Altitude profile of the infrared atmospheric system of o

Journal of Geophysical Research 73, 2885-2896 DOI: 10.1029/ja073i009p02885

Citation Report

#	Article	IF	CITATIONS
1	Day airglow. Space Science Reviews, 1968, 8, 92-134.	8.1	63
2	Metastable O ₂ (Â1Δ) as a major source of ions in the <i>D</i> region. Journal of Geophysical Research, 1968, 73, 2421-2428.	3.3	101
3	Dayglow of the oxygen A band. Journal of Geophysical Research, 1968, 73, 4813-4834.	3.3	132
4	Some aspects of the metal ion chemistry of the Earth's atmosphere. Journal of Geophysical Research, 1968, 73, 6215-6223.	3.3	91
5	Atmospheric Absorption Anomalies in the Ultraviolet near an Altitude of 50 Kilometers. Science, 1969, 166, 998-1000.	12.6	10
6	Sodium Distribution in the Terrestrial Upper Atmosphere. Nature, 1969, 224, 1097-1097.	27.8	3
7	Deactivation of O2(1Δg). Chemical Physics Letters, 1969, 3, 204-206.	2.6	54
8	The collisional deactivation of O2(1î"g). Chemical Physics Letters, 1969, 3, 93-95.	2.6	57
9	The reaction of O2(1Δg) with atomic nitrogen and with atomic oxygen. Chemical Physics Letters, 1969, 3, 405-407.	2.6	82
10	Balloon observations of the temporal variation of the infrared atmospheric oxygen bands in the airglow. Planetary and Space Science, 1969, 17, 933-947.	1.7	25
11	Weak emissions in the near infrared daytime airglow. Planetary and Space Science, 1969, 17, 975-984.	1.7	29
12	Rocket measurement of nitric oxide between 60 and 96 kilometers. Journal of Geophysical Research, 1969, 74, 853-861.	3.3	100
13	Discussion of paper by D. M. Hunten and M. B. McElroy, â€~Metastable O ₂ (Â1Δ) as a major source of ions in the <i>D</i> region'. Journal of Geophysical Research, 1969, 74, 3064-3066.	3.3	5
14	Reply [to "Discussion of paper by D. M. Hunten and M. B. McElroy, â€~Metastable O ₂ (¹ĵ") as a major source of ions in the <i>D</i> region'â€]. Journal of Geophysical Research, 1969, 74, 3067-3067.	3.3	7
15	Water vapor ion cluster concentrations in the <i>D</i> region. Journal of Geophysical Research, 1969, 74, 5743-5751.	3.3	106
16	lonization rates due to the attenuation of 1â€100 à nonflare solar X rays in the terrestrial atmosphere. Reviews of Geophysics, 1969, 7, 573-594.	23.0	84
17	Collisional quenching of O 2 (1 Δ g). Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1969, 314, 111-127.	1.4	46
18	Atmospheric penetration of ultra-violet and visible solar radiations during twilight periods. Journal of Atmospheric and Solar-Terrestrial Physics, 1969, 31, 1311-1322.	0.9	17

#	Article	IF	CITATIONS
19	The Formation of Cluster Ions in Laboratory Sources and in the Ionosphere. Advances in Electronics and Electron Physics, 1970, 29, 79-113.	0.6	52
20	ROLE OF SINGLET OXYGEN IN UPPER ATMOSPHERE CHEMISTRY. Annals of the New York Academy of Sciences, 1970, 171, 188-198.	3.8	9
21	LABORATORY STUDIES ON THE EXCITATION AND DEACTIVATION OF SINGLET MOLECULAR OXYGEN. Annals of the New York Academy of Sciences, 1970, 171, 199-219.	3.8	8
22	PRODUCTION AND DESTRUCTION MECHANISMS FOR O2(?g) IN THE LOWER ATMOSPHERE. Annals of the New York Academy of Sciences, 1970, 171, 273-296.	3.8	10
23	Ground-based photometric observations of the 1·27 μ band of O2 in the twilight airglow. Planetary and Space Science, 1970, 18, 1065-1073.	1.7	20
24	Formation of singlet molecular oxygen from the ozone photochemical system. Chemical Physics Letters, 1970, 5, 93-96.	2.6	40
25	Electric field excitation of in auroras. Planetary and Space Science, 1970, 18, 1043-1049.	1.7	10
26	Metastable Oxygen: Origin of Atmospheric Absorption near 50 Kilometers. Science, 1970, 168, 1120-1121.	12.6	2
27	Singlet oxygen in polluted environments. Journal of Geophysical Research, 1970, 75, 3115-3122.	3.3	10
28	Chemistry in the upper atmosphere. Accounts of Chemical Research, 1970, 3, 9-17.	15.6	5
29	A model calculation of the diurnal variation in minor neutral constituents in the mesosphere and lower thermosphere including transport effects. Journal of Geophysical Research, 1970, 75, 3221-3235.	3.3	184
30	The absolute cross section for photoionization of O2(1Δg). Molecular Physics, 1970, 18, 523-531.	1.7	29
31	Auroral emission from O ₂ (Â1Δ _{<i>g</i>}). Journal of Geophysical Research, 1970, 75, 1879-1891.	3.3	55
32	Production and loss of electrons in the quiet daytime <i>D</i> region of the ionosphere. Journal of Geophysical Research, 1970, 75, 2551-2562.	3.3	113
33	Production and diffusion of nitric oxide. Journal of Geophysical Research, 1970, 75, 4307-4321.	3.3	108
34	Ionospheric Si ⁺ and SiO ⁺ . Journal of Geophysical Research, 1970, 75, 4366-4368.	3.3	11
35	Oxygen atmospheric and infrared atmospheric bands in the aurora. Journal of Geophysical Research, 1970, 75, 4775-4785.	3.3	36
36	Observations of O2(Â1Δg) in the atmosphere and allowable values of the eddy diffusion coefficient. Journal of Geophysical Research, 1970, 75, 6398-6401.	3.3	11

#	Article	IF	CITATIONS
37	Calculation of [O2(1Δg)] in the atmosphere using new laboratory data. Journal of Geophysical Research, 1971, 76, 1490-1497.	3.3	19
38	Collisional Deactivation of O2(1Δg). Journal of Chemical Physics, 1971, 55, 545-551.	3.0	76
39	Atmospheric absorption by O ₂ (¹ î" _{<i>g</i>}). Journal of Geophysical Research, 1971, 76, 287-288.	3.3	1
40	Decrease in <i>D</i> -region O ₂ (¹ Δ <i>_g</i>) Photoionization rates resulting from CO ₂ absorption. Journal of Geophysical Research, 1971, 76, 1028-1038.	3.3	73
41	Triplet (3Σâ^'g) and singlet (1Δg, 1Σ+g) states of the oxygen molecule O2 and related molecular ions. Journal of Aerosol Science, 1971, 2, 229-240.	3.8	0
42	Seasonal variations of electron densities below 100 km at mid-latitudes—IV Preliminary model calculations. Journal of Atmospheric and Solar-Terrestrial Physics, 1971, 33, 413-428.	0.9	18
43	A diffusive-photochemical study of the mesosphere and lower thermosphere and the associated conservation mechanisms. Journal of Atmospheric and Solar-Terrestrial Physics, 1971, 33, 1869-1892.	0.9	36
44	The lower ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1971, 33, 157-195.	0.9	61
45	The collisional deactivation of O(1D) atoms by molecular oxygen. Chemical Physics Letters, 1971, 8, 353-357.	2.6	7
46	Mechanism of Singlet Molecular Oxygen Formation from Photolysis of Ozone at 2537 Ã Journal of Chemical Physics, 1971, 54, 4317-4325.	3.0	33
47	The diurnal variations of hydrogen and oxygen constituents in the mesosphere and lower thermosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1972, 34, 1843-1858.	0.9	49
48	Energetic metastable molecular oxygen as a source of ionization in the <i>D</i> region. Journal of Geophysical Research, 1972, 77, 6287-6290.	3.3	9
49	Improved Photoionization Rates of O ₂ (¹ Δ _g) in the <i>D</i> Region. Radio Science, 1972, 7, 51-55.	1.6	44
50	An Investigation of the Ionospheric <i>D</i> Region at Sunrise: 1, Time Variations of Ozone, Metastable Molecular Oxygen, and Atomic Oxygen. Radio Science, 1972, 7, 703-716.	1.6	25
51	Reactions of O2(1î"g) with ozone. Chemical Physics Letters, 1972, 14, 489-492.	2.6	22
52	The rate of destruction of O2 (1?g) by atomic hydrogen. International Journal of Chemical Kinetics, 1972, 4, 255-264.	1.6	13
53	Photochemical heating of the mesosphere and lower thermosphere. Tellus, 1972, 24, 47-55.	0.8	7
54	Measurement of the ozone concentration from 55 to 95 km at sunset. Planetary and Space Science, 1973, 21, 963-970.	1.7	33

#	Article	IF	CITATIONS
55	The infrared spectrum of the airglow. Space Science Reviews, 1973, 15, 355.	8.1	51
56	The green oxygen line 5577 � in the mediumE-F andF regions during the night. Pure and Applied Geophysics, 1973, 111, 2300-2307.	1.9	1
57	Molecular beam study on BaO and SrO formation for clarifying interaction of metal-vapors with upper atmosphere oxygen. Planetary and Space Science, 1973, 21, 89-96.	1.7	10
58	Rocket observation of the equatorial O2(1Δg) Emission after sunset. Journal of Geophysical Research, 1973, 78, 6140-6149.	3.3	19
59	A generalized aeronomic model of the mesosphere and lower thermosphere including ionospheric processes. Journal of Atmospheric and Solar-Terrestrial Physics, 1973, 35, 1755-1798.	0.9	45
60	Stray Light Suppression in Optical Space Experiments. Applied Optics, 1974, 13, 556.	2.1	50
61	Radiative and collision processes in the ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1974, 36, 2287-2307.	0.9	9
62	Latitudinal distributions of minor neutral hydrogen-oxygen constituents in the winter mesosphere and lower thermosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1974, 36, 1297-1320.	0.9	15
63	Recent developments and outstanding problems in the theory of the <i>D</i> region. Radio Science, 1974, 9, 121-136.	1.6	85
64	The effect of ionic processes on the characteristics of radio-echoes from meteor trains. Planetary and Space Science, 1975, 23, 1261-1277.	1.7	19
65	Proton energy deposition in molecular and atomic oxygen and applications to the polar cap. Planetary and Space Science, 1975, 23, 787-804.	1.7	45
66	O2(a 1Δg) absorption bands in the vacuum ultraviolet. Journal of Chemical Physics, 1975, 62, 2939-2948.	3.0	13
67	Dayglow of the infrared atmospheric band system of O2 during a total eclipse of the Sun. Journal of Atmospheric and Solar-Terrestrial Physics, 1975, 37, 717-730.	0.9	8
68	Atmospheric transmission of the 1.27 micron band of oxygen. Journal of Atmospheric and Solar-Terrestrial Physics, 1975, 37, 287-296.	0.9	7
69	The photochemistry of excited species. Journal of Atmospheric and Solar-Terrestrial Physics, 1976, 38, 807-820.	0.9	8
70	Some studies on the daytime D-region during polar cap absorption. Journal of Atmospheric and Solar-Terrestrial Physics, 1977, 39, 57-67.	0.9	13
71	An oxygen-hydrogen atmospheric model and its application to the OH emission problem. Journal of Atmospheric and Solar-Terrestrial Physics, 1977, 39, 551-570.	0.9	87
72	The measurement of ozone concentrations at high latitude during the twilight. Planetary and Space Science, 1977, 25, 165-172.	1.7	37

#	Article	IF	CITATIONS
73	Revised quenching rate constants for metastable oxygen molecules O2(a1î"g). Journal of Photochemistry and Photobiology, 1978, 8, 211-214.	0.6	52
74	Ozone measurements in the stratosphere, mesosphere, and lower thermosphere during Aladdin 74. Journal of Geophysical Research, 1978, 83, 978-982.	3.3	41
75	Temporal and latitudinal variations of stratospheric trace gases: A critical comparison between theory and experiment. Journal of Geophysical Research, 1978, 83, 364-378.	3.3	73
76	A measurement of the O2 ultra-violet nightglow emission. Planetary and Space Science, 1979, 27, 1507-1511.	1.7	19
77	Relaxation to photochemical equilibrium of charged species within displaced air parcels in the D-region. Journal of Atmospheric and Solar-Terrestrial Physics, 1979, 41, 607-623.	0.9	6
78	Oxygen 1.27-μm emission from the atmosphere of Venus. Icarus, 1980, 42, 46-53.	2.5	9
79	Mesospheric O3, H and H2O at high latitudes: A theoretical model. Planetary and Space Science, 1981, 29, 819-823.	1.7	7
80	Reaction of hydrogen atoms and O2(1?g). International Journal of Chemical Kinetics, 1982, 14, 487-497.	1.6	40
81	Changes in the concentration of mesospheric ozone during the total solar eclipse. Planetary and Space Science, 1982, 30, 507-513.	1.7	8
82	Ozone density distribution in the mesosphere (50â€90 km) measured by the SME limb scanning near infrared spectrometer. Geophysical Research Letters, 1983, 10, 245-248.	4.0	74
83	Singlet oxygen airglow. Journal of Photochemistry and Photobiology, 1984, 25, 345-363.	0.6	28
84	Ozone in the mesosphere and lower thermosphere. Journal of Earth System Science, 1984, 93, 91-103.	1.3	1
85	The vertical distribution of ozone in the mesosphere and lower thermosphere. Journal of Geophysical Research, 1984, 89, 4841-4872.	3.3	249
86	Solar Mesosphere Explorer Nearâ€Infrared Spectrometer: Measurements of 1.27â€Î1⁄4m radiances and the inference of mesospheric ozone. Journal of Geophysical Research, 1984, 89, 9569-9580.	3.3	126
87	Oxygen singlet delta 1.58â€micrometer (0–1) limb radiance in the upper stratosphere and lower mesosphere. Journal of Geophysical Research, 1985, 90, 9804-9814.	3.3	20
88	Dissociation of metastable O ₂ as a potential source of atmospheric odd oxygen. Journal of Geophysical Research, 1985, 90, 10733-10738.	3.3	17
89	The photodissociation of vibrationally excited ozone in the upper atmosphere. Journal of Photochemistry and Photobiology, 1986, 32, 133-138.	0.6	5
90	Neutral atmospheric composition between 60 and 220 km: A theoretical model for mid-latitudes. Planetary and Space Science, 1986, 34, 723-743.	1.7	62

#	Article	IF	CITATIONS
91	ETON 6: A rocket measurement of the O2 Infrared Atmospheric (0-0) band in the nightglow. Planetary and Space Science, 1987, 35, 1541-1552.	1.7	46
92	Rocket measurements of O2 infrared atmospheric system in the nightglow. Planetary and Space Science, 1988, 36, 459-467.	1.7	19
93	Nighttime Na <i>D</i> emission observed from a polarâ€orbiting DMSP satellite. Journal of Geophysical Research, 1988, 93, 4067-4075.	3.3	16
94	Behaviour of the O2 infrared atmospheric (0-0) band in the middle atmosphere during evening twilight and at night. Planetary and Space Science, 1989, 37, 61-72.	1.7	20
95	The solar flare of August 18, 1979: Incoherent scatter radar data and photochemical model comparisons. Journal of Geophysical Research, 1990, 95, 16705-16718.	3.3	14
96	The chemistry of meteoric metals in the Earth's upper atmosphere. International Reviews in Physical Chemistry, 1991, 10, 55-106.	2.3	201
97	Variability of the neutral mesospheric and lower thermospheric composition in the diurnal cycle. Planetary and Space Science, 1991, 39, 803-820.	1.7	28
98	The altitude profile of the infrared atmospheric system of O2 in twilight and early night: Derivation of ozone abundances. Planetary and Space Science, 1992, 40, 1391-1397.	1.7	11
99	A study of atom exchange between O2(1Δ) and ozone. Chemical Physics Letters, 1992, 189, 581-585.	2.6	5
100	A review of the O2 (a1î"g) and O2 (b1Σg+) airglow emissions. Advances in Space Research, 1993, 13, 145-148.	2.6	13
100	A review of the O2 (alî"g) and O2 (blî£g+) airglow emissions. Advances in Space Research, 1993, 13, 145-148. Atmospheric composition during twilight. Advances in Space Research, 1993, 13, 339-342.	2.6 2.6	13
100 101 102	A review of the O2 (alî"g) and O2 (blî£g+) airglow emissions. Advances in Space Research, 1993, 13, 145-148.Atmospheric composition during twilight. Advances in Space Research, 1993, 13, 339-342.Possible reference models for atomic oxygen in the terrestrial atmosphere. Advances in SpaceResearch, 1993, 13, 135-144.	2.6 2.6 2.6	13 1 17
100 101 102 103	A review of the O2 (all"g) and O2 (bll£g+) airglow emissions. Advances in Space Research, 1993, 13, 145-148.Atmospheric composition during twilight. Advances in Space Research, 1993, 13, 339-342.Possible reference models for atomic oxygen in the terrestrial atmosphere. Advances in Space Research, 1993, 13, 135-144.Some facets of the ionosphere and of the nightglow. Journal of Geophysical Research, 1994, 99, 19101.	2.6 2.6 2.6 3.3	13 1 17 4
100 101 102 103	A review of the O2 (a11"g) and O2 (b11£g+) airglow emissions. Advances in Space Research, 1993, 13, 145-148.Atmospheric composition during twilight. Advances in Space Research, 1993, 13, 339-342.Possible reference models for atomic oxygen in the terrestrial atmosphere. Advances in Space Research, 1993, 13, 135-144.Some facets of the ionosphere and of the nightglow. Journal of Geophysical Research, 1994, 99, 19101.Upper atmosphere research at INPE. Advances in Space Research, 1995, 16, 141-149.	2.6 2.6 3.3 2.6	13 1 17 4 3
 100 101 102 103 104 105 	A review of the O2 (a1î"g) and O2 (b1î£g+) airglow emissions. Advances in Space Research, 1993, 13, 145-148.Atmospheric composition during twilight. Advances in Space Research, 1993, 13, 339-342.Possible reference models for atomic oxygen in the terrestrial atmosphere. Advances in Space Research, 1993, 13, 135-144.Some facets of the ionosphere and of the nightglow. Journal of Geophysical Research, 1994, 99, 19101.Upper atmosphere research at INPE. Advances in Space Research, 1995, 16, 141-149.Mesospheric ozone concentration at an equatorial location from the 1.27-î1/4 m O2airglow emission. Journal of Geophysical Research, 1996, 101, 7917-7921.	2.6 2.6 3.3 2.6 3.3	13 1 17 4 3 4
100 101 102 103 104 105	A review of the O2 (a11°g) and O2 (b11£g+) airglow emissions. Advances in Space Research, 1993, 13, 145-148.Atmospheric composition during twilight. Advances in Space Research, 1993, 13, 339-342.Possible reference models for atomic oxygen in the terrestrial atmosphere. Advances in Space Research, 1993, 13, 135-144.Some facets of the ionosphere and of the nightglow. Journal of Geophysical Research, 1994, 99, 19101.Upper atmosphere research at INPE. Advances in Space Research, 1995, 16, 141-149.Mesospheric ozone concentration at an equatorial location from the 1.27-1¼ m O2airglow emission. Journal of Geophysical Research, 1996, 101, 7917-7921.Decay of O2(aÂ11°g) in the evening twilight airglow: Implications for the radiative lifetime. Geophysical Research Letters, 1996, 23, 1013-1016.	2.6 2.6 3.3 2.6 3.3 4.0	13 1 17 4 3 4 17
 100 101 102 103 104 105 106 107 	A review of the O2 (a1 ^{în} g) and O2 (b1 ^î £g+) airglow emissions. Advances in Space Research, 1993, 13, 145-148.Atmospheric composition during twilight. Advances in Space Research, 1993, 13, 339-342.Possible reference models for atomic oxygen in the terrestrial atmosphere. Advances in Space Research, 1993, 13, 135-144.Some facets of the ionosphere and of the nightglow. Journal of Geophysical Research, 1994, 99, 19101.Upper atmosphere research at INPE. Advances in Space Research, 1995, 16, 141-149.Mesospheric ozone concentration at an equatorial location from the 1.27-Î ¹ /4 m O2airglow emission. Journal of Geophysical Research, 1996, 101, 7917-7921.Decay of O2(aÂ1 ^î *g) in the evening twilight airglow: Implications for the radiative lifetime. Geophysical Research Letters, 1996, 23, 1013-1016.An unplanned career in space physics. Journal of Geophysical Research, 1996, 101, 10567-10576.	 2.6 2.6 3.3 2.6 3.3 4.0 3.3 	13 1 17 4 3 4 17 2

#	Article	IF	CITATIONS
109	Microwave observations and modeling of O2(1î"g) and O3diurnal variation in the mesosphere. Journal of Geophysical Research, 1997, 102, 9013-9028.	3.3	21
110	A three-dimensional dynamic model of the minor constituents of the mesosphere. Atmospheric Environment, 1998, 32, 3157-3172.	4.1	43
111	Odd oxygen measurements during the Noctilucent Cloud 93 rocket campaign. Journal of Geophysical Research, 1998, 103, 23399-23414.	3.3	33
112	A study of O2(a 1Δg) with photoelectron spectroscopy using synchrotron radiation. Journal of Chemical Physics, 1998, 109, 2737-2747.	3.0	13
113	Experimental verification of the EinsteinA-coefficient used for evaluation of O2(^1Deltag) concentration in the chemical oxygen-iodine laser. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 1885-1892.	1.5	20
114	6 Infrared emission spectroscopy. Annual Reports on the Progress of Chemistry Section C, 2000, 96, 177-224.	4.4	33
115	Simultaneous measurements of the O2(¹Δ) and O2(¹Σ) Airglows and ozone in the daytime mesosphere. Geophysical Research Letters, 2001, 28, 999-1002.	4.0	38
116	Mesospheric ozone: Determination from orbit with the OSIRIS instrument on Odin. Canadian Journal of Physics, 2002, 80, 493-504.	1.1	7
117	The OSIRIS instrument on the Odin spacecraft. Canadian Journal of Physics, 2004, 82, 411-422.	1.1	349
118	Observations of an extended mesospheric tertiary ozone peak. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 1395-1402.	1.6	12
119	Singlet Molecular Oxygen. Advances in Photochemistry, 2007, , 311-371.	0.4	92
120	Sounding of the Atmosphere using Broadband Emission Radiometry observations of daytime mesospheric O ₂ (¹ Δ) 1.27 <i>μ</i> m emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates. Journal of Geophysical Research, 2007, 112, .	3.3	66
121	Excitation and Deexcitation Processes Relevant to the Upper Atmosphere. Advances in Chemical Physics, 2007, , 379-422.	0.3	4
122	Survey of the Reactivity of O ₂ (a ¹ Δ _g) with Negative Ions. Journal of Physical Chemistry A, 2010, 114, 1270-1276.	2.5	16
123	Theoretical Study on the Reaction Mechanism of NH2–with O2(a1Δg). Journal of Physical Chemistry A, 2011, 115, 13581-13588.	2.5	1
124	Theoretical Study on the Reaction Mechanisms of CH3O– with O2(X3Σg–) and O2(a1Δg). Journal of Physical Chemistry A, 2012, 116, 11656-11667.	2.5	1
125	Empirical model of variations in the IR Atmospheric system of molecular oxygen: 2. Emitting layer height. Geomagnetism and Aeronomy, 2013, 53, 104-112.	0.8	6
126	On the role of excited species in hydrogen combustion. Combustion and Flame, 2015, 162, 3755-3772.	5.2	63

#	Article	IF	CITATIONS
127	Comparison of VLT/X-shooter OH and O ₂ rotational temperatures with consideration of TIMED/SABER emission and temperature profiles. Atmospheric Chemistry and Physics, 2016, 16, 5021-5042.	4.9	26
128	Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model. Astrobiology, 2017, 17, 27-54.	3.0	55
129	Retrieval of O ₂ (¹ Σ) and O ₂ (¹ Î") volume emission rates in the mesosphere and lower thermosphere using SCIAMACHY MLT limb scans. Atmospheric Measurement Techniques, 2018, 11, 473-487.	3.1	12
130	H2O2 photoproduction inside H2O and H2O:O2 ices at 20–140 K. Scientific Reports, 2019, 9, 11375.	3.3	6
131	Research on Instrument Visibility of Ozone Wind Imaging Interferometer. Remote Sensing, 2021, 13, 1062.	4.0	0
132	The Photochemistry of Ozone. Handbook of Environmental Chemistry, 1989, , 1-56.	0.4	4
133	Title is missing!. , 1986, , .		3
134	O2(1Δ) in the Atmosphere. Astrophysics and Space Science Library, 1973, , 193-202.	2.7	10
135	Dayglow and Twilight Excitation Mechanisms for Airglow. Astrophysics and Space Science Library, 1971, , 90-104.	2.7	7
136	The Dayglow. Astrophysics and Space Science Library, 1971, , 17-33.	2.7	18
137	Oxygen and Ozone. , 1973, , 294-314.		1
138	Atomic Collisions and the Lower Ionosphere at Midlatitudes. , 1982, , 105-148.		1
139	Fast quenching of metastable O ₂ (a ¹ Δ _g) and O ₂ (b) Tj ETQq Plasma Sources Science and Technology, 2020, 29, 115020.	0 0 0 rgB1 3.1	7 7
140	Photochemical heating of the mesosphere and lower thermosphere. Tellus, 2022, 24, 47.	0.8	2
141	The use of the 1.27 µm O ₂ absorption band for greenhouse gas monitoring from space and application to MicroCarb. Atmospheric Measurement Techniques, 2020, 13, 3329-3374.	3.1	33
142	Measurement of mesospheric ozone concentrations from the 1.27.MU.m O2 airglow at a middle latitude Journal of Geomagnetism and Geoelectricity, 1979, 31, 435-440.	0.9	3
143	Infrared atmospheric band airglow radiometer on board the satellite OHZORA Journal of Geomagnetism and Geoelectricity, 1988, 40, 321-333.	0.9	3
144	Mesospheric Ozone Density Profile in the Polar Region Journal of Geomagnetism and Geoelectricity,	0.9	1

	СІТАТ	tion Report	
#	Article	IF	CITATIONS
145	Chemical Concepts in the Atmosphere. Atmospheric and Oceanographic Sciences Library, 2005, , 11-50.	0.1	0
146	Noctilucent Clouds in North America. , 1969, , 241-258.		Ο
147	Photochemistry of Ozone. , 1969, , 263-306.		0
148	Oxygen, Hydrogen and Nitrogen Constituents in the Mesosphere and Ionization Processes. Astrophysics and Space Science Library, 1971, , 65-77.	2.7	0
150	Interactions between the Neutral Atmosphere and the Lower Ionosphere. , 1972, , 261-325.		1
151	Photoabsorption. , 1973, , 79-130.		0
152	Carbon dioxide density and 15.MU. band radiation in the mesosphere and lower thermosphere Journal of Geomagnetism and Geoelectricity, 1974, 26, 1-12.	0.9	0
153	Some Outstanding Problems in the Neutral and Ionized Atmosphere between 60 and 150 km Altitude. Astrophysics and Space Science Library, 1976, , 3-18.	2.7	0
154	Chemical Concepts in the Atmosphere. , 1984, , 9-31.		0
155	Chemical Concepts in the Atmosphere. , 1986, , 9-31.		0
156	Rocket Measurements of the O2 Infrared Atmospheric (0-0) Band in the Nightglow: The Vestigial Dayglow Components. , 1988, , 151-166.		3
157	Chemistry and Physico-Chemistry. , 1996, , 476-544.		0
159	Atomic Physics in the Upper Atmosphere. , 1973, , 377-392.		1
160	Rocket Observation of Twilight Airglow in the Near Infrared Region. Journal of Geomagnetism and Geoelectricity, 1973, 25, 281-296.	0.9	2
161	Composition and Chemistry. , 2005, , 265-442.		0