Hematological Recovery in the Mouse Following Single Cyclophosphamide

Radiation Research 33, 501 DOI: 10.2307/3572407

Citation Report

#	Article	IF	CITATIONS
1	Cytogenetische Verï;½nderungen in weïï;½en Blutzellen nach Cyclophosphamidtherapie. Journal of Cancer Research and Clinical Oncology, 1969, 72, 77-87.	2.5	25
2	Stem Cell Migration and Proliferation During Severe Anemia. Blood, 1970, 36, 764-771.	1.4	133
3	Patterns of Proliferation and Differentiation of Hematopoietic Stem Cells After Compartment Depletion. Blood, 1971, 37, 568-580.	1.4	67
4	The Effect of Postirradiation Bleeding or Endotoxin on Proliferation and Differentiation of Hematopoietic Stem Cells. Blood, 1972, 40, 375-389.	1.4	52
5	EFFECT OF CYCLOPHOSPHAMIDE ON THE HEMATOPOIETIC MICROENVIRONMENTAL FACTORS WHICH INFLUENCE HEMATOPOIETIC STEM CELL PROLIFERATION. Cell Proliferation, 1973, 6, 155-163.	5.3	15
6	Comparison of the chromosome damage induced by radiation and cytoxan therapy in lymphocytes of patients with gynaecological tumours. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1973, 21, 271-274.	0.4	14
7	Haematopoiesis Measured by Spleen Colony and Diffusion Chamber Techniques in Mice Treated with One or Two Injections of Cyclophosphamide. British Journal of Haematology, 1974, 26, 605-614.	2.5	16
8	Experimental Study of the Relationships between Activation of Erythropoiesis and Hematotoxicity of Some Antitumoral Agents Tumori, 1975, 61, 179-198.	1.1	2
9	The relevance of certain concepts of cell cycle kinetics. Biochimica Et Biophysica Acta: Reviews on Cancer, 1978, 516, 389-417.	7.4	28
10	Protection by superoxide dismutase of white blood cells in X-irradiated mice. Life Sciences, 1978, 22, 867-881.	4.3	52
11	Tolerance of hemopoiesis for repeated cytotoxic drug therapy. Blut, 1979, 39, 237-244.	1.2	4
12	The use of cell kinetics in the development of drug combinations. , 1979, 4, 1-33.		11
13	Carrier-dependent and carrier-independent transport of anti-cancer alkylating agents. Nature, 1981, 294, 281-283.	27.8	63
14	Suppression of marrow stromal cells and microenvironmental damage following sequential radiation and cyclophosphamide. International Journal of Radiation Oncology Biology Physics, 1981, 7, 935-941.	0.8	18
15	Sensitivity of normal mouse marrow and RIF-1 tumour to hyperthermia combined with cyclophosphamide or BCNU: a lack of therapeutic gain. British Journal of Cancer, 1982, 46, 236-248.	6.4	30
16	Effects of cyclophosphamide on murine bone marrow and splenic megakaryocyte-CFC, granulocyte-macrophage-CFC, and peripheral blood cell levels. Journal of Cellular Physiology, 1982, 112, 222-228.	4.1	24
17	Effects of cisplatin on different haemopoietic progenitor cells in mice. British Journal of Cancer, 1982, 46, 397-402.	6.4	31
18	Comparative effects of ASTA Z 7557 (INN mafosfamide) and cyclophosphamide on hematopoiesis in mice. Investigational New Drugs, 1984, 2, 207-13.	2.6	7

#	Article	IF	CITATIONS
19	Interactions of Drugs and Radiation in Haemopoietic Tissue Assessed by Lethality of Mice after Whole-body Irradiation. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1985, 48, 371-380.	1.0	13
20	Protection of bone marrow progenitor cells by superoxide dismutase. Molecular and Cellular Biochemistry, 1988, 84, 133-140.	3.1	11
21	Stem cell recovery from cyclophosphamide-induced myelosuppression requires the presence of CD4+cells. British Journal of Haematology, 1990, 75, 168-174.	2.5	7
22	Increase in the survival time of mice exposed to ionizing radiation by a new class of free radical scavengers. Experientia, 1990, 46, 708-710.	1.2	7
23	Inhibition of Hematopoietic Recovery from Radiation-Induced Myelosuppression by Natural Killer Cells. Radiation Research, 1990, 122, 168.	1.5	5
24	Differential sensitivity of DBA/2 and C57BL/6 mice to cyclophosphamide. Journal of Applied Toxicology, 1993, 13, 423-427.	2.8	10
25	Ultrastructural changes of stromal cells of bone marrow and liver after cyclophosphamide treatment in mice. Tissue and Cell, 1997, 29, 1-9.	2.2	23
26	Response of Hematopoiesis to Cyclophosphamide Follows Highly Specific Patterns in Bone Marrow and Spleen. Journal of Hematotherapy and Stem Cell Research, 2003, 12, 47-61.	1.8	43
27	Synthesis and Solubility of Collagen in Rats during Recovery after Highâ€dose Cyclophosphamide Administration. Acta Pharmacologica Et Toxicologica, 1981, 48, 294-299.	0.0	4
28	EFFECTS OF CYCLOPHOSPHAMIDE ON OPEN, GRANULATING SKIN WOUNDS IN RATS. Acta Pathologica Et Microbiologica Scandinavica Section A, Pathology, 1979, 87A, 185-192.	0.1	4
29	Haemotoxicity of busulphan, doxorubicin, cisplatin and cyclophosphamide in the female BALB/c mouse using a brief regimen of drug administration. Cell Biology and Toxicology, 2011, 27, 13-40.	5.3	33
30	Response of Megakaryocyte, Erythroid, and Granulocyte-Macrophage Progenitor Cells in Mouse Bone Marrow to Gamma-Irradiation and Cyclophosphamide. , 1979, , 99-104.		11
31	Stem Cell Reserve and its Control. , 1976, , 165-179.		9
32	Cell Proliferation Changes in Hemopoietic Tissue As a Result of Irradiation or Drug Administration: The Control of Cell Proliferation in Hemopoietic Tissue. , 1975, , 826-833.		4
33	Studies on biscoclaurine alkaloids in relation to radiation damage of hemopoietic tissue. Okayama Igakkai Zasshi, 1984, 96, 883-890.	0.0	2
34	The Coulter Principle: A history. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 8-11.	1.5	11

Cyclophosphamide投ä,Žãƒžã,¦ã,¹ã«ãŠã'ã,‹éª é«"ãëè"¾è‡"ã®macrophage colony forming cellã®å‹•æ...‹ã«ã∰,ã¦. Journal of the Japan So Reticuloendothelial System, 1984, 24, 267-273.