Optimal techno-economic design of hybrid PV/wind systorage: Case study for a remote area

Energy Conversion and Management 249, 114847

DOI: 10.1016/j.enconman.2021.114847

Citation Report

#	Article	IF	CITATIONS
1	Investigation of a hybrid renewable-based grid-independent electricity-heat nexus: Impacts of recovery and thermally storing waste heat and electricity. Energy Conversion and Management, 2022, 252, 115073.	4.4	11
2	An improved particle swarm optimization for optimal configuration of standalone photovoltaic scheme components. Energy Science and Engineering, 0, , .	1.9	5
3	Feasibility analysis and feature comparison of cold thermal energy storage for off-grid PV air-conditioned buildings in the tropics. Energy Conversion and Management, 2022, 254, 115176.	4.4	16
4	Techno-Economic and Environmental Analysis of Grid-Connected Electric Vehicle Charging Station Using Al-Based Algorithm. Mathematics, 2022, 10, 924.	1.1	19
5	Technical Control and Optimal Dispatch Strategy for a Hybrid Energy System. Energies, 2022, 15, 2744.	1.6	7
6	Intelligent and Optimized Microgrids for Future Supply Power from Renewable Energy Resources: A Review. Energies, 2022, 15, 3359.	1.6	39
7	A Review on Wind Power Forecasting Regarding Impacts on the System Operation, Technical Challenges, and Applications. Energy Technology, 2022, 10, .	1.8	4
8	Uncertainty-aware energy management strategies for PV-assisted refuelling stations with onsite hydrogen generation. Journal of Cleaner Production, 2022, 365, 132869.	4.6	8
9	Frequency regulation of hybrid multi-area power system using wild horse optimizer based new combined Fuzzy Fractional-Order PI and TID controllers. AEJ - Alexandria Engineering Journal, 2022, 61, 12187-12210.	3.4	28
10	Ͽ—ĐĐ᠉ĐЧЕОĐΫĐ¢Đ~ĐœĐ†Đ—ĐЦІЇ ГІБĐĐ~Đ"ĐОЇ Đ•ĐĐ•ĐĐ"ĐžĐ¡Đ¢ĐįĐ¢Đ•ĐœĐ~ Đ—Đ•ĐІĐ	'Ð Ð∙ᡚœ Дŧ	Ӭ [~] Ð҈ŧПЕÐÐ
11	Design and Optimization of a Grid-Connected Solar Energy System: Study in Iraq. Sustainability, 2022, 14, 8121.	1.6	6
12	Hybrid energy storage system for improved response time and long-term energy storage. Materials Today: Proceedings, 2022, , .	0.9	2
13	Hybrid Multi‧trategy Improved Wild Horse Optimizer. Advanced Intelligent Systems, 2022, 4, .	3.3	8
14	Optimal sizing of hybrid Systems for Power loss Reduction and Voltage improvement using PSO algorithm: Case study of Guissia Rural Grid. Energy Reports, 2022, 8, 86-95.	2.5	25
15	Provision of Ancillary Services by Wind Generators coupled with Energy Storage Systems: a real Italian Case Study. , 2022, , .		0
16	Integration of Solar Photovoltaic Systems into Power Networks: A Scientific Evolution Analysis. Sustainability, 2022, 14, 9249.	1.6	9
17	Design and Validation of a SEPIC-Based Novel Multi-Input DC-DC Converter for Grid-Independent Hybrid Electric Vehicles. Energies, 2022, 15, 5663.	1.6	3
18	Optimal Sizing of a Hybrid Renewable Energy System: A Socio-Techno-Economic-Environmental Perspective. Journal of Solar Energy Engineering, Transactions of the ASME, 2023, 145, .	1.1	5

#	Article	IF	CITATIONS
19	Integrated techno-economic-enviro-socio design of the hybrid renewable energy system with suitable dispatch strategy for domestic and telecommunication load across India. Journal of Energy Storage, 2022, 55, 105340.	3.9	23
20	A metaheuristic algorithm based on simulated annealing for optimal sizing and techno-economic analysis of PV systems with multi-type of battery energy storage. Sustainable Energy Technologies and Assessments, 2022, 53, 102724.	1.7	3
21	Analyzing the Prospect of Hybrid Energy in the Cement Industry of Pakistan, Using HOMER Pro. Sustainability, 2022, 14, 12440.	1.6	4
22	Novel low-carbon energy solutions for powering emerging wearables, smart textiles, and medical devices. Energy and Environmental Science, 2022, 15, 4928-4981.	15.6	30
23	Improved current control loops in wind side converter with the support of wild horse optimizer for enhancing the dynamic performance of PMSG-based wind generation system. International Journal of Modelling and Simulation, 2023, 43, 952-966.	2.3	18
24	Allocation of Hybrid Distributed Generations and Energy Management in Radial Electrical Systems. Smart Grid and Renewable Energy, 2022, 13, 249-267.	0.7	1
25	Risk-averse based optimal operational strategy of grid-connected photovoltaic/wind/battery/diesel hybrid energy system in the electricity/hydrogen markets. International Journal of Hydrogen Energy, 2023, 48, 4631-4648.	3.8	14
26	Design, prototype validation, and reliability analysis of a multiâ€input DC/DC converter for gridâ€independent hybrid electric vehicles. International Journal of Circuit Theory and Applications, 0, ,	1.3	0
27	MCDM for simultaneous optimum economy, investment risk and environmental impact for distributed renewable power: Demonstration with an Indian village data. Energy Conversion and Management, 2023, 277, 116631.	4.4	9
28	Ͽ—ĐĐ"ĐЧЕОĐΫĐ¢Đ~ĐœĐ†Đ—ĐЦІЇ ГІБĐĐ~Đ"ĐОЇ Đ•ĐĐ•ĐГОĐįĐ~ĐįĐ¢Đ•ĐœĐ~ Đ—Đ•ĐІĐ	'Ð Ð∙М Д€	ϿʹϿϙϴΫϴ•ϴϴ
29	Type-2 fuzzy logic PID control for efficient power balance in an AC microgrid. Sustainable Energy Technologies and Assessments, 2023, 56, 103048.	1.7	1
30	The role of biofuels for sustainable MicrogridsF: A path towards carbon neutrality and the green economy. Heliyon, 2023, 9, e13407.	1.4	14
31	Investigating the role of the carbon tax and loss of power supply probability in sizing a hybrid energy system, economically and environmentally. Energy Conversion and Management, 2023, 280, 116793.	4.4	8
32	Maximizing the Integration of a Battery Energy Storage System–Photovoltaic Distributed Generation for Power System Harmonic Reduction: An Overview. Energies, 2023, 16, 2549.	1.6	5
33	Modelling and Validation of Typical PV Mini-Grids in Kenya: Experience from RESILIENT Project. Energies, 2023, 16, 3203.	1.6	1
34	A multiple uncertainty-based Bi-level expansion planning paradigm for distribution networks complying with energy storage system functionalities. Energy, 2023, 275, 127511.	4.5	14
41	Solar-Wind Hybrid Power Systems. , 2023, , .		0
58	A Techno-Economic Study of a Hybrid PV–Wind–Diesel Standalone Power System for a Rural Telecommunication Station in Northeast Algeria. , 0, , .		1

ARTICLE

IF CITATIONS