Integrated Point-of-Care Molecular Diagnostic Devices

Accounts of Chemical Research 54, 4107-4119

DOI: 10.1021/acs.accounts.1c00385

Citation Report

#	Article	IF	CITATIONS
1	Mechanistic insights of CRISPR/Cas nucleases for programmable targeting and early-stage diagnosis: A review. Biosensors and Bioelectronics, 2022, 203, 114033.	10.1	23
2	Advances in the Rapid Diagnostic of Viral Respiratory Tract Infections. Frontiers in Cellular and Infection Microbiology, 2022, 12, 807253.	3.9	14
3	Multi-Reagents Dispensing Centrifugal Microfluidics for Point-of-Care Testing. SSRN Electronic Journal, 0, , .	0.4	0
4	Microfluidics-based strategies for molecular diagnostics of infectious diseases. Military Medical Research, 2022, 9, 11.	3.4	20
5	Virus Detection: From Stateâ€ofâ€theâ€Art Laboratories to Smartphoneâ€Based Pointâ€ofâ€Care Testing. Advanc Science, 2022, 9, e2105904.	ced 11.2	66
6	Multi-reagents dispensing centrifugal microfluidics for point-of-care testing. Biosensors and Bioelectronics, 2022, 206, 114130.	10.1	21
7	Integrating CRISPR/Cas within isothermal amplification for point-of-Care Assay of nucleic acid. Talanta, 2022, 243, 123388.	5.5	34
8	Carbon-black-embedded poly(dimethylsiloxane)-paper hybrid device for energy-efficient nucleic-acid amplification in point-of-care testing. Analytical Methods, 0, , .	2.7	1
9	Ratiometric PCR in a Portable Sample-to-Result Device for Broad-Based Pathogen Identification. Analytical Chemistry, 0, , .	6.5	4
10	Rapid Extraction of Viral Nucleic Acids Using Rotating Blade Lysis and Magnetic Beads. Diagnostics, 2022, 12, 1995.	2.6	2
11	A universal dual-readout viscosity flow sensor based on biotarget-triggered hyaluronidase release from aptamer-capped metal-organic frameworks. Sensors and Actuators B: Chemical, 2022, 372, 132637.	7.8	7
12	Loop-Mediated Isothermal Amplification: From Theory to Practice. Russian Journal of Bioorganic Chemistry, 2022, 48, 1159-1174.	1.0	3
13	Sensitive and Quantitative Point-of-Care HIV Viral Load Quantification from Blood Using a Power-Free Plasma Separation and Portable Magnetofluidic Polymerase Chain Reaction Instrument. Analytical Chemistry, 0, , .	6.5	3
14	Internetâ€ofâ€medicalâ€things integrated pointâ€ofâ€care biosensing devices for infectious diseases: Toward better preparedness for futuristic pandemics. Bioengineering and Translational Medicine, 2023, 8, .	7.1	13
15	COVID-19 Detection Using a 3D-Printed Micropipette Tip and a Smartphone. ACS Sensors, 2023, 8, 848-857.	7.8	4
16	Self-assembly of protein–DNA superstructures for alkaline phosphatase detection in blood. Chemical Communications, 2023, 59, 3399-3402.	4.1	2
17	CRISPRâ€Enhanced Hydrogel Microparticles for Multiplexed Detection of Nucleic Acids. Advanced Science, 2023, 10, .	11.2	17
18	Nanotechnology-Based Diagnostics for Diseases Prevalent in Developing Countries: Current Advances in Point-of-Care Tests. Nanomaterials, 2023, 13, 1247.	4.1	11

#	Article	IF	CITATIONS
19	CRISPR-Cas12a Biosensor Array for Ultrasensitive Detection of Unamplified DNA with Single-Nucleotide Polymorphic Discrimination. ACS Sensors, 2023, 8, 1489-1499.	7.8	3
20	Electrochemical-Based Biosensor Platforms in Lab-Chip Models for Point-of-Need Toxicant Analysis. Electrochem, 2023, 4, 537-552.	3.3	0
21	Programmable Gravity Selfâ€Driven Microfluidic Chip for Pointâ€ofâ€Care Multiplied Immunoassays. Small, 0, , .	10.0	1
22	A portable all-in-one microfluidic device with real-time colorimetric LAMP for HPV16 and HPV18 DNA point-of-care testing. Biosensors and Bioelectronics, 2024, 248, 115968.	10.1	0
23	Role of 3D printing in microfluidics and applications. , 2024, , 67-107.		0
24	METHODOLOGICAL APPROACHES TO THE VERIFICATION OF CAUSES OF INFECTIOUS DISEASES IN EMERGENCIES. , 2023, 1, 33-41.		0
25	Fast detection of bacterial gut pathogens on miniaturized devices: an overview. Expert Review of Molecular Diagnostics, 2024, 24, 201-218.	3.1	1
26	Multiplexed electrochemical nucleic acid sensor based on visible light-mediated metal-free thiol-yne click reaction for simultaneous detection of different nucleic acid targets. Talanta, 2024, 273, 125856.	5.5	0
27	Plasmonic Fluorescence Sensors in Diagnosis of Infectious Diseases. Biosensors, 2024, 14, 130.	4.7	0