Pressure Dependence of the Elastic Constants of Single

Physica Status Solidi (B): Basic Research

29, 121-131

DOI: 10.1002/pssb.19680290113

Citation Report

#	Article	IF	CITATIONS
2	Some elastic constant data on minerals relevant to geophysics. Reviews of Geophysics, 1968, 6, 491-524.	23.0	481
3	Elastic constants of single-crystal rutile under pressures to 7.5 kilobars. Journal of Geophysical Research, 1969, 74, 4317-4328.	3.3	199
4	Elastic constants of single-crystal forsterite as a function of temperature and pressure. Journal of Geophysical Research, 1969, 74, 5949-5960.	3.3	258
5	Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite. Journal of Geophysical Research, 1969, 74, 5961-5972.	3.3	654
6	Determination of Release Adiabats and Recentered Hugoniot Curves by Shock Reverberation Techniques. Journal of Applied Physics, 1969, 40, 3786-3795.	2.5	51
7	Mode Grüneisen parameters for single crystal Al2O3. Journal of Physics and Chemistry of Solids, 1970, 31, 1188-1190.	4.0	4
8	Shockâ€Wave Studies of PMMA, Fused Silica, and Sapphire. Journal of Applied Physics, 1970, 41, 4208-4226.	2.5	773
9	Elastic properties of minerals. Eos, 1971, 52, IUGG 142.	0.1	3
10	Linear bulk modulus approximation for sapphire. Journal of Geophysical Research, 1971, 76, 4908-4912.	3.3	4
11	Pressure coefficients of elastic constants for porous materials: Correction for porosity and discussion on literature data. Earth and Planetary Science Letters, 1971, 10, 316-324.	4.4	12
12	Shock-wave compression of sapphire from 15 to 420 kbar. The effects of large anisotropic compressions. Journal of Physics and Chemistry of Solids, 1971, 32, 2311-2330.	4.0	162
13	Magnetostriction of Antiferromagnetic Cr ₂ O ₃ in Strong Magnetic Fields. Physica Status Solidi (B): Basic Research, 1971, 43, 471-477.	1.5	18
14	Dynamic Yield Strengths of B4C, BeO, and Al2O3 Ceramics. Journal of Applied Physics, 1971, 42, 276-295.	2.5	154
15	On the effects of pressure upon rock elasticity. Physics of the Earth and Planetary Interiors, 1972, 5, 325-327.	1.9	3
16	Additional data on the compression of olivine to 140 kilobars. Journal of Geophysical Research, 1972, 77, 382-384.	3.3	50
17	Elasticity of some mantle crystal structures: 1. Pleonaste and hercynite spinel. Journal of Geophysical Research, 1972, 77, 4379-4392.	3.3	126
18	Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature. Journal of Geophysical Research, 1972, 77, 6360-6384.	3.3	256
19	Pressure dependence of single crystal elastic constants and anharmonic properties of wurtzite. Journal of Physics and Chemistry of Solids, 1973, 34, 1543-1563.	4.0	99

#	Article	IF	Citations
20	On the equations of state of high-pressure solid phases. Earth and Planetary Science Letters, 1973, 18, 125-132.	4.4	12
21	A scaling law for K′0 for silicates with constant mean atomic mass. Earth and Planetary Science Letters, 1973, 20, 73-76.	4.4	50
22	Stress-Induced Spin Flop inCr2O3. Physical Review B, 1973, 7, 4915-4931.	3.2	9
23	Shock-wave compression of x-cut quartz as determined by electrical response measurements. Journal of Physics and Chemistry of Solids, 1974, 35, 355-372.	4.0	56
24	Hypersonic attenuation at low temperatures in Al ₂ O ₃ . Philosophical Magazine and Journal, 1975, 32, 293-311.	1.7	3
25	Effect of the trigonal field and a uniaxial stress on the vibronic triplet states of (3d) ^{<i>n</i>} ions in αâ€Al ₂ O ₃ . Physica Status Solidi (B): Basic Research, 1975, 68, 473-484.	1.5	16
26	Thermal expansion of periclase and olivine, and their anharmonic properties Journal of Physics of the Earth, 1975, 23, 145-159.	1.4	318
27	Chrysoberyl (Al2BeO4): Anomaly in velocity-density systematics. Journal of Geophysical Research, 1975, 80, 3761-3764.	3.3	57
28	Elasticity of polycrystalline stishovite. Earth and Planetary Science Letters, 1976, 32, 127-140.	4.4	84
29	Geometric propagation of acoustic phonons in monocrystals within anisotropic continuum acoustics. Zeitschrift Für Physik B Condensed Matter and Quanta, 1976, 25, 101-114.	1.9	54
30	Elastic constants of semiconducting Ti2O3 and metallic (Ti1â^'xVx)2O3 at 1.5 K. Solid State Communications, 1976, 18, 1055-1058.	1.9	52
31	Generalized Gruneisen parameters of elastic waves and the low-temperature thermal expansion of alumina from its third-order elastic-constant data. Journal of Low Temperature Physics, 1976, 22, 325-333.	1.4	3
32	Anisotropic phonon Umklapp scattering in Al2O3, MnF2and MgF2. Journal of Physics C: Solid State Physics, 1976, 9, 21-31.	1.5	4
33	A scaling theory of solids under hydrostatic pressure. Journal of Chemical Physics, 1977, 67, 3146-3150.	3.0	39
34	Lattice dynamics of corundum. Physics and Chemistry of Minerals, 1978, 3, 1-10.	0.8	73
35	Volume expansion and annealing compaction of ionâ€bombarded singleâ€crystal and polycrystalline αâ€Al2O3. Journal of Applied Physics, 1978, 49, 2725-2730.	2.5	88
36	Highâ€pressure singleâ€crystal structure determinations for ruby up to 90 kbar using an automatic diffractometer. Journal of Applied Physics, 1978, 49, 4411-4416.	2.5	205
37	Ultrasonic velocities in(Ti1â^'xVx)2O3in high magnetic fields. Physical Review B, 1978, 17, 4537-4543.	3.2	0

3

#	ARTICLE	IF	CITATIONS
38	Pressure dependences of the elastic constants of single-crystalTi2O3at 296 K. Physical Review B, 1978, 18, 6807-6812.	3.2	52
39	Shockâ€wave compression of lithium niobate from 2.4 to 44 GPa. Journal of Applied Physics, 1979, 50, 6892-6901.	2.5	22
40	Shock compression of solids. Physics Reports, 1979, 55, 255-379.	25.6	404
41	Influence de la forme des particules sur la nature des boucles prismatiques primaires dans les alliages à oxydation interne à base de cuivre, déformés plastiquement. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1980, 42, 83-102.	0.6	1
42	Third-order elastic constants of uniaxial crystals. Physica Status Solidi A, 1980, 58, 11-36.	1.7	11
43	The thermodynamic properties of the earth's lower mantle. Physics of the Earth and Planetary Interiors, 1980, 23, 314-331.	1.9	65
44	Prismatic Slip of A12O3 Single Crystals Below 1000oC in Compression Under Hydrostatic Pressure. Journal of the American Ceramic Society, 1981, 64, 504-511.	3.8	82
45	Effect of hydrostatic pressure on the elastic constants of V2O3. Physical Review B, 1981, 24, 3155-3161.	3.2	59
46	Elastic constants of V2O3 between 300 and 640 K: Anomalies near the high-temperature electrical transition. Physical Review B, 1981, 24, 3025-3030.	3.2	19
47	The corundum structure: internal strain tensors and cluster configurations under stress. Journal of Physics C: Solid State Physics, 1981, 14, 1585-1602.	1.5	30
48	Elasticity of corundum: local strain and inner elasticity reconciled. Journal of Physics C: Solid State Physics, 1982, 15, 5945-5958.	1.5	7
49	Work hardening and recovery in sapphire (α-Al2O3) undergoing prism plane deformation. Acta Metallurgica, 1982, 30, 2205-2218.	2.1	38
50	Dependence on hydrostatic pressure of the crystal structure of ruby. Journal of Applied Physics, 1983, 54, 6749-6750.	2.5	5
51	Comment on 'High-pressure polymorphism of FeO? An alternative interpretation and its implications for the Earth's core' by L. Liu, P. Shen and W. A. Bassett. Geophysical Journal International, 1984, 77, 279-282.	2.4	4
52	Lattice-dynamical model for the elastic constants and Raman frequencies in (V1â^'xCrx)2O3. Physical Review B, 1985, 32, 6634-6643.	3.2	15
53	Polyhedral modeling of the elastic properties of corundum (αâ€Al ₂ O ₃) and chrysoberyl (Al ₂ BeO ₄). Geophysical Research Letters, 1985, 12, 725-728.	4.0	13
54	Elasticity of uvarovite and andradite garnets. Journal of Geophysical Research, 1986, 91, 7505-7516.	3.3	134
55	Mechanical property changes in sapphire by nickel ion implantation and their dependence on implantation temperature. Journal of Materials Science, 1986, 21, 1321-1328.	3.7	113

#	Article	IF	CITATIONS
56	Determination of elastic constants of trigonal crystals by the rectangular parallelepiped resonance method. Journal of Physics and Chemistry of Solids, 1986, 47, 1103-1108.	4.0	129
57	Electron tunneling into Bi thin films under pressure. Journal of Applied Physics, 1986, 59, 191-194.	2.5	4
58	Thermodynamics of Stable Mineral Assemblages of the Mantle Transition Zone., 1986,, 310-361.		24
59	Effective secondâ€order elastic constants of a strained crystal using the finite strain elasticity theory. Journal of Applied Physics, 1987, 62, 440-443.	2.5	19
60	Calculation of elasticity and high pressure instabilities in corundum and stishovite with the Potential Induced Breathing Model. Geophysical Research Letters, 1987, 14, 37-40.	4.0	120
61	Theoretical studies of charge relaxation effects on the statics and dynamics of oxides. Physics and Chemistry of Minerals, 1987, 14, 294-302.	0.8	71
62	X-ray diffraction of ruby (Al2O3:Cr3+) to 175 GPa. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1988, 150, 115-121.	0.9	75
63	Quasi-hydrostatic compression of ruby to 500 Kbar. Physics and Chemistry of Minerals, 1988, 16, 207.	0.8	96
64	Elastic properties of polycrystalline minerals: Comparison of theory and experiment. Physics and Chemistry of Minerals, 1988, 15, 579-587.	0.8	30
65	Elastic Properties of Polycrystalline Aluminum Oxynitride Spinel and Their Dependence on Pressure, Temperature, and Composition. Journal of the American Ceramic Society, 1988, 71, 807-812.	3.8	50
66	Elastic Properties and Equations of State., 1988,,.		8
67	Thermal expansion of periclase and olivine and their anharmonic properties., 1988,, 361-375.		1
68	Elastoplastic properties under shock compression of Al2O3single crystal and polycrystal. Journal of Applied Physics, 1988, 63, 327-336.	2.5	74
69	Hugoniot equation of state of twelve rocks. , 1988, , 199-236.		0
70	Static Pressure of 255 GPa (2.55 Mbar) by X-Ray Diffraction: Comparison with Extrapolation of the Ruby Pressure Scale. Physical Review Letters, 1988, 61, 574-577.	7.8	40
71	The bulk modulus-volume relationship for oxide compounds and related geophysical problems. , 1988 , , $153\text{-}165$.		1
72	Effects of temperature and pressure on interatomic distances in oxygen-based minerals. , 1988, , 407-413.		35
73	Derivation of Wachtman's equation for the temperature dependence of the elastic moduli of oxide compounds., 1988,, 166-170.		1

#	Article	IF	CITATIONS
74	The bulk modulus-volume relationship for oxides. , 1988, , 283-289.		32
75	The single-crystal elastic moduli of stishovite. , 1988, , 459-465.		0
76	Some elastic constant data on minerals relevant to geophysics. , 1988, , 237-270.		2
77	Composition of the upper mantle: Geophysical tests of two petrological models. , 1988, , 513-516.		1
78	Homogeneity and constitution of the Earth's lower mantle and outer core., 1988,, 341-348.		0
79	Elasticity and constitution of the Earth's interior. , 1988, , 31-90.		3
80	Theory of binding of ionic crystals: Application to alkali-halide and alkaline-Earth-dihalide crystals. , 1988, , 314-320.		1
81	The determination of the elastic constants of natural almandine-pyrope garnet by rectangular parallelepiped resonance method., 1988,, 376-383.		8
82	The velocity of compressional waves in rocks to 10 kilobars, part 2., 1988, , 91-116.		8
83	The elastic properties of composite materials. , 1988, , 384-406.		1
84	The effect of pressure upon the elastic parameters of isotropic solids, according to Murnaghan's theory of finite strain., 1988,, 21-30.		0
85	Temperature coefficients of elastic constants of single crystal MgO between 80 And 1,300 K., 1988,, 503-512.		0
86	Density distribution in the Earth. , 1988, , 1-20.		6
87	X-ray diffraction and optical observations on crystalline solids up to 300 kbar. , 1988, , 193-198.		0
88	Thermal expansion of silicate perovskite and atratification of the Earth's mantle., 1988,, 521-523.		0
89	Reflection properties of phase transition and compositional change models of the 670-km Discontinuity. , 1988, , 488-502.		0
90	Ab initio structural and thermoelastic properties of orthorhombic MgSiO3 perovskite., 1988,, 517-520.		0
91	Static compression of iron T78 GPa with rare gas solids as pressure-transmitting media. , 1988, , 524-531.		0

#	Article	IF	Citations
92	Equations of state of iron sulfide and constraints on the sulfur content of the Earth., 1988, , 427-440.		0
93	Post-oxide phases of forsterite and enstatite. , 1988, , 358-360.		0
94	Velocity-density systematics and its implications for the iron content of the mantle., 1988,, 335-340.		0
95	Composition of the Earth's mantle. , 1988, , 117-133.		O
96	Hydrostatic compression of perovskite-type MgSiO3. , 1988, , 466-474.		0
97	Some geophysical constraints on the chemical composition of the Earth's lower mantle. , 1988, , 475-487.		O
98	Pressure dependence of the thermal GrÃ $\frac{1}{4}$ neisen parameter, with application to the Earth's lower mantle and outer core. , 1988, , 349-357.		0
99	Elasticity of coesite., 1988,, 414-426.		0
100	Velocity-density systematics: Derivation from Debye theory and the effect of ionic size., 1988,, 305-313.		0
101	Elasticity of pyroxene-garnet and pyroxene-ilmenite phase transformations in germanates. , 1988, , 321-334.		64
102	A seismic equation of state. , 1988, , 171-192.		0
103	Elastic constants of single-crystal forsterite as a function of temperature and pressure. , 1988, , 271-282.		1
104	Equation of state of polycrystalline and single-crystal MgO to 8 kilobars and 800°K., 1988,, 290-304.		0
105	The use of ultrasonic measurements under modest compression to estimate compression at high pressure. , 1988, , 134-152.		0
106	The temperature of shock compressed iron. , 1988, , 532-541.		0
107	The equation of state for iron and the Earth's core. , 1988, , 446-458.		5
108	GrÃ $\frac{1}{4}$ neisen parameter of quartz, quartzite, and fluorite at high pressure. , 1988, , 441-445.		0
109	The GrÃ $\frac{1}{4}$ neisen parameter and adiabatic gradient in the Earth's interior. Physics of the Earth and Planetary Interiors, 1989, 55, 221-233.	1.9	14

#	Article	IF	CITATIONS
110	Measurement of elastic constants of mantle-related minerals at temperatures up to 1800 K. Physics of the Earth and Planetary Interiors, 1989, 55, 241-253.	1.9	24
111	Elastic constants of corundum up to 1825 K. Journal of Geophysical Research, 1989, 94, 7588-7602.	3.3	190
112	Yield strength ofAl2O3at high pressures. Physical Review B, 1990, 42, 2532-2535.	3.2	40
113	Calculation of bulk modulus and its pressure derivatives from vibrational frequencies and mode GrÃ⅓neisen Parameters: Solids with cubic symmetry or one nearestâ€neighbor distance. Journal of Geophysical Research, 1991, 96, 16181-16203.	3.3	36
114	Pressure derivatives of the bulk modulus. Journal of Geophysical Research, 1991, 96, 21893-21907.	3.3	31
115	Theoretical analysis ofR-line shifts of ruby subjected to different deformation conditions. Physical Review B, 1991, 43, 879-893.	3.2	46
116	Determination of residual stress in Crâ€implanted Al2O3by glancing angle xâ€ray diffraction. Applied Physics Letters, 1992, 60, 2216-2218.	3.3	23
117	Sound velocity of Al2O3 to 616 kbar. Physics of the Earth and Planetary Interiors, 1994, 87, 77-83.	1.9	13
118	Constitution of the Moon: 2. Composition and seismic properties of the lower mantle. Physics of the Earth and Planetary Interiors, 1994, 83, 197-216.	1.9	21
119	Temperature-dependent Young's modulus of an SiCw/Al2O3 composite. Journal of Materials Science, 1995, 30, 834-836.	3.7	5
120	Stress state and nature of failure of detonation coatings based on alumina. Powder Metallurgy and Metal Ceramics, 1995, 33, 473-475.	0.8	0
121	Limits on the value of $\hat{I}T$ and \hat{I}^3 for MgSiO3 perovskite. Physics of the Earth and Planetary Interiors, 1996, 98, 31-46.	1.9	21
122	Elastic wave velocity measurement in multi-anvil apparatus to 10 GPa using ultrasonic interferometry. Physics of the Earth and Planetary Interiors, 1996, 98, 79-91.	1.9	106
123	Thermal expansivity of lower mantle phases MgO and MgSiO3 perovskite at high pressure derived from vibrational spectroscopy. Physics of the Earth and Planetary Interiors, 1996, 98, 3-15.	1.9	73
124	A modified highâ€ŧemperature cell (up to 3300 K) for use with a cubic press. Review of Scientific Instruments, 1996, 67, 3679-3682.	1.3	14
125	Surface deformation of sapphire crystal. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1996, 74, 171-194.	0.6	47
126	High-precision, all-electron, full-potential calculation of the equation of state and elastic constants of corundum. Physical Review B, 1997, 55, 750-756.	3.2	60
127	Ab Initio Investigation of the High Pressure Elasticity of Mg2SiO4 Forsterite and Ringwoodite. Materials Research Society Symposia Proceedings, 1997, 499, 15.	0.1	0

#	Article	IF	CITATIONS
128	THE VOLUME DEPENDENCE OF THERMAL PRESSURE IN SOLIDS. Journal of Physics and Chemistry of Solids, 1997, 58, 335-343.	4.0	47
129	Ultralow velocity zone at the core-mantle boundary. Geodynamic Series, 1998, , 319-334.	0.1	131
130	IN SITU STUDIES OF THE PROPERTIES OF MATERIALS UNDER HIGH-PRESSURE AND TEMPERATURE CONDITIONS USING MULTI-ANVIL APPARATUS AND SYNCHROTRON X-RAYS. Annual Review of Materials Research, 1998, 28, 349-374.	5.5	23
131	Sound velocity measurements at mantle transition zone conditions of pressure and temperature using ultrasonic interferometry in a multianvil apparatus. Geophysical Monograph Series, 1998, , 41-61.	0.1	32
132	Determination of Compliance Relationships for Transversely Isotropic Hard Surface Coatings Using the Finite Element Method. Journal of Tribology, 1999, 121, 416-418.	1.9	6
133	Numerical contact analysis of transversely isotropic coatings. Wear, 1999, 236, 360-367.	3.1	15
134	Elastic and optical properties ofî±- andîºâ°'Al2O3. Physical Review B, 1999, 59, 12777-12787.	3.2	152
135	The volume dependence of thermal pressure in perovskite and other minerals. Physics of the Earth and Planetary Interiors, 1999, 112, 267-283.	1.9	35
136	On the Frictional Characteristics of Ball Bearings Coated With Solid Lubricants. Journal of Tribology, 1999, 121, 761-767.	1.9	10
137	High-pressure elasticity of alumina studied by first principles. American Mineralogist, 1999, 84, 1961-1966.	1.9	29
138	Theoretical calculations of thermal shifts and thermal broadenings of sharp lines and zero-field splitting for ruby. Part I. Thermal shifts of R1 and R2 lines. Journal of Physics and Chemistry of Solids, 2000, 61, 799-808.	4.0	13
139	High-pressure phase transformation of corundum (α-Al2O3) observed under shock compression. Geophysical Research Letters, 2000, 27, 2021-2024.	4.0	46
140	Silicate perovskite analogue ScAlO3: temperature dependence of elastic moduli. Physics of the Earth and Planetary Interiors, 2000, 120, 299-314.	1.9	14
141	Elasticity of ScAlO3 at high pressure. Physics of the Earth and Planetary Interiors, 2000, 118, 65-75.	1.9	22
142	High-pressure elastic properties of major materials of Earth's mantle from first principles. Reviews of Geophysics, 2001, 39, 507-534.	23.0	240
143	Thermal and mechanical stresses in transversely isotropic coatings. Surface and Coatings Technology, 2001, 138, 173-184.	4.8	21
144	Refractive indices of sapphire under elastic, uniaxial strain compression along the a axis. Journal of Applied Physics, 2001, 90, 4990-4996.	2.5	34
145	r-axis sound speed and elastic properties of sapphire single crystals. Journal of Applied Physics, 2001, 90, 3109-3111.	2.5	57

#	Article	IF	Citations
146	Strain in cracked AlGaN layers. Journal of Applied Physics, 2002, 92, 118-123.	2.5	30
147	Nonlinear polarization in nitrides revealed with hydrostatic pressure. Physica Status Solidi (B): Basic Research, 2003, 235, 238-247.	1.5	32
148	Dislocation Structures of Lowâ€Angle and Nearâ€Î£3 Grain Boundaries in Alumina Bicrystals. Journal of the American Ceramic Society, 2003, 86, 595-602.	3.8	51
149	Pressure derivatives of shear and bulk moduli from the thermal $Gr\tilde{A}\frac{1}{4}$ neisen parameter and volume-pressure data. Geochimica Et Cosmochimica Acta, 2003, 67, 1215-1235.	3.9	26
150	Refinement of the ruby luminescence pressure scale. Journal of Applied Physics, 2003, 93, 1813-1818.	2. 5	105
151	Anomalous Surface Deformation of Sapphire Clarified by 3D-FEM Simulation of the Nanoindentation. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2003, 46, 265-271.	0.4	7
152	Chapter 15 Transport properties in deep depths and related condensed-matter phenomena. Developments in Geochemistry, 2004, 9, 1041-1203.	0.1	0
153	Dual mode ultrasonic interferometry in multi-anvil high pressure apparatus using single-crystal olivine as the pressure standard. High Pressure Research, 2004, 24, 183-191.	1.2	18
154	Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus. Physics of the Earth and Planetary Interiors, 2004, 143-144, 559-574.	1.9	133
155	Molecular dynamics simulation of Y-doped Σ37 grain boundary in alumina. Acta Materialia, 2005, 53, 4111-4120.	7.9	22
156	Thermodynamics of mantle minerals - I. Physical properties. Geophysical Journal International, 2005, 162, 610-632.	2.4	492
157	Pressure and thermal effects on elastic properties of single crystal from Monte-Carlo simulation. Molecular Simulation, 2006, 32, 465-470.	2.0	0
158	High-pressure study of thel²-to-l±transition inGa2O3. Physical Review B, 2006, 73, .	3.2	129
159	The effect of iron on the elastic properties of ringwoodite at high pressure. Physics of the Earth and Planetary Interiors, 2006, 159, 276-285.	1.9	59
160	The elastic and optical properties of the high-pressure hydrous phase Î-AlOOH. Solid State Communications, 2006, 137, 101-106.	1.9	35
161	Response of a Zr-based bulk amorphous alloy to shock wave compression. Journal of Applied Physics, 2006, 100, 063522.	2.5	30
162	Dislocation Structure of 10° Low-Angle Tilt Grain Boundary in α-Al ₂ O ₃ Materials Science Forum, 2007, 558-559, 979-982.	0.3	1
163	Constraints on Seismic Models from Other Disciplines – Constraints from Mineral Physics on Seismological Models. , 2007, , 775-803.		3

#	Article	IF	CITATIONS
164	First-principles study of grain boundary sliding in뱉^'Al2O3. Physical Review B, 2007, 75, .	3.2	32
165	TEM Characterization of $2\hat{A}^e$ Tilt Grain Boundary in Alumina. Materials Science Forum, 2007, 561-565, 2427-2430.	0.3	1
166	Pressure–volume data for epsilon iron and platinum to earth-core pressures and above from one-parameter equation of state: Implication on platinum pressure scale. Physics of the Earth and Planetary Interiors, 2007, 164, 75-82.	1.9	4
167	Influence of phase transformations on lateral heterogeneity and dynamics in Earth's mantle. Earth and Planetary Science Letters, 2007, 263, 45-55.	4.4	115
168	Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina. Journal of Applied Physics, 2008, 103, .	2.5	139
169	Ruby under pressure. High Pressure Research, 2008, 28, 75-126.	1.2	367
170	Single-crystal elasticity of diaspore, AlOOH, to 12GPa by Brillouin scattering. Physics of the Earth and Planetary Interiors, 2008, 170, 221-228.	1.9	13
171	Deformation mechanisms and damage in \hat{l}_{\pm} -alumina under hypervelocity impact loading. Journal of Applied Physics, 2008, 103, .	2.5	43
172	High-pressure x-ray diffraction and Raman spectra study of indium oxide. Journal of Applied Physics, 2008, 104, .	2.5	91
173	<i>Ab initio</i> calculations of the structure and mechanical properties of vanadium oxides. Journal of Physics Condensed Matter, 2009, 21, 145404.	1.8	45
174	Ab initio calculations of the relationship between the alpha alumina toughness and its electronic structure under pressure. Computational Materials Science, 2009, 45, 310-314.	3.0	5
175	Structure and Configuration of Boundary Dislocations on Low Angle Tilt Grain Boundaries in Alumina. Materials Transactions, 2009, 50, 1008-1014.	1.2	15
176	Directed evolution of \hat{l}_{\pm} -grains in thin metastable-Al2O3 films deposited on Si(100) after post-deposition annealing. Thin Solid Films, 2010, 518, 4304-4311.	1.8	7
177	First-principles sliding simulation of Al-terminated Σ13 pyramidal twin grain boundary in <i>î±</i> -Al ₂ O ₃ . Philosophical Magazine Letters, 2010, 90, 159-172.	1.2	6
178	First-principles calculation of kinetic barriers and metastability for the corundum-to-Rh2O3(II) transition in Al2O3. Journal of Physics Condensed Matter, 2010, 22, 315403.	1.8	9
179	Thermodynamics of mantle minerals - II. Phase equilibria. Geophysical Journal International, 2011, 184, 1180-1213.	2.4	475
180	Dislocation structures in a $\{ \$ \ ar\{1\} \$ 104\}/ \ \mathbb{O} 11 \$ \ ar\{2\} \$ 0 \ \mathbb{O} = \ \mathbb{O} = \ \mathbb{O} = \mathbb{O} =$	3.7	9
181	Internal load transfer in a metal matrix composite with a three-dimensional interpenetrating structure. Acta Materialia, 2011, 59, 1424-1435.	7.9	66

#	Article	IF	Citations
182	Propagation of acoustic phonon solitons in nonmetallic crystals. Physical Review B, 2011, 84, .	3.2	10
183	Shear strength and sliding behavior of Ni/Al ₂ O ₃ interfaces: A first-principle study. Journal of Materials Research, 2012, 27, 1237-1244.	2.6	14
184	$\label{low-temperature} Low-temperature \ elastic \ constants \ of \ monocrystal \ corundum \ (\hat{l}\pm-Al2O3). \\ Philosophical \ Magazine, \ 2013, \ 93, \ 4532-4543.$	1.6	11
185	Axial temperature gradient and stress measurements in the deformation-DIA cell using alumina pistons. Review of Scientific Instruments, 2013, 84, 043906.	1.3	39
186	Elasticity of Minerals, Glasses, and Melts. AGU Reference Shelf, 0, , 45-63.	0.6	305
187	Analysis of dissociated dislocations in a deformed bicrystal close to the rhombohedral twin orientation in $\hat{l}\pm$ -alumina. Philosophical Magazine, 2013, 93, 1182-1196.	1.6	2
188	Seismic properties of the Kohistan oceanic arc root: Insights from laboratory measurements and thermodynamic modeling. Geochemistry, Geophysics, Geosystems, 2013, 14, 1819-1841.	2.5	11
189	Analysis of shock compression of strong single crystals with logarithmic thermoelastic-plastic theory. International Journal of Engineering Science, 2014, 79, 1-20.	5.0	55
190	Elastic softening of sapphire by Si diffusion for dislocation-free GaN. Acta Materialia, 2014, 66, 97-104.	7.9	12
191	The strength of ruby from X-ray diffraction under non-hydrostatic compression to 68ÂGPa. Physics and Chemistry of Minerals, 2014, 41, 527-535.	0.8	10
192	Study of the Earth's interior using measurements of sound velocities in minerals by ultrasonic interferometry. Physics of the Earth and Planetary Interiors, 2014, 233, 135-153.	1.9	65
193	Acoustic travel time gauges for <i>in-situ</i> determination of pressure and temperature in multi-anvil apparatus. Journal of Applied Physics, 2015, 118, .	2.5	25
194	Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire—l. Microstructural characterization. AIP Advances, 2015, 5, 077180.	1.3	2
195	Constraints on Seismic Models from Other Disciplines - Constraints from Mineral Physics on Seismological Models., 2015,, 829-852.		10
196	Ultrasonic velocity drops and anisotropy reduction in mica-schist analogues due to melting with implications for seismic imaging of continental crust. Earth and Planetary Science Letters, 2015, 425, 24-33. attom of the 1/346 communant xmlns:mml="http://www.w3.org/1998/Math/Math/ML" altimg="sil.gif"	4.4	15
197	overflow="scroll"> <mml:mrow><mml:mover accent="true"><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mo>Â^</mml:mo><mml:mn>1<mml:mn>0</mml:mn><mml:mn>1</mml:mn></mml:mn></mml:mrow>ã€9</mml:mover></mml:mrow>	7.9	nl:mover> <r 5</r
198	Influence of hydrostatic pressure on the built-in electric field in ZnO/ZnMgO quantum wells. Journal of Applied Physics, 2016, 119, 215702.	2.5	13
199	First principles calculation of thermal expansion coefficients of pure and Cr doped \hat{l}_{\pm} -alumina crystals. Journal of Applied Physics, 2016, 120, .	2.5	12

#	Article	IF	CITATIONS
200	Direct Observation of Impurity Segregation at Dislocation Cores in an Ionic Crystal. Nano Letters, 2017, 17, 2908-2912.	9.1	19
201	Rocking curve imaging of high quality sapphire crystals in backscattering geometry. Journal of Applied Physics, 2017, 121, .	2.5	11
202	Ab initio molecular dynamics simulation of low energy radiation responses of \hat{l} ±-Al2O3. Scientific Reports, 2017, 7, 3621.	3.3	11
203	Dissociation reaction of the $1/3$ \$\$ leftlangle {ar{1}101} ightangle \$\$ edge dislocation in \hat{l} ±-Al2O3. Journal of Materials Science, 2018, 53, 8049-8058.	3.7	4
204	Newly synthesized MgAl 2 Ge 2: A first-principles comparison with its silicide and carbide counterparts. Journal of Physics and Chemistry of Solids, 2018, 117, 139-147.	4.0	24
205	Elasticity of Corundum at High Pressures and Temperatures: Implications for Pyrope Decomposition and Alâ€Content Effect on Elastic Properties of Bridgmanite. Journal of Geophysical Research: Solid Earth, 2018, 123, 1201-1216.	3.4	29
206	Simultaneous high-pressure high-temperature elastic velocity measurement system up to 27 GPa and 1873 K using ultrasonic and synchrotron X-ray techniques. Review of Scientific Instruments, 2018, 89, 014501.	1.3	17
207	Poisson's Ratio and Auxetic Properties of Natural Rocks. Journal of Geophysical Research: Solid Earth, 2018, 123, 1161-1185.	3.4	65
208	Dislocation Structures in Low-Angle Grain Boundaries of α-Al2O3. Crystals, 2018, 8, 133.	2.2	23
209	Structural details of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>Al<td>nl:mi2<mm< td=""><td>าไ:mø>/</td></mm<></td></mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>	nl:m i2 <mm< td=""><td>าไ:mø>/</td></mm<>	าไ:mø>/
210	Deformation Twinning in Single Crystals. Shock Wave and High Pressure Phenomena, 2019, , 275-327.	0.1	0
211	Equations of State. Shock Wave and High Pressure Phenomena, 2019, , 117-132.	0.1	0
212	Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids. Shock Wave and High Pressure Phenomena, 2019, , .	0.1	18
213	Transition in deformation mechanism of aluminosilicate glass at high pressure and room temperature. Journal of the American Ceramic Society, 2020, 103, 6755-6763.	3.8	2
214	Irradiation-induced damage in concrete-forming aggregates: revisiting literature data through micromechanics. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	18
215	An all-electron study of the low-lying excited states and optical constants of Al ₂ O ₃ in the range 5–80 eV. Journal of Physics Condensed Matter, 2020, 32, 085901.	1.8	8
216	Practical effects of pressure-transmitting media on neutron diffraction experiments using Paris–Edinburgh presses. High Pressure Research, 2020, 40, 325-338.	1.2	4
217	Microcanonical Nucleation Theory for Anisotropic Materials Validated on Alumina Clusters. Journal of Physical Chemistry A, 2020, 124, 2328-2334.	2.5	1

#	ARTICLE	IF	Citations
218	Residual stress analysis of aluminum nitride piezoelectric micromachined ultrasonic transducers using Raman spectroscopy. Journal of Applied Physics, 2021, 130, .	2.5	6
219	Thermal expansivity, heat capacity and bulk modulus of the mantle. Geophysical Journal International, 2021, 228, 1119-1149.	2.4	27
220	Table 14. Trigonal system, 6 constants. , 0, , 139-153.		1
221	Alumina., 2008, , 1-26.		1
222	Materials with Useful Mechanical Properties. , 1975, , 173-221.		2
223	Shock Compression Studies on Ceramic Materials. , 1993, , 113-144.		7
224	Elastic Properties of Minerals and Planetary Objects., 2001,, 325-376.		11
225	Simultaneous equation of state, pressure calibration and sound velocity measurements to lower mantle pressures using multi-anvil apparatus., 2005,, 49-66.		7
226	Numerical Contact Analysis of Transversely Isotropic Coatings: A Cylinder Within a Circumferential Groove. Journal of Tribology, 2001, 123, 436-440.	1.9	6
227	Magnetostriction and Spin-Flopping of Uniaxially Compressed Antiferromagnets. , 2001, , 223-247.		0
229	Ultrasonic Characterization of Interphasial Properties in Sapphire/Haynes 214 Composites. Journal of Testing and Evaluation, 1997, 25, 1-14.	0.7	0
230	Synthesis and Characterization of Turmeric Powered Bio-Significant â€^Organometallic Aluminates. , 2015, 5, 7-14.		0
231	Table 13. Hexagonal system. Non-crystalline materials. , 0, , 134-139.		0
232	Table 50. Trigonal system, 6 or 7 constants. , 0, , 288-289.		0
234	Deterioration and Breakdown Mechanisms in force-fitted current-carrying Connections between Aluminum and Tin. , 2021, , .		1
235	Atomistic simulation and interatomic potential comparison in î±-Al ₂ O ₃ : lattice, surface and extended-defects properties. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 035008.	2.0	7
237	Physical and Superconducting Properties of Chiral Noncentrosymmetric TaRh ₂ B ₂ and NbRh ₂ B ₂ : A Comprehensive DFT Study. ACS Applied Electronic Materials, 2022, 4, 1143-1152.	4.3	8
238	Sintering of Alumina Nanoparticles: Comparison of Interatomic Potentials, Molecular Dynamics Simulations, and Data Analysis. Modelling and Simulation in Materials Science and Engineering, 0, , .	2.0	3

#	Article	IF	CITATION
239	Laser Ultrasound Investigations of AlScN(0001) and AlScN(11-20) Thin Films Prepared by Magnetron Sputter Epitaxy on Sapphire Substrates. Micromachines, 2022, 13, 1698.	2.9	2
240	Damage and failure mechanism of sapphire under ballistic loading based on a modified bondâ€based peridynamic model. Journal of the American Ceramic Society, 0, , .	3.8	2
242	Investigation of the Influence of Pressure on the Physical Properties and Superconducting Transition Temperature of Chiral Noncentrosymmetric TaRh ₂ B ₂ and NbRh ₂ B ₂ . ACS Omega, 2023, 8, 21813-21822.	3.5	2
243	Fitting the charged-optimized many-body potential for the Al-O-Se-Zn system. Computational Materials Science, 2023, 228, 112371.	3.0	O
244	Effects of hydrothermal alteration on shear localization and weakening in the mantle lithosphere. Tectonophysics, 2023, 868, 230081.	2,2	0
245	High-pressure single-crystal elasticity of corundum: Implication for multiple seismic structure of 660-km discontinuity. Physics of the Earth and Planetary Interiors, 2024, 346, 107134.	1.9	O
246	Thermodynamic Properties and Equation of State for Alpha-Alumina. International Journal of Thermophysics, 2024, 45, .	2.1	0