Anti-SARS-CoV-2 receptor-binding domain antibody ev

Nature 600, 517-522 DOI: 10.1038/s41586-021-04060-7

Citation Report

#	Article	IF	CITATIONS
1	COVID-19 and liver disease: mechanistic and clinical perspectives. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 348-364.	8.2	272
3	mRNA vaccination of naive and COVID-19-recovered individuals elicits potent memory B cells that recognize SARS-CoV-2 variants. Immunity, 2021, 54, 2893-2907.e5.	6.6	107
4	High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape. Nature, 2021, 600, 512-516.	13.7	174
5	mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science, 2021, 374, abm0829.	6.0	609
6	COVID super-immunity: one of the pandemic's great puzzles. Nature, 2021, 598, 393-394.	13.7	29
8	COVID-19 Vaccine Booster: To Boost or Not to Boost. Infectious Disease Reports, 2021, 13, 924-929.	1.5	78
11	Long-term analysis of antibodies elicited by SPUTNIK V: A prospective cohort study in Tucumán, Argentina. The Lancet Regional Health Americas, 2022, 6, 100123.	1.5	21
12	Are COVID-19 Vaccine Boosters Needed? The Science behind Boosters. Journal of Virology, 2022, 96, JVI0197321.	1.5	35
15	Long-term immunologic effects of SARS-CoV-2 infection: leveraging translational research methodology to address emerging questions. Translational Research, 2022, 241, 1-12.	2.2	15
17	SARS-CoV2 vaccine boosters for India. Indian Journal of Medical Microbiology, 2022, 40, 1-1.	0.3	0
19	Neutralization breadth of SARS-CoV-2 viral variants following primary series and booster SARS-CoV-2 vaccines in patients with cancer. Cancer Cell, 2022, 40, 103-108.e2.	7.7	30
20	Identification of a new HIV-1 intersubtype circulating recombinant form (CRF123_0107) in Hebei province, China. Journal of Infection, 2022, 84, e36-e39.	1.7	15
21	COVID-19 vaccine strategies must focus on severe disease and global equity. Lancet, The, 2022, 399, 406-410.	6.3	55
22	mRNA-1273 vaccine-induced antibodies maintain Fc effector functions across SARS-CoV-2 variants of concern. Immunity, 2022, 55, 355-365.e4.	6.6	76
23	Immunology and Technology of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccines. Pharmacological Reviews, 2022, 74, 313-339.	7.1	9
24	SARS-CoV-2 breakthrough infections elicit potent, broad, and durable neutralizing antibody responses. Cell, 2022, 185, 872-880.e3.	13.5	165
26	Nine-month course of SARS-CoV-2 antibodies in individuals with COVID-19 infection. Irish Journal of Medical Science, 2022, 191, 2803-2811.	0.8	6
29	SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell, 2022, 185, 847-859.e11.	13.5	590

#	Article	IF	CITATIONS
30	Omicron's message on vaccines: Boosting begets breadth. Cell, 2022, 185, 411-413.	13.5	23
31	Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. Journal of Biomedical Science, 2022, 29, 1.	2.6	144
32	Imprinted SARS-CoV-2-Specific Memory Lymphocytes Define Hybrid Immunity. SSRN Electronic Journal, 0, , .	0.4	0
33	SARS-CoV-2 mRNA vaccine induces robust specific and cross-reactive IgG and unequal neutralizing antibodies in naive and previously infected people. Cell Reports, 2022, 38, 110336.	2.9	41
35	Vaccination of <scp>COVID</scp> â€19 convalescent plasma donors increases binding and neutralizing antibodies against <scp>SARSâ€CoV</scp> â€2 variants. Transfusion, 2022, 62, 563-569.	0.8	7
37	Protective action of natural and induced immunization against the occurrence of delta or alpha variants of SARS-CoV-2 infection: a test-negative case-control study. BMC Medicine, 2022, 20, 52.	2.3	7
38	SARS-CoV-2 Omicron-neutralizing memory B cells are elicited by two doses of BNT162b2 mRNA vaccine. Science Immunology, 2022, 7, eabn8590.	5.6	88
39	Waning COVID super-immunity raises questions about Omicron. Nature, 2021, , .	13.7	8
40	The germinal centre B cell response to SARS-CoV-2. Nature Reviews Immunology, 2022, 22, 7-18.	10.6	150
41	Reduced Magnitude and Durability of Humoral Immune Responses to COVID-19 mRNA Vaccines Among Older Adults. Journal of Infectious Diseases, 2022, 225, 1129-1140.	1.9	65
45	Single-cell profiling of T and B cell repertoires following SARS-CoV-2 mRNA vaccine. JCl Insight, 2021, 6,	2.3	54
46	SARS-CoV-2 Spike Expression at the Surface of Infected Primary Human Airway Epithelial Cells. Viruses, 2022, 14, 5.	1.5	16
47	Large-Scale Study of Antibody Titer Decay following BNT162b2 mRNA Vaccine or SARS-CoV-2 Infection. Vaccines, 2022, 10, 64.	2.1	144
48	ChAdOx1 nCoV-19, BNT162b2 and CoronaVac Vaccines Do Not Induce as Strong Neutralising Antibodies with Broad Variant Protection as Infection and Suggest Vaccines that Induce Broader Sterilising Immunity are Essential to Stop the Pandemic. SSRN Electronic Journal, 0, , .	0.4	0
49	Germinal centre-driven maturation of B cell response to mRNA vaccination. Nature, 2022, 604, 141-145.	13.7	198
51	Humoral immune responses to COVID-19 vaccination in people living with HIV receiving suppressive antiretroviral therapy. Npj Vaccines, 2022, 7, 28.	2.9	64
53	Modeling of waning immunity after SARS-CoV-2 vaccination and influencing factors. Nature Communications, 2022, 13, 1614.	5.8	117
54	The unnaturalistic fallacy: COVID-19 vaccine mandates should not discriminate against natural immunity. Journal of Medical Ethics, 2022, 48, 371-377.	1.0	22

#	Article	IF	CITATIONS
55	Pre-existing SARS-CoV-2 immunity influences potency, breadth, and durability of the humoral response to SARS-CoV-2 vaccination. Cell Reports Medicine, 2022, 3, 100603.	3.3	27
56	Imprinted SARS-CoV-2-specific memory lymphocytes define hybrid immunity. Cell, 2022, 185, 1588-1601.e14.	13.5	137
57	Evolution of Anti-RBD IgG Avidity following SARS-CoV-2 Infection. Viruses, 2022, 14, 532.	1.5	17
58	Molecular epidemiological features of SARS-CoV-2 in Japan, 2020–1. Virus Evolution, 2022, 8, veac034.	2.2	9
60	Efficient recall of Omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine. Cell, 2022, 185, 1875-1887.e8.	13.5	148
61	Analysis of mRNA vaccination-elicited RBD-specific memory B cells reveals strong but incomplete immune escape of the SARS-CoV-2 Omicron variant. Immunity, 2022, 55, 1096-1104.e4.	6.6	42
62	Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins. Immunity, 2022, 55, 998-1012.e8.	6.6	86
63	SARS-CoV-2 Delta and delta derivatives impact on neutralization of Covishield recipient sera. Journal of Infection, 2022, 84, e36-e38.	1.7	0
64	Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Naturally Acquired Immunity versus Vaccine-induced Immunity, Reinfections versus Breakthrough Infections: A Retrospective Cohort Study. Clinical Infectious Diseases, 2022, 75, e545-e551.	2.9	130
67	A Highly Conserved Peptide Vaccine Candidate Activates Both Humoral and Cellular Immunity Against SARS-CoV-2 Variant Strains. Frontiers in Immunology, 2021, 12, 789905.	2.2	7
70	Impact of SARSâ€CoVâ€2 infection on vaccineâ€induced immune responses over time. Clinical and Translational Immunology, 2022, 11, e1388.	1.7	20
71	Vaccination and Covid 19 Infections. Medicina Interna (Bucharest, Romania: 1991), 2022, 19, 97-105.	0.1	0
72	ChAdOx1 nCoV-19 vaccine elicits monoclonal antibodies with cross-neutralizing activity against SARS-CoV-2 viral variants. Cell Reports, 2022, 39, 110757.	2.9	10
73	An antibody class with a common CDRH3 motif broadly neutralizes sarbecoviruses. Science Translational Medicine, 2022, 14, eabn6859.	5.8	31
74	Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost. Nature, 2022, 607, 128-134.	13.7	197
75	Comparative analysis of COVID-19 vaccine responses and third booster dose-induced neutralizing antibodies against Delta and Omicron variants. Nature Communications, 2022, 13, 2476.	5.8	43
76	Fitness of B-Cell Responses to SARS-CoV-2 WT and Variants Up to One Year After Mild COVID-19 – A Comprehensive Analysis. Frontiers in Immunology, 2022, 13, 841009.	2.2	0
77	Older Adults Mount Less Durable Humoral Responses to Two Doses of COVID-19 mRNA Vaccine but Strong Initial Responses to a Third Dose. Journal of Infectious Diseases, 2022, 226, 983-994.	1.9	26

#	Article	IF	CITATIONS
78	Immune recall improves antibody durability and breadth to SARS-CoV-2 variants. Science Immunology, 2022, 7, eabp8328.	5.6	40
79	Antibody-mediated neutralization of SARS-CoV-2. Immunity, 2022, 55, 925-944.	6.6	74
81	Demographic and clinical characteristics associated with variations in antibody response to BNT162b2 COVID-19 vaccination among healthcare workers at an academic medical centre: a longitudinal cohort analysis. BMJ Open, 2022, 12, e059994.	0.8	17
82	Longitudinal Dynamics of SARS-CoV-2 IgG Antibody Responses after the Two-Dose Regimen of BNT162b2 Vaccination and the Effect of a Third Dose on Healthcare Workers in Japan. Vaccines, 2022, 10, 830.	2.1	5
83	Potent cross-reactive antibodies following Omicron breakthrough in vaccinees. Cell, 2022, 185, 2116-2131.e18.	13.5	105
84	COVID-19 vaccine booster dose needed to achieve Omicron-specific neutralisation in nursing home residents. EBioMedicine, 2022, 80, 104066.	2.7	30
85	Post-Vaccination Seropositivity Against SARS-CoV-2 in Peruvian Health Workers Vaccinated with BBIBP-CorV (Sinopharm). SSRN Electronic Journal, 0, , .	0.4	0
86	Humoral and cellular immune memory to four COVID-19 vaccines. Cell, 2022, 185, 2434-2451.e17.	13.5	289
87	B Cell Responses upon Human Papillomavirus (HPV) Infection and Vaccination. Vaccines, 2022, 10, 837.	2.1	7
88	SARS-CoV-2 transmission, persistence of immunity, and estimates of Omicron's impact in South African population cohorts. Science Translational Medicine, 2022, 14, .	5.8	36
89	B cell-derived cfDNA after primary BNT162b2 mRNA vaccination anticipates memory B cells and SARS-CoV-2 neutralizing antibodies. Med, 2022, 3, 468-480.e5.	2.2	2
91	Heterogeneous SARS-CoV-2-Neutralizing Activities After Infection and Vaccination. Frontiers in Immunology, 0, 13, .	2.2	4
92	Correlates of protection against <scp>SARS</scp> â€ <scp>CoV</scp> â€2 infection and COVIDâ€19 disease. Immunological Reviews, 2022, 310, 6-26.	2.8	138
93	Adverse effects of COVID-19 vaccines and measures to prevent them. Virology Journal, 2022, 19, .	1.4	29
94	Comparison of infectionâ€induced and vaccineâ€induced immunity against COVIDâ€19 in patients with cirrhosis. Hepatology, 2023, 77, 186-196.	3.6	11
95	Time-dependent contraction of the SARS-CoV-2–specific T-cell responses in convalescent individuals. , 2022, , .		0
96	Neutralising reactivity against SARS-CoV-2 Delta and Omicron variants by vaccination and infection history. Genome Medicine, 2022, 14, .	3.6	15
97	Inactivated whole-virion vaccine BBV152/Covaxin elicits robust cellular immune memory to SARS-CoV-2 and variants of concern. Nature Microbiology, 2022, 7, 974-985.	5.9	30

#	Article	IF	CITATIONS
98	Multiple sclerosis in the era of COVID-19: disease course, DMTs and SARS-CoV2 vaccinations. Current Opinion in Neurology, 2022, 35, 319-327.	1.8	12
99	Peptide–Antibody Fusions Engineered by Phage Display Exhibit an Ultrapotent and Broad Neutralization of SARS-CoV-2 Variants. ACS Chemical Biology, 2022, 17, 1978-1988.	1.6	7
100	Immunological memory to <scp>SARSâ€CoV</scp> â€2 infection and <scp>COVID</scp> â€19 vaccines. Immunological Reviews, 2022, 310, 27-46.	2.8	137
101	Superimmunity by pan-sarbecovirus nanobodies. Cell Reports, 2022, 39, 111004.	2.9	13
102	Plasma Markers of Neurologic Injury and Inflammation in People With Self-Reported Neurologic Postacute Sequelae of SARS-CoV-2 Infection. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	41
103	Functional Profiling of In Vitro Reactivated Memory B Cells Following Natural SARS-CoV-2 Infection and Gam-COVID-Vac Vaccination. Cells, 2022, 11, 1991.	1.8	5
104	Early human B cell signatures of the primary antibody response to mRNA vaccination. Proceedings of the United States of America, 2022, 119, .	3.3	17
105	Immune Responses after a Third Dose of mRNA Vaccine Differ in Virus-Naive versus SARS-CoV-2– Recovered Dialysis Patients. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 1008-1016.	2.2	13
106	Third booster vaccination and stopping the Omicron, a new variant of concern. Vacunas, 2022, 23, S103-S110.	1.1	5
107	Development of an in-house quantitative ELISA for the evaluation of different Covid-19 vaccines in humans. Scientific Reports, 2022, 12, .	1.6	7
109	Antibody evolution to SARS-CoV-2 after single-dose Ad26.COV2.S vaccine in humans. Journal of Experimental Medicine, 2022, 219, .	4.2	10
110	SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nature Microbiology, 2022, 7, 1161-1179.	5.9	352
111	Plasma and memory antibody responses to Gamma SARS-CoV-2 provide limited cross-protection to other variants. Journal of Experimental Medicine, 2022, 219, .	4.2	6
112	<scp>COVID</scp> â€19 and plasma cells: Is there longâ€lived protection?*. Immunological Reviews, 2022, 309, 40-63.	2.8	26
113	The durability of natural infection and vaccine-induced immunity against future infection by SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	47
114	Inflammatory memory and tissue adaptation in sickness and in health. Nature, 2022, 607, 249-255.	13.7	55
116	Cellular and Humoral Responses Follow-up for 8 Months after Vaccination with mRNA-Based Anti-SARS-CoV-2 Vaccines. Biomedicines, 2022, 10, 1676.	1.4	5
117	Immune response and reactogenicity after immunization with two-doses of an experimental COVID-19 vaccine (CVnCOV) followed by a third-fourth shot with a standard mRNA vaccine (BNT162b2): RescueVacs multicenter cohort study. EClinicalMedicine. 2022, 51, 101542.	3.2	5

#	Article	IF	CITATIONS
118	Human antibodies to SARS-CoV-2 with a recurring YYDRxG motif retain binding and neutralization to variants of concern including Omicron. Communications Biology, 2022, 5, .	2.0	9
119	Factors Influencing Longevity of Humoral Response to SARS-CoV-2 Vaccination in Patients with End Stage Kidney Disease Receiving Renal Replacement Therapy. Journal of Clinical Medicine, 2022, 11, 4984.	1.0	6
121	Genomic Epidemiology and Serology Associated with a SARS-CoV-2 R.1 Variant Outbreak in New Jersey. MBio, 2022, 13, .	1.8	6
126	Two complementary features of humoral immune memory confer protection against the same or variant antigens. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
127	Humoral immunity to SARS-CoV-2 elicited by combination COVID-19 vaccination regimens. Journal of Experimental Medicine, 2022, 219, .	4.2	12
128	Structures of the SARS-CoV-2 spike glycoprotein and applications for novel drug development. Frontiers in Pharmacology, 0, 13, .	1.6	9
129	Antibody affinity and cross-variant neutralization of SARS-CoV-2 Omicron BA.1, BA.2 and BA.3 following third mRNA vaccination. Nature Communications, 2022, 13, .	5.8	32
132	Epidemiological assessment of SARS-CoV-2 reinfection. International Journal of Infectious Diseases, 2022, 123, 9-16.	1.5	13
133	What are the prospects for durable immune control?. Infectious Diseases Now, 2022, , .	0.7	0
134	The Impact of Sphinogosine-1-Phosphate Receptor Modulators on COVID-19 and SARS-CoV-2 Vaccination. SSRN Electronic Journal, 0, , .	0.4	1
135	A Long Interval Between Priming and Boosting SARS-CoV-2 mRNA Vaccine Doses Enhances B Cell Responses With Limited Impact on T Cell Immunity. SSRN Electronic Journal, 0, , .	0.4	0
136	The role of B cells in COVID-19 infection and vaccination. Frontiers in Immunology, 0, 13, .	2.2	25
137	New insights into human immune memory from <scp>SARSâ€CoV</scp> â€2 infection and vaccination. Allergy: European Journal of Allergy and Clinical Immunology, 0, , .	2.7	5
138	Memory B cell responses to Omicron subvariants after SARS-CoV-2 mRNA breakthrough infection in humans. Journal of Experimental Medicine, 2022, 219, .	4.2	37
139	Single-cell analysis of the adaptive immune response to SARS-CoV-2 infection and vaccination. Frontiers in Immunology, 0, 13, .	2.2	4
140	Serial infection with SARS-CoV-2 Omicron BA.1 and BA.2 following three-dose COVID-19 vaccination. Frontiers in Immunology, 0, 13, .	2.2	6
141	Differential patterns of cross-reactive antibody response against SARS-CoV-2 spike protein detected for chronically ill and healthy COVID-19 naà ve individuals. Scientific Reports, 2022, 12, .	1.6	8
142	Role of the humoral immune response during COVID-19: guilty or not guilty?. Mucosal Immunology, 2022, 15, 1170-1180.	2.7	19

#	Article	IF	CITATIONS
143	Bioinformatic Analysis of SARS-CoV-2 Genomes to Develop a Universal Coronavirus Vaccine. Journal of Biosciences and Medicines, 2022, 10, 84-97.	0.1	0
144	SARS-CoV-2 infections elicit higher levels of original antigenic sin antibodies compared with SARS-CoV-2 mRNA vaccinations. Cell Reports, 2022, 41, 111496.	2.9	20
145	SARS-CoV-2—The Role of Natural Immunity: A Narrative Review. Journal of Clinical Medicine, 2022, 11, 6272.	1.0	12
147	Pan-neutralizing, germline-encoded antibodies against SARS-CoV-2: Addressing the long-term problem of escape variants. Frontiers in Immunology, 0, 13, .	2.2	2
148	Differential Kinetics of Effector and Memory Responses Induced by Three Doses of SARS-CoV-2 mRNA Vaccine in a Cohort of Healthcare Workers. Vaccines, 2022, 10, 1809.	2.1	1
149	Postexposureâ€vaccineâ€prophylaxis against COVIDâ€19. Journal of Medical Virology, 2023, 95, .	2.5	2
150	Susceptibility to SARS-CoV-2 omicron following ChAdOx1 nCoV-19 and BNT162b2 versus CoronaVac vaccination. IScience, 2022, 25, 105379.	1.9	4
151	Cross-reactive SARS-CoV-2 epitope targeted across donors informs immunogen design. Cell Reports Medicine, 2022, 3, 100834.	3.3	2
152	Human type I IFN deficiency does not impair B cell response to SARS-CoV-2 mRNA vaccination. Journal of Experimental Medicine, 2023, 220, .	4.2	17
153	Longitudinal antibody titer, avidity, and neutralizing responses after SARS-CoV-2 infection. Heliyon, 2022, 8, e11676.	1.4	4
154	The impact of sphingosine-1-phosphate receptor modulators on COVID-19 and SARS-CoV-2 vaccination. Multiple Sclerosis and Related Disorders, 2023, 69, 104425.	0.9	7
155	Post-vaccination seropositivity against SARS-CoV-2 in peruvian health workers vaccinated with BBIBP-CorV (Sinopharm). Travel Medicine and Infectious Disease, 2023, 52, 102514.	1.5	3
156	Third booster vaccination and stopping the Omicron, a new variant of concern. Vacunas (English) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
157	High antibody levels and reduced cellular response in children up to one year after SARS-CoV-2 infection. Nature Communications, 2022, 13, .	5.8	12
158	Early CD4+ T cell responses induced by the BNT162b2 SARS-CoV-2 mRNA vaccine predict immunological memory. Scientific Reports, 2022, 12, .	1.6	1
160	Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Science Immunology, 2023, 8, .	5.6	89
161	Continuous germinal center invasion contributes to the diversity of the immune response. Cell, 2023, 186, 147-161.e15.	13.5	21
162	Antibody feedback regulates immune memory after SARS-CoV-2 mRNA vaccination. Nature, 2023, 613, 735-742.	13.7	38

#	Article	IF	CITATIONS
163	An Evaluation of Serological Tests to Determine Postvaccinal Immunity to SARS-CoV-2 by mRNA Vaccines. Journal of Clinical Medicine, 2022, 11, 7534.	1.0	0
164	SARS-CoV-2 vaccination-infection pattern imprints and diversifies T cell differentiation and neutralizing response against Omicron subvariants. Cell Discovery, 2022, 8, .	3.1	3
165	A single-shot ChAd3-MARV vaccine confers rapid and durable protection against Marburg virus in nonhuman primates. Science Translational Medicine, 2022, 14, .	5.8	10
166	Immunoglobulin germline gene polymorphisms influence the function of SARS-CoV-2 neutralizing antibodies. Immunity, 2023, 56, 193-206.e7.	6.6	12
167	Vaccination induces HIV broadly neutralizing antibody precursors in humans. Science, 2022, 378, .	6.0	71
168	Immune responses related to the immunogenicity and reactogenicity of COVID-19 mRNA vaccines. International Immunology, 2023, 35, 213-220.	1.8	6
169	Functionally impaired antibody response to BNT162b2 booster vaccination in CVID IgG responders. Journal of Allergy and Clinical Immunology, 2023, 151, 922-925.	1.5	4
170	Vaccine-Acquired SARS-CoV-2 Immunity versus Infection-Acquired Immunity: A Comparison of Three COVID-19 Vaccines. Vaccines, 2022, 10, 2152.	2.1	6
172	Humoral immunity for durable control of SARS-CoV-2 and its variants. Inflammation and Regeneration, 2023, 43, .	1.5	6
173	An extended SARS-CoV-2 mRNA vaccine prime-boost interval enhances B cell immunity with limited impact on T cells. IScience, 2023, 26, 105904.	1.9	9
174	Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity. Journal of Clinical Investigation, 2023, 133, .	3.9	32
175	An Immunological Review of SARS-CoV-2 Infection and Vaccine Serology: Innate and Adaptive Responses to mRNA, Adenovirus, Inactivated and Protein Subunit Vaccines. Vaccines, 2023, 11, 51.	2.1	9
176	Memory B Cells and Memory T Cells Induced by SARS-CoV-2 Booster Vaccination or Infection Show Different Dynamics and Responsiveness to the Omicron Variant. Journal of Immunology, 2022, 209, 2104-2113.	0.4	8
177	Primary ChAdOx1 vaccination does not reactivate pre-existing, cross-reactive immunity. Frontiers in Immunology, 0, 14, .	2.2	3
179	Epistasis lowers the genetic barrier to SARS-CoV-2 neutralizing antibody escape. Nature Communications, 2023, 14, .	5.8	21
180	Prediction of humoral and cellular immune response to COVID-19 mRNA vaccination by TTV load in kidney transplant recipients and hemodialysis patients. Journal of Clinical Virology, 2023, 162, 105428.	1.6	9
181	Intramuscular mRNA BNT162b2 vaccine against SARS-CoV-2 induces neutralizing salivary IgA. Frontiers in Immunology, 0, 13, .	2.2	6
182	An inactivated NDV-HXP-S COVID-19 vaccine elicits a higher proportion of neutralizing antibodies in humans than mRNA vaccination. Science Translational Medicine, 2023, 15, .	5.8	2

#	Article	IF	CITATIONS
183	The comparison ofÂSARS-CoV-2 antibody levels in medical personnel induced by different types ofÂvaccines compared to theÂnatural infection. Central-European Journal of Immunology, 0, , .	0.4	1
184	Antigen presentation dynamics shape the antibody response to variants like SARS-CoV-2 Omicron after multiple vaccinations with the original strain. Cell Reports, 2023, 42, 112256.	2.9	13
185	Infection with wild-type SARS-CoV-2 elicits broadly neutralizing and protective antibodies against omicron subvariants. Nature Immunology, 2023, 24, 690-699.	7.0	16
186	A longitudinal analysis of humoral, T cellular response and influencing factors in a cohort of healthcare workers: Implications for personalized SARS-CoV-2 vaccination strategies. Frontiers in Immunology, 0, 14, .	2.2	2
187	Salivary Antibody Responses to Two COVID-19 Vaccines following Different Vaccination Regimens. Vaccines, 2023, 11, 744.	2.1	1
189	Omicron BA.1 breakthrough infections in inactivated COVID-19 vaccine recipients induced distinct pattern of antibody and T cell responses to different Omicron sublineages. Emerging Microbes and Infections, 2023, 12, .	3.0	4
202	An analysis of S-RBD quantitative antibody levels in post-vaccination of health workers at Jemursari Islamic hospital and Menur Mental Hospital Surabaya. AIP Conference Proceedings, 2023, , .	0.3	0
207	Pharmacological and Non-pharmacological Intervention in Epidemic Prevention and Control: A Medical Perspective. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 573-582.	0.5	0
233	mRNA vaccine boosters and impaired immune system response in immune compromised individuals: a narrative review. Clinical and Experimental Medicine, 2024, 24, .	1.9	1