The Importance Of Airborne Algae and Protozoa

Journal of the Air Pollution Control Association 19, 946-951 DOI: 10.1080/00022470.1969.10469362

Citation Report

#	Article	IF	CITATIONS
1	The growth and succession of algal populations in freshwaters. SIL Communications 1953-1996, 1971, 19, 70-99.	0.1	18
2	Ecologic Ramifications of Air Pollution. , 1972, , .		2
4	The Effects of Some Air Pollutants and Meteorological Conditions on Airborne Algae and Protozoa. Journal of the Air Pollution Control Association, 1973, 23, 876-880.	0.5	19
5	DESERT ALGAE, LICHENS, AND FUNGI. , 1974, , 165-212.		113
6	Air pollution and microbial ecology. C R C Critical Reviews in Environmental Control, 1974, 4, 353-421.	1.0	77
7	Some subaerial algae from Ireland. British Phycological Journal, 1975, 10, 257-261.	1.2	35
8	The systematics and ecology of soil algae. Botanical Review, The, 1981, 47, 195-312.	3.9	217
9	Pathogenic and free-living protozoa cultured from the nasopharyngeal and oral regions of dental patients: II. Environmental Research, 1986, 39, 364-371.	7.5	23
10	Isolation of freeâ€living amoebae from air samples and an airâ€conditioner filter in Brisbane. Medical Journal of Australia, 1986, 145, 175-175.	1.7	15
11	Meteorological effects on variation of airborne algae in Mexico. International Journal of Biometeorology, 1989, 33, 173-179.	3.0	32
12	Airborne algae and cyanobacteria. Grana, 1989, 28, 63-66.	0.8	24
13	The role of algae and cyanobacteria in arid lands. A review. Arid Land Research and Management, 1990, 4, 1-17.	0.3	30
14	Floristic changes in soil algae and cyanobacteria in reclaimed metal-contaminated land at Sudbury, Canada. Water, Air, and Soil Pollution, 1991, 60, 381-393.	2.4	20
15	Transport of diatom and dinoflagellate resting spores in ships' ballast water: implications for plankton biogeography and aquaculture. Journal of Plankton Research, 1992, 14, 1067-1084.	1.8	356
16	Seasonal distribution of air-borne protozoa in Mexico City and its suburbs. Water, Air, and Soil Pollution, 1992, 61, 17-36.	2.4	19
17	Aeroalgae: Responses to some aerobiological questions. Grana, 1993, 32, 48-56.	0.8	37
18	Allergy to green algae (Chlorella) among children. Journal of Allergy and Clinical Immunology, 1995, 96, 257-259.	2.9	28
19	The phytoplankton of some gravel-pit lakes in Spain. Hydrobiologia, 1996, 333, 19-27.	2.0	4

ATION RED

2

#	Article	IF	CITATIONS
20	Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodiversity and Conservation, 1996, 5, 1307-1335.	2.6	232
21	Diversity and geographic distribution of riboprints from three cosmopolitan species of Colpoda müller (Ciliophora: Colpodea). European Journal of Protistology, 1998, 34, 341-347.	1.5	9
22	Spora and Gaia: how microbes fly with their clouds. Ethology Ecology and Evolution, 1998, 10, 1-16.	1.4	108
23	GENETIC, MORPHOLOGICAL, AND TOXICOLOGICAL VARIATION AMONG GLOBALLY DISTRIBUTED STRAINS OF NODULARIA (CYANOBACTERIA). Journal of Phycology, 1999, 35, 339-355.	2.3	88
24	The species concept in diatoms. Phycologia, 1999, 38, 437-495.	1.4	617
25	Abundance of airborne heterotrophic protists in ground level air of South Dakota. Atmospheric Research, 1999, 51, 35-44.	4.1	36
26	PLEISTOCENE DIATOMS FROM THE 602, 000 YR B.P. LAVA CREEK B ASH. Diatom Research, 2000, 15, 159-166.	1.2	3
27	THE NORTH AMERICAN OCCURRENCE OF THE ALGAL COENOBIUM PLAESIODICTYON: PALEOGEOGRAPHIC, PALEOECOLOGIC, AND BIOSTRATIGRAPHIC IMPORTANCE IN THE TRIASSIC. Palynology, 2000, 24, 9-20.	1.5	2
28	The north american occurrence of the algal coenobiumplaesiodictyon'.paleogeographic, paleoecologic, and biostratigraphic importance in the Triassic. Palynology, 2000, 24, 9-20.	1.5	12
29	Synopsis: Comparative Biogeography of Soil-Crust Biota. Ecological Studies, 2001, , 141-152.	1.2	32
30	MOLECULAR AND MORPHOLOGICAL CHARACTERIZATION OF TEN POLAR AND NEAR-POLAR STRAINS WITHIN THE OSCILLATORIALES (CYANOBACTERIA)1. Journal of Phycology, 2005, 41, 421-438.	2.3	179
31	Meteorological factors affecting the diversity of airborne algae in an urban atmosphere. Ecography, 2006, 29, 766-772.	4.5	37
32	Diversity and seasonal variation of viable algal particles in the atmosphere of a subtropical city in India. Environmental Research, 2006, 102, 252-259.	7.5	43
33	AIRBORNE ALGAE: THEIR PRESENT STATUS AND RELEVANCE ¹ . Journal of Phycology, 2007, 43, 615-627.	2.3	130
34	Allergenicity of airborne cyanobacteria Phormidium fragile and Nostoc muscorum. Ecotoxicology and Environmental Safety, 2008, 69, 158-162.	6.0	30
35	Dispersal limitations and history explain community composition of metaphyton in desert springs of the Bonneville Basin, Utah: A multiscale analysis. Limnology and Oceanography, 2008, 53, 1604-1613.	3.1	15
36	Assessing Panspermia Hypothesis by Microorganisms Collected from The High Altitude Atmosphere. Uchu Seibutsu Kagaku, 2009, 23, 151-163.	0.3	21
37	Air-dispersed phytoplankton in a Mediterranean River-Reservoir System (Aliakmon-Polyphytos, Greece). Journal of Plankton Research, 2009, 31, 877-884.	1.8	54

CITATION REPORT

#	Article	IF	CITATIONS
38	Endangered algal species and how to protect them. Phycologia, 2009, 48, 423-438.	1.4	58
39	Eukaryotic Algae. Ecological Studies, 2011, , 45-63.	1.2	11
40	Occurrence of airborne algae within the township of Bukit Jalil in Kuala Lumpur, Malaysia. Grana, 2011, 50, 217-227.	0.8	16
41	Airborne Algae and Cyanobacteria Occurrence and Related Health Effects. Frontiers in Bioscience - Elite, 2011, E3, 772-787.	1.8	76
42	A survey of airborne algae and cyanobacteria within the indoor environment of an office building in Kuala Lumpur, Malaysia. Grana, 2013, 52, 207-220.	0.8	26
43	Airborne algae: overview of the current status and its implications on the environment. Aerobiologia, 2015, 31, 89-97.	1.7	42
44	Testate amoebae colonizing a newly exposed land surface are of airborne origin. Ecological Indicators, 2015, 48, 55-62.	6.3	13
45	Field and laboratory methods to monitor lake aerosols for cyanobacteria and microcystins. Aerobiologia, 2016, 32, 395-403.	1.7	25
46	Airborne Microalgae: Insights, Opportunities, and Challenges. Applied and Environmental Microbiology, 2016, 82, 1978-1991.	3.1	108
47	Biota Connect Aquatic Habitats throughout Freshwater Ecosystem Mosaics. Journal of the American Water Resources Association, 2018, 54, 372-399.	2.4	45
48	Disentangling the processes driving the biogeography of freshwater diatoms: A multiscale approach. Journal of Biogeography, 2018, 45, 1582-1592.	3.0	27
49	Natural chemicals produced by marine microalgae as predator deterrents can be used to control ciliates contamination in microalgal cultures. Algal Research, 2018, 29, 297-303.	4.6	16
51	The importance of cyanobacteria and microalgae present in aerosols to human health and the environment – Review study. Environment International, 2019, 131, 104964.	10.0	57
52	Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiology Ecology, 2019, 95, .	2.7	80
53	Plant assemblages in atmospheric deposition. Atmospheric Chemistry and Physics, 2019, 19, 11969-11983.	4.9	12
54	Aerobiology and passive restoration of biological soil crusts. Aerobiologia, 2019, 35, 45-56.	1.7	35
55	The first characterization of airborne cyanobacteria and microalgae in the Adriatic Sea region. PLoS ONE, 2020, 15, e0238808.	2.5	19
56	Isolation and identification of herbivorous ciliates from contaminated microalgal cultures. European Journal of Protistology, 2020, 76, 125743.	1.5	5

CITATION REPORT

#	Article	IF	CITATIONS
57	Local environmental, geo-climatic and spatial factors interact to drive community distributions and diversity patterns of stream benthic algae, macroinvertebrates and fishes in a large basin, Northeast China. Ecological Indicators, 2020, 117, 106673.	6.3	18
58	Cyanobacteria and Algae in Clouds and Rain in the Area of puy de Dôme, Central France. Applied and Environmental Microbiology, 2020, 87, .	3.1	15
59	Natural and anthropogenic dispersal of cyanobacteria: a review. Hydrobiologia, 2020, 847, 2801-2822.	2.0	17
60	Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins, 2021, 13, 322.	3.4	26
61	Toxic or Otherwise Harmful Algae and the Built Environment. Toxins, 2021, 13, 465.	3.4	12
62	Periodicity and Seasonality of Airborne Algae and Protozoa. Ecological Studies, 1974, , 407-413.	1.2	13
63	Disturbance and Recovery of Biological Soil Crusts. Ecological Studies, 2001, , 363-383.	1.2	133
64	Nutrient Uptake and Cycling in Forest Ecosystems. , 1995, , .		27
65	Traditional Microalgae Isolation Techniques. , 2005, , 83-100.		200
66	Fresh-water algae of the Antarctic Peninsula: 1. Systematics and ecology in the U.S. Palmer Station area. Antarctic Research Series, 1972, , 69-81.	0.2	20
67	Airborne microeukaryote colonists in experimental water containers: diversity, succession, life histories and established food webs. Aquatic Microbial Ecology, 2011, 62, 139-152.	1.8	49
68	Effect of Relative Humidity on the Survival of Airborne Unicellular Algae. Applied Microbiology, 1975, 29, 352-357.	0.6	19
69	Ocean Aerobiology. Frontiers in Microbiology, 2021, 12, 764178.	3.5	14
72	Blowin' in the wind: Dispersal, structure, and metacommunity dynamics of aeolian diatoms in the McMurdo Sound region, Antarctica. Journal of Phycology, 2022, 58, 36-54.	2.3	4
73	Quantitative and qualitative variability of airborne cyanobacteria and microalgae and their toxins in the coastal zone of the Baltic Sea. Science of the Total Environment, 2022, 826, 154152.	8.0	8
74	Dominance of Ciliophora and Chlorophyta Among Phyllosphere Protists of Solanaceous Plants. Phytobiomes Journal, 2023, 7, 270-280.	2.7	4
75	Temporal variation in the spectrum and concentration of airborne microalgae and cyanobacteria in the urban environments of inland temperate climate. Environmental Science and Pollution Research, 2023, 30, 97616-97628.	5.3	0
76	Chemical and microbial characterization of cyanobacterial extracellular polymeric substances (EPS) in biofilm extracts from Hathi Khana, An ancient monument in Agra, Taj complex. Vibrational Spectroscopy, 2024, 131, 103652.	2.2	0

#	Article	IF	CITATIONS
77	Fate of Planktothrix-derived toxins in aquatic food webs: A case study in Lake Mindelsee (Germany). Ecotoxicology and Environmental Safety, 2024, 273, 116154.	6.0	0