Bone Age Assessment Methods: A Critical Review

Pakistan Journal of Medical Sciences 30, 211-5 DOI: 10.12669/pjms.301.4295

Citation Report

#	Article	IF	CITATIONS
1	Hand X-ray in pediatric endocrinology: Skeletal age assessment and beyond. Indian Journal of Endocrinology and Metabolism, 2014, 18, 63.	0.2	86
2	Anthropological Age Estimation with Bone Histomorphometry from the Human Clavicle. Anthropologist, 2014, 17, 929-936.	0.1	15
3	Reply to the letter to the editor. International Journal of Legal Medicine, 2015, 129, 1275-1276.	1.2	2
4	Mitteilungen der DGKFO. Journal of Orofacial Orthopedics, 2016, 77, 304-312.	0.5	0
5	Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocrine Reviews, 2016, 37, 636-675.	8.9	147
6	Expert system for automated bone age determination. Expert Systems With Applications, 2016, 50, 75-88.	4.4	32
7	A simple method for bone age assessment: the capitohamate planimetry. European Radiology, 2018, 28, 2299-2307.	2.3	9
8	Skeleton Bone Age Assessment Using Optimized Artificial Neural Network. , 2018, , .		2
9	Bone age assessment with various machine learning techniques: A systematic literature review and meta-analysis. PLoS ONE, 2019, 14, e0220242.	1.1	85
10	Fully End-To-End Super-Resolved Bone Age Estimation. Lecture Notes in Computer Science, 2019, , 498-504.	1.0	1
11	Bone age determination in eutrophic, overweight and obese Brazilian children and adolescents: a comparison between computerized BoneXpert and Greulich-Pyle methods. Pediatric Radiology, 2019, 49, 1185-1191.	1.1	12
12	Bone taphonomy inside and out: Application of 3-dimensional microscopy, scanning electron microscopy and micro-computed tomography to the study of humanly modified faunal assemblages. Quaternary International, 2019, 517, 16-32.	0.7	22
13	Imaging in Short Stature and Bone Age Estimation. Indian Journal of Pediatrics, 2019, 86, 939-951.	0.3	3
14	Accurate Age Determination for Adolescents Using Magnetic Resonance Imaging of the Hand and Wrist with an Artificial Neural Network-Based Approach. Journal of Digital Imaging, 2019, 32, 283-289.	1.6	22
15	Prophylactic fixation or surveillance: predicting subsequent displacement of lateral condyle of humeral fractures based on soft tissue swelling. Journal of Shoulder and Elbow Surgery, 2019, 28, 310-316.	1.2	1
16	Modernization of bone ageÂassessment: comparing the accuracy and reliability of anÂartificial intelligence algorithm and shorthand bone age to Greulich and Pyle. Skeletal Radiology, 2020, 49, 1449-1457.	1.2	9
17	Age-group determination of living individuals using first molar images based on artificial intelligence. Scientific Reports, 2021, 11, 1073.	1.6	31
18	Automatic Bone Age Assessment of Adolescents Based on Weakly-Supervised Deep Convolutional Neural Networks. IEEE Access, 2021, 9, 120078-120087.	2.6	4

CITATION REPORT

#	Article	IF	CITATIONS
19	Cardiovascular risk factors in children and adolescents with congenital adrenal hyperplasia. Advanced Biomedical Research, 2021, 10, 19.	0.2	4
20	Age-Net: An MRI-Based Iterative Framework for Brain Biological Age Estimation. IEEE Transactions on Medical Imaging, 2021, 40, 1778-1791.	5.4	22
21	Chronological Age in Different Bone Development Stages: A Retrospective Comparative Study. Children, 2021, 8, 142.	0.6	6
22	Bone Age Estimation with X-ray Images Based on EfficientNet Pre-training Model. Journal of Physics: Conference Series, 2021, 1827, 012082.	0.3	3
23	The Influence of Age on the Development of Dental Caries in Children. A Radiographic Study. Journal of Clinical Medicine, 2021, 10, 1702.	1.0	3
24	Uncertainty-Based Biological Age Estimation of Brain MRI Scans. , 2021, , .		0
25	Traditional and New Methods of Bone Age Assessment-An Overview. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2021, 13, 251-262.	0.4	27
26	Comparison of Deep Learning Models for Cervical Vertebral Maturation Stage Classification on Lateral Cephalometric Radiographs. Journal of Clinical Medicine, 2021, 10, 3591.	1.0	32
27	Tooth and Bone Parameters in the Assessment of the Chronological Age of Children and Adolescents Using Neural Modelling Methods. Sensors, 2021, 21, 6008.	2.1	9
28	Age prediction using a large chest x-ray dataset. , 2019, , .		18
29	Multi Region-Based Feature Connected Layer (RB-FCL) of deep learning models for bone age assessment. Journal of Big Data, 2020, 7, .	6.9	9
30	Age Assessment of Youth and Young Adults Using Magnetic Resonance Imaging of the Knee: A Deep Learning Approach. JMIR Medical Informatics, 2019, 7, e16291.	1.3	28
31	Assessment of the Pubertal Growth Period using the Open Apices of the Lower Teeth. Journal of Contemporary Dental Practice, 2017, 18, 16-22.	0.2	2
32	Clinical Validation of a Deep Learning-Based Hybrid (Greulich-Pyle and Modified Tanner-Whitehouse) Method for Bone Age Assessment. Korean Journal of Radiology, 2021, 22, 2017.	1.5	18
33	Investigation of Reasons for Age Assessment Demands among Cases who Appear to Be in Children Age Bracket According to Their Birth Records: 6.5 Years of Experience [Nufus Kaydina Gore Cocuk Yas Grubunda Gorunen Olgularin Yas Tayini Raporu Istem Nedenlerinin Irdelenmesi: 6,5 Yillik Deneyim]. Medicine Science, 2015, 4, 2797.	0.0	1
34	The Proximal Femur in Egyptian (Morphometric and Radiological Study). Anatomy & Physiology: Current Research, 2017, 07, .	0.1	0
36	Bone Age Practices in Infants and Older Children among Practicing Radiologists in Pakistan: Developing World Perspective. Cureus, 2019, 11, e3936.	0.2	0
37	Southern Europe: Turning "Reception―into "Detention― Mortality in an International Perspective, 2020, , 255-346.	0.6	2

#	Article	IF	CITATIONS
38	Time of appearance of ossification centers in carpal bones. A radiological retrospective study on Saudi children. Journal of King Abdulaziz University, Islamic Economics, 2020, 41, 938-946.	0.5	1
39	Time of appearance of ossification centers in carpal bones. Journal of King Abdulaziz University, Islamic Economics, 2020, 41, 938-946.	0.5	3
40	Automatic Bone Age Assessment of Radiographs using Deep Learning. , 2021, , .		0
41	Deep Learning Neural Modelling as a Precise Method in the Assessment of the Chronological Age of Children and Adolescents Using Tooth and Bone Parameters. Sensors, 2022, 22, 637.	2.1	13
42	External validation of deep learning-based bone-age software: a preliminary study with real world data. Scientific Reports, 2022, 12, 1232.	1.6	7
43	Electrocardiogram-Based Heart Age Estimation by a Deep Learning Model Provides More Information on the Incidence of Cardiovascular Disorders. Frontiers in Cardiovascular Medicine, 2022, 9, 754909.	1.1	28
44	Accuracy of two dental age estimation methods in the Indian population - A meta-analysis of published studies. Journal of Forensic Odonto-Stomatology, 2019, 3, 2-11.	0.2	4
45	Bone Age Assessment Based on Deep Convolutional Features and Fast Extreme Learning Machine Algorithm. Frontiers in Energy Research, 2022, 9, .	1.2	6
46	Correlation between Salivary Levels of IGF-1, IGFBP-3, IGF-1/IGFBP3 Ratio with Skeletal Maturity Using Hand-Wrist Radiographs. International Journal of Environmental Research and Public Health, 2022, 19, 3723.	1.2	5
47	Classification of Distal Growth Plate Ossification States of the Radius Bone Using a Dedicated Ultrasound Device and Machine Learning Techniques for Bone Age Assessments. Applied Sciences (Switzerland), 2022, 12, 3361.	1.3	1
48	Validation of automated bone age analysis from hand radiographs in a North American pediatric population. Pediatric Radiology, 2022, , 1.	1.1	5
49	Robust Estimation of the Chronological Age of Children and Adolescents Using Tooth Geometry Indicators and POD-GP. International Journal of Environmental Research and Public Health, 2022, 19, 2952.	1.2	2
50	Rebound phenomenon and its risk factors after hemiepiphysiodesis using tension band plate in children with coronal angular deformity. BMC Musculoskeletal Disorders, 2022, 23, 339.	0.8	10
51	Yapay Zeka Teknikleri Kullanılarak Kemik Yaşı Tespiti. , 2021, 4, 17-30.		0
52	Modeling Uncertainty in Fracture Age Estimation from Pediatric Wrist Radiographs. Mathematics, 2021, 9, 3227.	1.1	1
54	Can forensic radiological skeletal age estimation be performed by examining ischiopubic-ilioischial-iliopubic synchondrosis in computed tomography images?. PLoS ONE, 2022, 17, e0266682.	1.1	0
55	Pathological brain lesions in girls with central precocious puberty at initial diagnosis in Southern Vietnam. Annals of Pediatric Endocrinology and Metabolism, 2022, 27, 105-112.	0.8	7
56	Growth Dynamics following Growth hormone treatment in group of Iraqi patients with Turner's Syndrome. Research Journal of Pharmacy and Technology, 2022, , 1610-1613.	0.2	0

CITATION REPORT

~		~
CITATI	ON	REPORT

#	Article	IF	CITATIONS
57	Accuracy of Patient Age Estimation from Frontal Chest Radiographs of Adult Patients. Open Journal of Radiology, 2022, 12, 37-48.	0.1	0
58	Age group prediction with panoramic radiomorphometric parameters using machine learning algorithms. Scientific Reports, 2022, 12, .	1.6	6
59	Association between Chronological Age and IGF-1, IGFBP-3, and CTX Levels in Saliva of Children through Younger Adult Population with Varying Periodontal Status. Children, 2022, 9, 1301.	0.6	1
60	Age Estimation by Dental Calcification Stages and Hand-Wrist Radiograph. Cureus, 2022, , .	0.2	1
61	Performance of Artificial Intelligence (AI) Models Designed for Application in Pediatric Dentistry—A Systematic Review. Applied Sciences (Switzerland), 2022, 12, 9819.	1.3	1
62	Automated Bone Age Assessment: A New Three-Stage Assessment Method from Coarse to Fine. Healthcare (Switzerland), 2022, 10, 2170.	1.0	1
63	Clinical application of artificial intelligence in longitudinal image analysis of bone age among GHD patients. Frontiers in Pediatrics, 0, 10, .	0.9	4
64	Third molar maturity index (I3M) assessment according to different geographical zones: a large multi-ethnic study sample. International Journal of Legal Medicine, 2023, 137, 403-425.	1.2	3
65	Ultrasound Imaging-Based Methods for Assessing Biological Maturity during Adolescence and Possible Application in Youth Sport: A Scoping Review. Children, 2022, 9, 1985.	0.6	3
66	Convolutional neural network of age-related trends digital radiographs of medial clavicle in a Thai population: a preliminary study. Anatomy and Cell Biology, 2023, 56, 86-93.	0.5	2
67	Diagnosis of asphyxiation in advanced decomposed corpses by using Oil-Red-O Stain and immunohistochemical technology. Legal Medicine, 2023, 62, 102214.	0.6	0
72	Comparative Analysis of ResNet101, InceptionV3, and InceptionResnetV2 Architectures for Cervical Vertebrae Maturation Stage Classification. , 2023, ,		0
74	Pediatric Bone Age Prediction Using Deep Learning. , 2023, , .		0

Pediatric Bone Age Prediction Using Deep Learning. , 2023, , . 74