

𝛿𝛿F = 𝛥𝛥F × 𝛤𝛤F (8)
where 𝛤𝛤F is the priority vector of 𝛶𝛶F and 𝛥𝛥F is defined as the following equation:

𝛥𝛥F 	= [𝑞𝑞F.𝑞𝑞F0 … 𝑞𝑞Fl] = 	

⎝

⎛
𝑞𝑞.. 𝑞𝑞.0 ⋯ 𝑞𝑞.F

𝑞𝑞0. 𝑞𝑞00 ⋯ 𝑞𝑞0F
⋮ ⋮ ⋮ ⋮
𝑞𝑞l. 𝑞𝑞l0 ⋯ 𝑞𝑞lF⎠

⎞ (9)

3. Assigning the Final Priority Stamp. This step assigns the final priority stamp on
the jobs. The jobs with the highest priority-stamps will be assigned to VMs for
allocating the appropriate resources. Algorithm 2 indicates the details of the
proposed method.

5. Performance Evaluation
In this section, were provided some experimental results. Now assume that 𝛷𝛷 =

{𝐽𝐽., 𝐽𝐽0, 𝐽𝐽Ø, 𝐽𝐽∞} is a collection of jobs that demand resources in a cloud-based
environment. We also suppose

Algorithm 2 Calculation Priority of Processors ()
Description:

1: 𝐿𝐿𝐿𝐿𝐿𝐿	𝛷𝛷 = {𝑗𝑗., 𝑗𝑗0, … , 𝑗𝑗l}
2: 𝐿𝐿𝐿𝐿𝐿𝐿	𝛹𝛹 = {𝑅𝑅., 𝑅𝑅0, … , 𝑅𝑅¥}
3: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑡𝑡ℎ𝑒𝑒	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆	𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏	𝑜𝑜𝑜𝑜	𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	
4: 𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
5:𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖	𝑇𝑇	𝑑𝑑𝑑𝑑
6:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛶𝛶F)	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 6
7: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝛤𝛤F	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉	𝑜𝑜𝑜𝑜	𝛶𝛶F	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚	1	
8:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛬𝛬F?); (𝑘𝑘 = 1,2, … , 𝑙𝑙)	𝑎𝑎𝑎𝑎𝑎𝑎	(𝑥𝑥 = 1,2, … , 𝑠𝑠)	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 7	
9: 𝐹𝐹𝐹𝐹𝐹𝐹	𝑎𝑎𝑎𝑎𝑎𝑎	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛬𝛬F?); (𝑘𝑘 = 1,2, … , 𝑙𝑙)	𝑎𝑎𝑎𝑎𝑎𝑎	(𝑥𝑥 = 1,2, … , 𝑠𝑠)	
				𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚	1	
9:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝛥𝛥F	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 9
10: 𝑒𝑒𝑒𝑒𝑒𝑒	𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖;

that 𝛹𝛹 = {𝑅𝑅., 𝑅𝑅0, … , 𝑅𝑅∞} is a set of resources available for the global scheduler. Also
was considered four cloudlets with different criteria, including makes pan,
throughput, time complexity, and trust, respectively.

Let.»𝑥𝑥, 𝑝𝑝𝑝𝑝(𝑥𝑥)…𝜖𝜖{(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0.8), (𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝𝑝𝑝, 0.3), (𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0.2), (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 0.5)}
Thus the comparison matrix for the criteria of a good assignment to the 𝑘𝑘&À resource
can be computed as follows:

𝛶𝛶F = N

1.000		0.375		0.250		0.625
2.667		1.000		0.667		1.667
4.000		1.500		1.000		2.500
1.600		0.600		0.400		1.000

O

By using Algorithm 1, the corresponding priority vector of 𝛶𝛶F denoted by 𝛤𝛤F can
be computed by using the following equation:

𝛤𝛤F = N

0.108
0.288
0.431
0.173

O

Moreover, the comparison matrices of jobs based on different criteria for
assigning the 𝑘𝑘&À resource are shown in Tables 1-4.

By using Algorithm 1, the priority of jobs (denoted by 𝛿𝛿F) for assigning the 𝑘𝑘&À	
resource can be calculated by the following equation:

𝛿𝛿F = 𝛥𝛥F × 𝛤𝛤F = N

0.160		0.126		0.158		0.533
0.240		0.107		0.210		0.267
0.480		0.646		0.316		0.133
0.120		0.121		0.316		0.067

ON

0.108
0.288
0.431
0.173

O = N

0.214
0.193
0.397
0.196

O

The priority of jobs based on different criteria for assigning 𝑘𝑘&À	 resource has been
shown in Fig. 2. The figure demonstrates how alternatives act on each criterion. The
total priority (proposed method) of each alternative is where it intersects the axis on
the right. The priority of each criterion is demonstrated by the rectangular box on that
criterion’s vertical fine, as read from the axis at the left.

Table 1: Comparison matrix based on makespan for assigning qk1 resource.

Jobs
Jobs

qk1

j1 j2 j3 j4
j1 1.000 0.666 0.333 1.333 0.160
j2 1.500 1.000 0.500 2.000 0.240
j3 3.000 2.000 1.000 4.000 0.480
j4 0.750 0.500 0.250 1.000 0.120

Each cloudlet puts a set of priority-stamp to the jobs for allocating the requested
resources.

2. Priority-aware Resource Allocation. This phase is the main part of the proposed
method. In this phase, a global scheduler combines the jobs based on the priority-
stamps of the local cloudlets. This phase contains the following five steps:

• Step 1: (Initializing). Assume that 𝛷𝛷 = {𝐽𝐽., 𝐽𝐽0, … , 𝐽𝐽l} is a collection of jobs that
demands resources in a cloud-based environment. We also assume that 𝛹𝛹 = {𝑅𝑅.,
𝑅𝑅0, … , 𝑅𝑅D} is a collection of resources obtainable in cloud environment (𝑑𝑑 ≥ 𝑙𝑙). Each
job demands a subset of resources. At first, these queries are sent to the local
cloudlets. Each local cloudlet puts a set of priority stamps based on different criteria
on the requested jobs. Now assume that 𝛶𝛶?(𝐽𝐽D, 𝑅𝑅E) is the priority-stamp of the ist job
for assigning jst reSource based on xst criterion.

• Step 2: (Computing the Criteria Matrix). This step computes the priority-stamp of
criteria for assigning the kst resource. The criteria matrix is denoted by 𝛶𝛶F. This
matrix compares the priority-stamps of criteria based on the criterion of the global
scheduler. The following equation can compute the 𝛶𝛶F matrix:

𝛶𝛶F[𝑥𝑥, 𝑦𝑦] = yz({|)
y}({|)

 (6)
where x,y=l, 2, . . . ,s (s is the number of cloudlets). Moreover, 𝑃𝑃?(𝛶𝛶F) and 𝑃𝑃�(𝛶𝛶F)

in Eq. 6, are the priority stamp of the xst and yst criteria based on the global
scheduler.

• Step 3: (Making Comparison Matrices of the Jobs). This step, computes the
comparison matrices for the jobs to assign the resources based on the criteria of the
cloudlets. The comparison matrices indicate the priorities of jobs based on different
cloudlets.

The comparison matrices can be computed by the following equation:

𝛬𝛬%&
F? = 2

{Ç(É4,Ñ|)
{Ç(É5,Ñ|)

					𝑟𝑟 ≠ 𝑡𝑡
1																			𝑟𝑟 = 𝑡𝑡

 (7)

where 𝛬𝛬F? is the comparison matrix of the kst(k = 1,2, … , s) resource based on the
criteria of xst(k = 1,2, … , s) cloudlet.

• Step 4: (Computing the Priority Vector). This step computes priority vectors
for the matrices of jobs. For this purpose, was used Algorithm 1.

Algorithm 1 Corresponding Principal Eigenvector ()
1: D ← Υã
2: µ ← 1
3: e ← (1,1, … ,1)
4: h. ←

Dë
í

eìDë
í

5: h0 ← h.
6:while	(|‖h.‖ − ‖h0‖| ≥∈)	do
7: µ ← µ + 1
8: h. ← h0
9: h0 ← h +

Dë
í

eìDë
í

10: Return	
h
µ

Now, suppose that qã., 	qã0, … , qã© are the priority vectors of 𝛬𝛬F., 𝛬𝛬F0, … , 𝛬𝛬Fl.
Therefore, we have d priority vectors have associated with the d comparison matrices
for assigning the kst resource.

• Step 5: (Computing the Priority of Jobs). By using Theorem 1, the priority of
jobs for kst resource denoted by δã, can be calculated by the following equation:

𝛿𝛿F = 𝛥𝛥F × 𝛤𝛤F (8)
where 𝛤𝛤F is the priority vector of 𝛶𝛶F and 𝛥𝛥F is defined as the following equation:

𝛥𝛥F 	= [𝑞𝑞F.𝑞𝑞F0 … 𝑞𝑞Fl] = 	

⎝

⎛
𝑞𝑞.. 𝑞𝑞.0 ⋯ 𝑞𝑞.F

𝑞𝑞0. 𝑞𝑞00 ⋯ 𝑞𝑞0F
⋮ ⋮ ⋮ ⋮
𝑞𝑞l. 𝑞𝑞l0 ⋯ 𝑞𝑞lF⎠

⎞ (9)

3. Assigning the Final Priority Stamp. This step assigns the final priority stamp on
the jobs. The jobs with the highest priority-stamps will be assigned to VMs for
allocating the appropriate resources. Algorithm 2 indicates the details of the
proposed method.

5. Performance Evaluation
In this section, were provided some experimental results. Now assume that 𝛷𝛷 =

{𝐽𝐽., 𝐽𝐽0, 𝐽𝐽Ø, 𝐽𝐽∞} is a collection of jobs that demand resources in a cloud-based
environment. We also suppose

Algorithm 2 Calculation Priority of Processors ()
Description:

1: 𝐿𝐿𝐿𝐿𝐿𝐿	𝛷𝛷 = {𝑗𝑗., 𝑗𝑗0, … , 𝑗𝑗l}
2: 𝐿𝐿𝐿𝐿𝐿𝐿	𝛹𝛹 = {𝑅𝑅., 𝑅𝑅0, … , 𝑅𝑅¥}
3: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑡𝑡ℎ𝑒𝑒	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆	𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏	𝑜𝑜𝑜𝑜	𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	
4: 𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
5:𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖	𝑇𝑇	𝑑𝑑𝑑𝑑
6:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛶𝛶F)	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 6
7: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝛤𝛤F	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉	𝑜𝑜𝑜𝑜	𝛶𝛶F	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚	1	
8:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛬𝛬F?); (𝑘𝑘 = 1,2, … , 𝑙𝑙)	𝑎𝑎𝑎𝑎𝑎𝑎	(𝑥𝑥 = 1,2, … , 𝑠𝑠)	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 7	
9: 𝐹𝐹𝐹𝐹𝐹𝐹	𝑎𝑎𝑎𝑎𝑎𝑎	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛬𝛬F?); (𝑘𝑘 = 1,2, … , 𝑙𝑙)	𝑎𝑎𝑎𝑎𝑎𝑎	(𝑥𝑥 = 1,2, … , 𝑠𝑠)	
				𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚	1	
9:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝛥𝛥F	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 9
10: 𝑒𝑒𝑒𝑒𝑒𝑒	𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖;

that 𝛹𝛹 = {𝑅𝑅., 𝑅𝑅0, … , 𝑅𝑅∞} is a set of resources available for the global scheduler. Also
was considered four cloudlets with different criteria, including makes pan,
throughput, time complexity, and trust, respectively.

Let.»𝑥𝑥, 𝑝𝑝𝑝𝑝(𝑥𝑥)…𝜖𝜖{(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0.8), (𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝𝑝𝑝, 0.3), (𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0.2), (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 0.5)}
Thus the comparison matrix for the criteria of a good assignment to the 𝑘𝑘&À resource
can be computed as follows:

𝛶𝛶F = N

1.000		0.375		0.250		0.625
2.667		1.000		0.667		1.667
4.000		1.500		1.000		2.500
1.600		0.600		0.400		1.000

O

By using Algorithm 1, the corresponding priority vector of 𝛶𝛶F denoted by 𝛤𝛤F can
be computed by using the following equation:

𝛤𝛤F = N

0.108
0.288
0.431
0.173

O

Moreover, the comparison matrices of jobs based on different criteria for
assigning the 𝑘𝑘&À resource are shown in Tables 1-4.

By using Algorithm 1, the priority of jobs (denoted by 𝛿𝛿F) for assigning the 𝑘𝑘&À	
resource can be calculated by the following equation:

𝛿𝛿F = 𝛥𝛥F × 𝛤𝛤F = N

0.160		0.126		0.158		0.533
0.240		0.107		0.210		0.267
0.480		0.646		0.316		0.133
0.120		0.121		0.316		0.067

ON

0.108
0.288
0.431
0.173

O = N

0.214
0.193
0.397
0.196

O

The priority of jobs based on different criteria for assigning 𝑘𝑘&À	 resource has been
shown in Fig. 2. The figure demonstrates how alternatives act on each criterion. The
total priority (proposed method) of each alternative is where it intersects the axis on
the right. The priority of each criterion is demonstrated by the rectangular box on that
criterion’s vertical fine, as read from the axis at the left.

Shamsollah Ghanbari

35

Table 2: Comparison matrix based on throughput for assigning qk2 resource.

Jobs
Jobs

qk2

j1 j2 j3 j4
j1 1.000 1.120 0.200 0.800 0.126
j2 0.833 1.000 0.166 0.666 0.107
j3 5.000 6.000 1.000 4.000 0.646
j4 1.250 1.500 0.250 1.000 0.121

Table 3: Comparison matrix based on complexity for assigning qk3 resource.

Jobs
Jobs

qk3j1 j2 j3 j4
j1 1.000 0.750 0.500 0.500 0.158
j2 1.333 1.000 0.666 0.666 0.210
j3 2.000 1.500 1.000 1.000 0.316
j4 2.000 1.500 1.000 1.000 0.316

Table 4: Comparison matrix based on trust for assigning qk4 resource.

Jobs
Jobs

qk4j1 j2 j3 j4
j1 1.000 2.000 4.000 8.000 0.533
j2 0.500 1.000 2.000 4.000 0.267
j3 0.250 0.500 1.000 2.000 0.133
j4 0.125 0.250 0.500 1.000 0.067

Each cloudlet puts a set of priority-stamp to the jobs for allocating the requested
resources.

2. Priority-aware Resource Allocation. This phase is the main part of the proposed
method. In this phase, a global scheduler combines the jobs based on the priority-
stamps of the local cloudlets. This phase contains the following five steps:

• Step 1: (Initializing). Assume that 𝛷𝛷 = {𝐽𝐽., 𝐽𝐽0, … , 𝐽𝐽l} is a collection of jobs that
demands resources in a cloud-based environment. We also assume that 𝛹𝛹 = {𝑅𝑅.,
𝑅𝑅0, … , 𝑅𝑅D} is a collection of resources obtainable in cloud environment (𝑑𝑑 ≥ 𝑙𝑙). Each
job demands a subset of resources. At first, these queries are sent to the local
cloudlets. Each local cloudlet puts a set of priority stamps based on different criteria
on the requested jobs. Now assume that 𝛶𝛶?(𝐽𝐽D, 𝑅𝑅E) is the priority-stamp of the ist job
for assigning jst reSource based on xst criterion.

• Step 2: (Computing the Criteria Matrix). This step computes the priority-stamp of
criteria for assigning the kst resource. The criteria matrix is denoted by 𝛶𝛶F. This
matrix compares the priority-stamps of criteria based on the criterion of the global
scheduler. The following equation can compute the 𝛶𝛶F matrix:

𝛶𝛶F[𝑥𝑥, 𝑦𝑦] = yz({|)
y}({|)

 (6)
where x,y=l, 2, . . . ,s (s is the number of cloudlets). Moreover, 𝑃𝑃?(𝛶𝛶F) and 𝑃𝑃�(𝛶𝛶F)

in Eq. 6, are the priority stamp of the xst and yst criteria based on the global
scheduler.

• Step 3: (Making Comparison Matrices of the Jobs). This step, computes the
comparison matrices for the jobs to assign the resources based on the criteria of the
cloudlets. The comparison matrices indicate the priorities of jobs based on different
cloudlets.

The comparison matrices can be computed by the following equation:

𝛬𝛬%&
F? = 2

{Ç(É4,Ñ|)
{Ç(É5,Ñ|)

					𝑟𝑟 ≠ 𝑡𝑡
1																			𝑟𝑟 = 𝑡𝑡

 (7)

where 𝛬𝛬F? is the comparison matrix of the kst(k = 1,2, … , s) resource based on the
criteria of xst(k = 1,2, … , s) cloudlet.

• Step 4: (Computing the Priority Vector). This step computes priority vectors
for the matrices of jobs. For this purpose, was used Algorithm 1.

Algorithm 1 Corresponding Principal Eigenvector ()
1: D ← Υã
2: µ ← 1
3: e ← (1,1, … ,1)
4: h. ←

Dë
í

eìDë
í

5: h0 ← h.
6:while	(|‖h.‖ − ‖h0‖| ≥∈)	do
7: µ ← µ + 1
8: h. ← h0
9: h0 ← h +

Dë
í

eìDë
í

10: Return	
h
µ

Now, suppose that qã., 	qã0, … , qã© are the priority vectors of 𝛬𝛬F., 𝛬𝛬F0, … , 𝛬𝛬Fl.
Therefore, we have d priority vectors have associated with the d comparison matrices
for assigning the kst resource.

• Step 5: (Computing the Priority of Jobs). By using Theorem 1, the priority of
jobs for kst resource denoted by δã, can be calculated by the following equation:

𝛿𝛿F = 𝛥𝛥F × 𝛤𝛤F (8)
where 𝛤𝛤F is the priority vector of 𝛶𝛶F and 𝛥𝛥F is defined as the following equation:

𝛥𝛥F 	= [𝑞𝑞F.𝑞𝑞F0 … 𝑞𝑞Fl] = 	

⎝

⎛
𝑞𝑞.. 𝑞𝑞.0 ⋯ 𝑞𝑞.F

𝑞𝑞0. 𝑞𝑞00 ⋯ 𝑞𝑞0F
⋮ ⋮ ⋮ ⋮
𝑞𝑞l. 𝑞𝑞l0 ⋯ 𝑞𝑞lF⎠

⎞ (9)

3. Assigning the Final Priority Stamp. This step assigns the final priority stamp on
the jobs. The jobs with the highest priority-stamps will be assigned to VMs for
allocating the appropriate resources. Algorithm 2 indicates the details of the
proposed method.

5. Performance Evaluation
In this section, were provided some experimental results. Now assume that 𝛷𝛷 =

{𝐽𝐽., 𝐽𝐽0, 𝐽𝐽Ø, 𝐽𝐽∞} is a collection of jobs that demand resources in a cloud-based
environment. We also suppose

Algorithm 2 Calculation Priority of Processors ()
Description:

1: 𝐿𝐿𝐿𝐿𝐿𝐿	𝛷𝛷 = {𝑗𝑗., 𝑗𝑗0, … , 𝑗𝑗l}
2: 𝐿𝐿𝐿𝐿𝐿𝐿	𝛹𝛹 = {𝑅𝑅., 𝑅𝑅0, … , 𝑅𝑅¥}
3: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑡𝑡ℎ𝑒𝑒	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆	𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏	𝑜𝑜𝑜𝑜	𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	
4: 𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
5:𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖	𝑇𝑇	𝑑𝑑𝑑𝑑
6:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛶𝛶F)	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 6
7: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝛤𝛤F	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃	𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉	𝑜𝑜𝑜𝑜	𝛶𝛶F	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚	1	
8:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛬𝛬F?); (𝑘𝑘 = 1,2, … , 𝑙𝑙)	𝑎𝑎𝑎𝑎𝑎𝑎	(𝑥𝑥 = 1,2, … , 𝑠𝑠)	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 7	
9: 𝐹𝐹𝐹𝐹𝐹𝐹	𝑎𝑎𝑎𝑎𝑎𝑎	𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	(𝛬𝛬F?); (𝑘𝑘 = 1,2, … , 𝑙𝑙)	𝑎𝑎𝑎𝑎𝑎𝑎	(𝑥𝑥 = 1,2, … , 𝑠𝑠)	
				𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚	1	
9:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝛥𝛥F	𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢	𝐸𝐸𝐸𝐸. 9
10: 𝑒𝑒𝑒𝑒𝑒𝑒	𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖;

that 𝛹𝛹 = {𝑅𝑅., 𝑅𝑅0, … , 𝑅𝑅∞} is a set of resources available for the global scheduler. Also
was considered four cloudlets with different criteria, including makes pan,
throughput, time complexity, and trust, respectively.

Let.»𝑥𝑥, 𝑝𝑝𝑝𝑝(𝑥𝑥)…𝜖𝜖{(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0.8), (𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝𝑝𝑝, 0.3), (𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0.2), (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 0.5)}
Thus the comparison matrix for the criteria of a good assignment to the 𝑘𝑘&À resource
can be computed as follows:

𝛶𝛶F = N

1.000		0.375		0.250		0.625
2.667		1.000		0.667		1.667
4.000		1.500		1.000		2.500
1.600		0.600		0.400		1.000

O

By using Algorithm 1, the corresponding priority vector of 𝛶𝛶F denoted by 𝛤𝛤F can
be computed by using the following equation:

𝛤𝛤F = N

0.108
0.288
0.431
0.173

O

Moreover, the comparison matrices of jobs based on different criteria for
assigning the 𝑘𝑘&À resource are shown in Tables 1-4.

By using Algorithm 1, the priority of jobs (denoted by 𝛿𝛿F) for assigning the 𝑘𝑘&À	
resource can be calculated by the following equation:

𝛿𝛿F = 𝛥𝛥F × 𝛤𝛤F = N

0.160		0.126		0.158		0.533
0.240		0.107		0.210		0.267
0.480		0.646		0.316		0.133
0.120		0.121		0.316		0.067

ON

0.108
0.288
0.431
0.173

O = N

0.214
0.193
0.397
0.196

O

The priority of jobs based on different criteria for assigning 𝑘𝑘&À	 resource has been
shown in Fig. 2. The figure demonstrates how alternatives act on each criterion. The
total priority (proposed method) of each alternative is where it intersects the axis on
the right. The priority of each criterion is demonstrated by the rectangular box on that
criterion’s vertical fine, as read from the axis at the left.

Now is used cloudsim in order to simulate the results. The parameter settings are
indicated in Table 5. We consider two different scenarios, including time shared and
space shared. For each scenario, we compute the turn around time of the jobs. The
results have been depicted in Fig. 3a and 3b. As the figures show, in both scenarios,
the proposed method can decrease the time.

6. Discussion
In this section, was computed the complexity of computation of the proposed

method. In this situation, the complexity of the proposed method is equivalent to the
number of computations that the cloudlets must execute. Thus, the complexity of
computation in the proposed method is equal to the complexity of Algorithm 2. The
following equation can compute it:

𝑡𝑡Ã%ÕÃ = 𝑐𝑐. × 𝑡𝑡Œyœ(𝑠𝑠) + 𝑐𝑐0 × 𝑙𝑙 × 𝑡𝑡Œyœ(𝑑𝑑) (10)
We also have:

𝑡𝑡Œyœ(𝑠𝑠) = 𝑐𝑐∞𝑠𝑠0.–. (11)
and

𝑡𝑡Œyœ(𝑑𝑑) = 𝑐𝑐 × 𝑑𝑑0.–. (12)
where 𝑐𝑐., 𝑐𝑐0, 𝑐𝑐Ø and 𝑐𝑐∞ are four constant numbers. Moreover, 𝑡𝑡Œyœ is the number of

computations for computing Algorithm 1. The other notations, including 𝑠𝑠, 𝑑𝑑, and 𝑙𝑙
are the number of criteria, jobs, and the resources respectively. Note that have been
applied to Strassen's algorithm [26] for multiplication of two matrices in Eqs. (11) and
(12).

7. Conclusion
This paper presented a multi-criteria priority-aware job scheduling algorithm,

which is useful for the cloud-based environment. The proposed method can combine
different criteria in order to find the best solution in cloud scheduling. We tested the
proposed method in the CloudSim environment toolkit. The simulated results
indicated that the proposed method could provide the best solution. We have also
indicated that the proposed method has a reasonable complexity of computation,
while the complexity of computation is 𝛺𝛺(𝑛𝑛0.–.) in the worst case. Besides, the
proposed method can manage the priority of jobs for assigning the resources. As
future work, we have a plan to use fuzzy-AHP in order to enhance the accuracy of the
proposed method.

References
[1] Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008). Cloud computing and grid

computing 360-degree compared. arXiv preprint arXiv:0901.0131.
[2] Cobham, A. (1954). Priority assignment in waiting line problems. Journal of the

Operations Research Society of America, 2(1), 70-76.
[3] Phipps Jr, T. E. (1956). Machine repair as a priority waiting-line

problem. Operations Research, 4(1), 76-85.
[4] Kleinrock, L. (1964). Analysis of A time‐shared processor. Naval research

logistics quarterly, 11(1), 59-73.
[5] Coffman Jr, E. G., & Kleinrock, L. (1968, April). Computer scheduling methods

and their countermeasures. In Proceedings of the April 30--May 2, 1968, spring joint
computer conference (pp. 11-21). ACM.

[6] Lee, Y. H., Leu, S., & Chang, R. S. (2011). Improving job scheduling algorithms
in a grid environment. Future generation computer systems, 27(8), 991-998.

[7] Lee, M. C., Lin, J. C., & Yahyapour, R. (2015). Hybrid job-driven scheduling for
virtual mapreduce clusters. IEEE Transactions on Parallel and Distributed
Systems, 27(6), 1687-1699.

[8] Hwang, K., Dongarra, J., & Fox, G. C. (2018). Cloud Computing and
Distributed Systems: From Parallel Processing to the Internet of Things. Morgan
Kaufmann.

[9] Marozzo, F., Carretero Pérez, J., Duro, R., García Blas, J., Talia, D., & Trunfio,
P. (2016). A data-aware scheduling strategy for dmcf workflows over hercules.

[10] Baranowski, M., Bubak, M., & Belloum, A. (2015, July). Data and process
abstractions for cloud computing. In 2015 International Conference on High
Performance Computing & Simulation (HPCS). (pp. 646-649). IEEE.

[11] Aghababaeipour, A., & Ghanbari, S. (2018, February). A New Adaptive
Energy-Aware Job Scheduling in Cloud Computing. In International Conference on
Soft Computing and Data Mining (pp. 308-317). Springer, Cham.

[12] Ghanbari, S., & Othman, M. (2018). Time Cheating in Divisible Load
Scheduling: Sensitivity Analysis, Results and Open Problems. Procedia Computer
Science, 125, 935-943.

[13] Singh, S., & Chana, I. (2015). QRSF: QoS-aware resource scheduling
framework in cloud computing. The Journal of Supercomputing, 71(1), 241-292.

[14] Suresh, S., Huang, H., & Kim, H. J. (2015). Scheduling in compute cloud with
multiple data banks using divisible load paradigm. IEEE Transactions on Aerospace
and Electronic Systems, 51(2), 1288-1297.

[15] Ghanbari, S., & Othman, M. (2012). A priority based job scheduling algorithm
in cloud computing. Procedia Engineering, 50(0), 778-785.

[16] Kong, X., Lin, C., Jiang, Y., Yan, W., & Chu, X. (2011). Efficient dynamic task
scheduling in virtualized data centers with fuzzy prediction. Journal of network and
Computer Applications, 34(4), 1068-1077.

[17] Ficco, M., Di Martino, B., Pietrantuono, R., & Russo, S. (2017). Optimized task
allocation on private cloud for hybrid simulation of large-scale critical systems. Future
Generation Computer Systems, 74, 104-118.

[18] Narman, H. S., Hossain, M. S., Atiquzzaman, M., & Shen, H. (2017).
Scheduling internet of things applications in cloud computing. Annals of
Telecommunications, 72(1-2), 79-93.

[19] Wang, W., Zeng, G., Tang, D., & Yao, J. (2012). Cloud-DLS: Dynamic trusted
scheduling for Cloud computing. Expert Systems with Applications, 39(3), 2321-
2329.

[20] Xu, B., Zhao, C., Hu, E., & Hu, B. (2011). Job scheduling algorithm based on
Berger model in cloud environment. Advances in Engineering Software, 42(7), 419-
425.

[21] Juarez, F., Ejarque, J., & Badia, R. M. (2018). Dynamic energy-aware
scheduling for parallel task-based application in cloud computing. Future Generation
Computer Systems, 78, 257-271.

[22] Ghanbari, S., Othman, M., Bakar, M. R. A., & Leong, W. J. (2016). Multi-
objective method for divisible load scheduling in multi-level tree network. Future
Generation Computer Systems, 54, 132-143.

[23] Saaty, T. L. (1990). How to make a decision: the analytic hierarchy
process. European journal of operational research, 48(1), 9-26.

[24] Saaty, T. L. (2013). The modern science of multicriteria decision making and
its practical applications: The AHP/ANP approach. Operations Research, 61(5),
1101-1118.

[25] Ghanbari, S., Othman, M., Bakar, M. R. A., & Leong, W. J. (2015). Priority-
based divisible load scheduling using analytical hierarchy process. Applied
Mathematics & Information Sciences, 9(5), 2541.

[26] Strassen, V. (1969). Gaussian elimination is not optimal. Numerische
mathematik, 13(4), 354-356.

Azerbaijan Journal of High Performance Computing, 2(1), 2019

36

Fig. 2: The priority of jobs based on dierent criteria.

(a) Simulation results for the rst scenario
(space shared)

(b) Simulation results for the second
scenario (time shared)

Table 5: Cloudlet specification
parameters value
The Number of VMs 4
RAM 1024
MPs 1000
Bandwidth 1000

Now is used cloudsim in order to simulate the results. The parameter settings are
indicated in Table 5. We consider two different scenarios, including time shared and
space shared. For each scenario, we compute the turn around time of the jobs. The
results have been depicted in Fig. 3a and 3b. As the figures show, in both scenarios,
the proposed method can decrease the time.

6. Discussion
In this section, was computed the complexity of computation of the proposed

method. In this situation, the complexity of the proposed method is equivalent to the
number of computations that the cloudlets must execute. Thus, the complexity of
computation in the proposed method is equal to the complexity of Algorithm 2. The
following equation can compute it:

𝑡𝑡Ã%ÕÃ = 𝑐𝑐. × 𝑡𝑡Œyœ(𝑠𝑠) + 𝑐𝑐0 × 𝑙𝑙 × 𝑡𝑡Œyœ(𝑑𝑑) (10)
We also have:

𝑡𝑡Œyœ(𝑠𝑠) = 𝑐𝑐∞𝑠𝑠0.–. (11)
and

𝑡𝑡Œyœ(𝑑𝑑) = 𝑐𝑐 × 𝑑𝑑0.–. (12)
where 𝑐𝑐., 𝑐𝑐0, 𝑐𝑐Ø and 𝑐𝑐∞ are four constant numbers. Moreover, 𝑡𝑡Œyœ is the number of

computations for computing Algorithm 1. The other notations, including 𝑠𝑠, 𝑑𝑑, and 𝑙𝑙
are the number of criteria, jobs, and the resources respectively. Note that have been
applied to Strassen's algorithm [26] for multiplication of two matrices in Eqs. (11) and
(12).

7. Conclusion
This paper presented a multi-criteria priority-aware job scheduling algorithm,

which is useful for the cloud-based environment. The proposed method can combine
different criteria in order to find the best solution in cloud scheduling. We tested the
proposed method in the CloudSim environment toolkit. The simulated results
indicated that the proposed method could provide the best solution. We have also
indicated that the proposed method has a reasonable complexity of computation,
while the complexity of computation is 𝛺𝛺(𝑛𝑛0.–.) in the worst case. Besides, the
proposed method can manage the priority of jobs for assigning the resources. As
future work, we have a plan to use fuzzy-AHP in order to enhance the accuracy of the
proposed method.

References
[1] Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008). Cloud computing and grid

computing 360-degree compared. arXiv preprint arXiv:0901.0131.
[2] Cobham, A. (1954). Priority assignment in waiting line problems. Journal of the

Operations Research Society of America, 2(1), 70-76.
[3] Phipps Jr, T. E. (1956). Machine repair as a priority waiting-line

problem. Operations Research, 4(1), 76-85.
[4] Kleinrock, L. (1964). Analysis of A time‐shared processor. Naval research

logistics quarterly, 11(1), 59-73.
[5] Coffman Jr, E. G., & Kleinrock, L. (1968, April). Computer scheduling methods

and their countermeasures. In Proceedings of the April 30--May 2, 1968, spring joint
computer conference (pp. 11-21). ACM.

[6] Lee, Y. H., Leu, S., & Chang, R. S. (2011). Improving job scheduling algorithms
in a grid environment. Future generation computer systems, 27(8), 991-998.

[7] Lee, M. C., Lin, J. C., & Yahyapour, R. (2015). Hybrid job-driven scheduling for
virtual mapreduce clusters. IEEE Transactions on Parallel and Distributed
Systems, 27(6), 1687-1699.

[8] Hwang, K., Dongarra, J., & Fox, G. C. (2018). Cloud Computing and
Distributed Systems: From Parallel Processing to the Internet of Things. Morgan
Kaufmann.

[9] Marozzo, F., Carretero Pérez, J., Duro, R., García Blas, J., Talia, D., & Trunfio,
P. (2016). A data-aware scheduling strategy for dmcf workflows over hercules.

[10] Baranowski, M., Bubak, M., & Belloum, A. (2015, July). Data and process
abstractions for cloud computing. In 2015 International Conference on High
Performance Computing & Simulation (HPCS). (pp. 646-649). IEEE.

[11] Aghababaeipour, A., & Ghanbari, S. (2018, February). A New Adaptive
Energy-Aware Job Scheduling in Cloud Computing. In International Conference on
Soft Computing and Data Mining (pp. 308-317). Springer, Cham.

[12] Ghanbari, S., & Othman, M. (2018). Time Cheating in Divisible Load
Scheduling: Sensitivity Analysis, Results and Open Problems. Procedia Computer
Science, 125, 935-943.

[13] Singh, S., & Chana, I. (2015). QRSF: QoS-aware resource scheduling
framework in cloud computing. The Journal of Supercomputing, 71(1), 241-292.

[14] Suresh, S., Huang, H., & Kim, H. J. (2015). Scheduling in compute cloud with
multiple data banks using divisible load paradigm. IEEE Transactions on Aerospace
and Electronic Systems, 51(2), 1288-1297.

[15] Ghanbari, S., & Othman, M. (2012). A priority based job scheduling algorithm
in cloud computing. Procedia Engineering, 50(0), 778-785.

[16] Kong, X., Lin, C., Jiang, Y., Yan, W., & Chu, X. (2011). Efficient dynamic task
scheduling in virtualized data centers with fuzzy prediction. Journal of network and
Computer Applications, 34(4), 1068-1077.

[17] Ficco, M., Di Martino, B., Pietrantuono, R., & Russo, S. (2017). Optimized task
allocation on private cloud for hybrid simulation of large-scale critical systems. Future
Generation Computer Systems, 74, 104-118.

[18] Narman, H. S., Hossain, M. S., Atiquzzaman, M., & Shen, H. (2017).
Scheduling internet of things applications in cloud computing. Annals of
Telecommunications, 72(1-2), 79-93.

[19] Wang, W., Zeng, G., Tang, D., & Yao, J. (2012). Cloud-DLS: Dynamic trusted
scheduling for Cloud computing. Expert Systems with Applications, 39(3), 2321-
2329.

[20] Xu, B., Zhao, C., Hu, E., & Hu, B. (2011). Job scheduling algorithm based on
Berger model in cloud environment. Advances in Engineering Software, 42(7), 419-
425.

[21] Juarez, F., Ejarque, J., & Badia, R. M. (2018). Dynamic energy-aware
scheduling for parallel task-based application in cloud computing. Future Generation
Computer Systems, 78, 257-271.

[22] Ghanbari, S., Othman, M., Bakar, M. R. A., & Leong, W. J. (2016). Multi-
objective method for divisible load scheduling in multi-level tree network. Future
Generation Computer Systems, 54, 132-143.

[23] Saaty, T. L. (1990). How to make a decision: the analytic hierarchy
process. European journal of operational research, 48(1), 9-26.

[24] Saaty, T. L. (2013). The modern science of multicriteria decision making and
its practical applications: The AHP/ANP approach. Operations Research, 61(5),
1101-1118.

[25] Ghanbari, S., Othman, M., Bakar, M. R. A., & Leong, W. J. (2015). Priority-
based divisible load scheduling using analytical hierarchy process. Applied
Mathematics & Information Sciences, 9(5), 2541.

[26] Strassen, V. (1969). Gaussian elimination is not optimal. Numerische
mathematik, 13(4), 354-356.

Shamsollah Ghanbari

37

Now is used cloudsim in order to simulate the results. The parameter settings are
indicated in Table 5. We consider two different scenarios, including time shared and
space shared. For each scenario, we compute the turn around time of the jobs. The
results have been depicted in Fig. 3a and 3b. As the figures show, in both scenarios,
the proposed method can decrease the time.

6. Discussion
In this section, was computed the complexity of computation of the proposed

method. In this situation, the complexity of the proposed method is equivalent to the
number of computations that the cloudlets must execute. Thus, the complexity of
computation in the proposed method is equal to the complexity of Algorithm 2. The
following equation can compute it:

𝑡𝑡Ã%ÕÃ = 𝑐𝑐. × 𝑡𝑡Œyœ(𝑠𝑠) + 𝑐𝑐0 × 𝑙𝑙 × 𝑡𝑡Œyœ(𝑑𝑑) (10)
We also have:

𝑡𝑡Œyœ(𝑠𝑠) = 𝑐𝑐∞𝑠𝑠0.–. (11)
and

𝑡𝑡Œyœ(𝑑𝑑) = 𝑐𝑐 × 𝑑𝑑0.–. (12)
where 𝑐𝑐., 𝑐𝑐0, 𝑐𝑐Ø and 𝑐𝑐∞ are four constant numbers. Moreover, 𝑡𝑡Œyœ is the number of

computations for computing Algorithm 1. The other notations, including 𝑠𝑠, 𝑑𝑑, and 𝑙𝑙
are the number of criteria, jobs, and the resources respectively. Note that have been
applied to Strassen's algorithm [26] for multiplication of two matrices in Eqs. (11) and
(12).

7. Conclusion
This paper presented a multi-criteria priority-aware job scheduling algorithm,

which is useful for the cloud-based environment. The proposed method can combine
different criteria in order to find the best solution in cloud scheduling. We tested the
proposed method in the CloudSim environment toolkit. The simulated results
indicated that the proposed method could provide the best solution. We have also
indicated that the proposed method has a reasonable complexity of computation,
while the complexity of computation is 𝛺𝛺(𝑛𝑛0.–.) in the worst case. Besides, the
proposed method can manage the priority of jobs for assigning the resources. As
future work, we have a plan to use fuzzy-AHP in order to enhance the accuracy of the
proposed method.

References
[1] Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008). Cloud computing and grid

computing 360-degree compared. arXiv preprint arXiv:0901.0131.
[2] Cobham, A. (1954). Priority assignment in waiting line problems. Journal of the

Operations Research Society of America, 2(1), 70-76.
[3] Phipps Jr, T. E. (1956). Machine repair as a priority waiting-line

problem. Operations Research, 4(1), 76-85.
[4] Kleinrock, L. (1964). Analysis of A time‐shared processor. Naval research

logistics quarterly, 11(1), 59-73.
[5] Coffman Jr, E. G., & Kleinrock, L. (1968, April). Computer scheduling methods

and their countermeasures. In Proceedings of the April 30--May 2, 1968, spring joint
computer conference (pp. 11-21). ACM.

[6] Lee, Y. H., Leu, S., & Chang, R. S. (2011). Improving job scheduling algorithms
in a grid environment. Future generation computer systems, 27(8), 991-998.

[7] Lee, M. C., Lin, J. C., & Yahyapour, R. (2015). Hybrid job-driven scheduling for
virtual mapreduce clusters. IEEE Transactions on Parallel and Distributed
Systems, 27(6), 1687-1699.

[8] Hwang, K., Dongarra, J., & Fox, G. C. (2018). Cloud Computing and
Distributed Systems: From Parallel Processing to the Internet of Things. Morgan
Kaufmann.

[9] Marozzo, F., Carretero Pérez, J., Duro, R., García Blas, J., Talia, D., & Trunfio,
P. (2016). A data-aware scheduling strategy for dmcf workflows over hercules.

[10] Baranowski, M., Bubak, M., & Belloum, A. (2015, July). Data and process
abstractions for cloud computing. In 2015 International Conference on High
Performance Computing & Simulation (HPCS). (pp. 646-649). IEEE.

[11] Aghababaeipour, A., & Ghanbari, S. (2018, February). A New Adaptive
Energy-Aware Job Scheduling in Cloud Computing. In International Conference on
Soft Computing and Data Mining (pp. 308-317). Springer, Cham.

[12] Ghanbari, S., & Othman, M. (2018). Time Cheating in Divisible Load
Scheduling: Sensitivity Analysis, Results and Open Problems. Procedia Computer
Science, 125, 935-943.

[13] Singh, S., & Chana, I. (2015). QRSF: QoS-aware resource scheduling
framework in cloud computing. The Journal of Supercomputing, 71(1), 241-292.

[14] Suresh, S., Huang, H., & Kim, H. J. (2015). Scheduling in compute cloud with
multiple data banks using divisible load paradigm. IEEE Transactions on Aerospace
and Electronic Systems, 51(2), 1288-1297.

[15] Ghanbari, S., & Othman, M. (2012). A priority based job scheduling algorithm
in cloud computing. Procedia Engineering, 50(0), 778-785.

[16] Kong, X., Lin, C., Jiang, Y., Yan, W., & Chu, X. (2011). Efficient dynamic task
scheduling in virtualized data centers with fuzzy prediction. Journal of network and
Computer Applications, 34(4), 1068-1077.

[17] Ficco, M., Di Martino, B., Pietrantuono, R., & Russo, S. (2017). Optimized task
allocation on private cloud for hybrid simulation of large-scale critical systems. Future
Generation Computer Systems, 74, 104-118.

[18] Narman, H. S., Hossain, M. S., Atiquzzaman, M., & Shen, H. (2017).
Scheduling internet of things applications in cloud computing. Annals of
Telecommunications, 72(1-2), 79-93.

[19] Wang, W., Zeng, G., Tang, D., & Yao, J. (2012). Cloud-DLS: Dynamic trusted
scheduling for Cloud computing. Expert Systems with Applications, 39(3), 2321-
2329.

[20] Xu, B., Zhao, C., Hu, E., & Hu, B. (2011). Job scheduling algorithm based on
Berger model in cloud environment. Advances in Engineering Software, 42(7), 419-
425.

[21] Juarez, F., Ejarque, J., & Badia, R. M. (2018). Dynamic energy-aware
scheduling for parallel task-based application in cloud computing. Future Generation
Computer Systems, 78, 257-271.

[22] Ghanbari, S., Othman, M., Bakar, M. R. A., & Leong, W. J. (2016). Multi-
objective method for divisible load scheduling in multi-level tree network. Future
Generation Computer Systems, 54, 132-143.

[23] Saaty, T. L. (1990). How to make a decision: the analytic hierarchy
process. European journal of operational research, 48(1), 9-26.

[24] Saaty, T. L. (2013). The modern science of multicriteria decision making and
its practical applications: The AHP/ANP approach. Operations Research, 61(5),
1101-1118.

[25] Ghanbari, S., Othman, M., Bakar, M. R. A., & Leong, W. J. (2015). Priority-
based divisible load scheduling using analytical hierarchy process. Applied
Mathematics & Information Sciences, 9(5), 2541.

[26] Strassen, V. (1969). Gaussian elimination is not optimal. Numerische
mathematik, 13(4), 354-356.

Azerbaijan Journal of High Performance Computing, 2(1), 2019

38

Now is used cloudsim in order to simulate the results. The parameter settings are
indicated in Table 5. We consider two different scenarios, including time shared and
space shared. For each scenario, we compute the turn around time of the jobs. The
results have been depicted in Fig. 3a and 3b. As the figures show, in both scenarios,
the proposed method can decrease the time.

6. Discussion
In this section, was computed the complexity of computation of the proposed

method. In this situation, the complexity of the proposed method is equivalent to the
number of computations that the cloudlets must execute. Thus, the complexity of
computation in the proposed method is equal to the complexity of Algorithm 2. The
following equation can compute it:

𝑡𝑡Ã%ÕÃ = 𝑐𝑐. × 𝑡𝑡Œyœ(𝑠𝑠) + 𝑐𝑐0 × 𝑙𝑙 × 𝑡𝑡Œyœ(𝑑𝑑) (10)
We also have:

𝑡𝑡Œyœ(𝑠𝑠) = 𝑐𝑐∞𝑠𝑠0.–. (11)
and

𝑡𝑡Œyœ(𝑑𝑑) = 𝑐𝑐 × 𝑑𝑑0.–. (12)
where 𝑐𝑐., 𝑐𝑐0, 𝑐𝑐Ø and 𝑐𝑐∞ are four constant numbers. Moreover, 𝑡𝑡Œyœ is the number of

computations for computing Algorithm 1. The other notations, including 𝑠𝑠, 𝑑𝑑, and 𝑙𝑙
are the number of criteria, jobs, and the resources respectively. Note that have been
applied to Strassen's algorithm [26] for multiplication of two matrices in Eqs. (11) and
(12).

7. Conclusion
This paper presented a multi-criteria priority-aware job scheduling algorithm,

which is useful for the cloud-based environment. The proposed method can combine
different criteria in order to find the best solution in cloud scheduling. We tested the
proposed method in the CloudSim environment toolkit. The simulated results
indicated that the proposed method could provide the best solution. We have also
indicated that the proposed method has a reasonable complexity of computation,
while the complexity of computation is 𝛺𝛺(𝑛𝑛0.–.) in the worst case. Besides, the
proposed method can manage the priority of jobs for assigning the resources. As
future work, we have a plan to use fuzzy-AHP in order to enhance the accuracy of the
proposed method.

References
[1] Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008). Cloud computing and grid

computing 360-degree compared. arXiv preprint arXiv:0901.0131.
[2] Cobham, A. (1954). Priority assignment in waiting line problems. Journal of the

Operations Research Society of America, 2(1), 70-76.
[3] Phipps Jr, T. E. (1956). Machine repair as a priority waiting-line

problem. Operations Research, 4(1), 76-85.
[4] Kleinrock, L. (1964). Analysis of A time‐shared processor. Naval research

logistics quarterly, 11(1), 59-73.
[5] Coffman Jr, E. G., & Kleinrock, L. (1968, April). Computer scheduling methods

and their countermeasures. In Proceedings of the April 30--May 2, 1968, spring joint
computer conference (pp. 11-21). ACM.

[6] Lee, Y. H., Leu, S., & Chang, R. S. (2011). Improving job scheduling algorithms
in a grid environment. Future generation computer systems, 27(8), 991-998.

[7] Lee, M. C., Lin, J. C., & Yahyapour, R. (2015). Hybrid job-driven scheduling for
virtual mapreduce clusters. IEEE Transactions on Parallel and Distributed
Systems, 27(6), 1687-1699.

[8] Hwang, K., Dongarra, J., & Fox, G. C. (2018). Cloud Computing and
Distributed Systems: From Parallel Processing to the Internet of Things. Morgan
Kaufmann.

[9] Marozzo, F., Carretero Pérez, J., Duro, R., García Blas, J., Talia, D., & Trunfio,
P. (2016). A data-aware scheduling strategy for dmcf workflows over hercules.

[10] Baranowski, M., Bubak, M., & Belloum, A. (2015, July). Data and process
abstractions for cloud computing. In 2015 International Conference on High
Performance Computing & Simulation (HPCS). (pp. 646-649). IEEE.

[11] Aghababaeipour, A., & Ghanbari, S. (2018, February). A New Adaptive
Energy-Aware Job Scheduling in Cloud Computing. In International Conference on
Soft Computing and Data Mining (pp. 308-317). Springer, Cham.

[12] Ghanbari, S., & Othman, M. (2018). Time Cheating in Divisible Load
Scheduling: Sensitivity Analysis, Results and Open Problems. Procedia Computer
Science, 125, 935-943.

[13] Singh, S., & Chana, I. (2015). QRSF: QoS-aware resource scheduling
framework in cloud computing. The Journal of Supercomputing, 71(1), 241-292.

[14] Suresh, S., Huang, H., & Kim, H. J. (2015). Scheduling in compute cloud with
multiple data banks using divisible load paradigm. IEEE Transactions on Aerospace
and Electronic Systems, 51(2), 1288-1297.

[15] Ghanbari, S., & Othman, M. (2012). A priority based job scheduling algorithm
in cloud computing. Procedia Engineering, 50(0), 778-785.

[16] Kong, X., Lin, C., Jiang, Y., Yan, W., & Chu, X. (2011). Efficient dynamic task
scheduling in virtualized data centers with fuzzy prediction. Journal of network and
Computer Applications, 34(4), 1068-1077.

[17] Ficco, M., Di Martino, B., Pietrantuono, R., & Russo, S. (2017). Optimized task
allocation on private cloud for hybrid simulation of large-scale critical systems. Future
Generation Computer Systems, 74, 104-118.

[18] Narman, H. S., Hossain, M. S., Atiquzzaman, M., & Shen, H. (2017).
Scheduling internet of things applications in cloud computing. Annals of
Telecommunications, 72(1-2), 79-93.

[19] Wang, W., Zeng, G., Tang, D., & Yao, J. (2012). Cloud-DLS: Dynamic trusted
scheduling for Cloud computing. Expert Systems with Applications, 39(3), 2321-
2329.

[20] Xu, B., Zhao, C., Hu, E., & Hu, B. (2011). Job scheduling algorithm based on
Berger model in cloud environment. Advances in Engineering Software, 42(7), 419-
425.

[21] Juarez, F., Ejarque, J., & Badia, R. M. (2018). Dynamic energy-aware
scheduling for parallel task-based application in cloud computing. Future Generation
Computer Systems, 78, 257-271.

[22] Ghanbari, S., Othman, M., Bakar, M. R. A., & Leong, W. J. (2016). Multi-
objective method for divisible load scheduling in multi-level tree network. Future
Generation Computer Systems, 54, 132-143.

[23] Saaty, T. L. (1990). How to make a decision: the analytic hierarchy
process. European journal of operational research, 48(1), 9-26.

[24] Saaty, T. L. (2013). The modern science of multicriteria decision making and
its practical applications: The AHP/ANP approach. Operations Research, 61(5),
1101-1118.

[25] Ghanbari, S., Othman, M., Bakar, M. R. A., & Leong, W. J. (2015). Priority-
based divisible load scheduling using analytical hierarchy process. Applied
Mathematics & Information Sciences, 9(5), 2541.

[26] Strassen, V. (1969). Gaussian elimination is not optimal. Numerische
mathematik, 13(4), 354-356.

Submitted 02.04.2019
Accepted 30.05.2019

Shamsollah Ghanbari

