Muscle repair after physiological damage relies on nucle reconstruction

Science 374, 355-359 DOI: 10.1126/science.abe5620

Citation Report

#	Article	IF	CITATIONS
1	Resealing and rebuilding injured muscle. Science, 2021, 374, 262-263.	6.0	1
2	Stem cell aging in the skeletal muscle: The importance of communication. Ageing Research Reviews, 2022, 73, 101528.	5.0	21
3	Muscle adaptation to increased use. , 2022, , 77-93.		0
4	Innovation in culture systems to study muscle complexity. Experimental Cell Research, 2022, 411, 112966.	1.2	10
6	Decline of regenerative potential of old muscle stem cells: contribution to muscle aging. FEBS Journal, 2022, , .	2.2	3
7	Regulation of organelle size and organization during development. Seminars in Cell and Developmental Biology, 2023, 133, 53-64.	2.3	11
8	Nuclear envelope myopathy. Neurology and Clinical Neuroscience, 0, , .	0.2	0
9	Muscle is a stage, and cells and factors are merely players. Trends in Cell Biology, 2022, 32, 835-840.	3.6	7
10	An Evidence-Based Narrative Review of Mechanisms of Resistance Exercise–Induced Human Skeletal Muscle Hypertrophy. Medicine and Science in Sports and Exercise, 2022, 54, 1546-1559.	0.2	22
11	Cross Talk rebuttal: Kirby and Dupontâ€Versteegden. Journal of Physiology, 2022, 600, 2085-2086.	1.3	5
12	Dimethylglycine sodium salt activates Nrf2/SIRT1/PGC1α leading to the recovery of muscle stem cell dysfunction in newborns with intrauterine growth restriction. Free Radical Biology and Medicine, 2022, 184, 89-98.	1.3	5
13	Muscle wasting in cancer: opportunities and challenges for exercise in clinical cancer trials. JCSM Rapid Communications, 2022, 5, 52-67.	0.6	10
14	Mechanics and functional consequences of nuclear deformations. Nature Reviews Molecular Cell Biology, 2022, 23, 583-602.	16.1	123
15	Depletion of skeletal muscle satellite cells attenuates pathology in muscular dystrophy. Nature Communications, 2022, 13, .	5.8	22
16	Involvement of phosphatidylserine receptors in the skeletal muscle regeneration: therapeutic implications. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1961-1973.	2.9	13
17	Reconstitution of muscle cell microtubule organization in vitro. Cytoskeleton, 2021, 78, 492-502.	1.0	2
18	Ca ²⁺ as a coordinator of skeletal muscle differentiation, fusion and contraction. FEBS Journal, 2022, 289, 6531-6542.	2.2	9
19	Skeletal muscle and metabolic flexibility in response to changing energy demands in wild birds. Frontiers in Physiology, 0, 13, .	1.3	6

#	Article	IF	CITATIONS
20	Molecular Regulation of Skeletal Muscle Stem Cells. , 2022, , .		0
21	Regulatory T cells in skeletal muscle repair and regeneration: recent insights. Cell Death and Disease, 2022, 13, .	2.7	11
22	Impaired regenerative capacity contributes to skeletal muscle dysfunction in chronic obstructive pulmonary disease. American Journal of Physiology - Cell Physiology, 2022, 323, C974-C989.	2.1	1
23	Biceps Femoris Fascicle Lengths Increase after Hamstring Injury Rehabilitation to a Greater Extent in the Injured Leg. Translational Sports Medicine, 2022, 2022, 1-8.	0.5	3
24	Comprehensive Review of the Vascular Niche in Regulating Organ Regeneration and Fibrosis. Stem Cells Translational Medicine, 2022, 11, 1135-1142.	1.6	5
25	Activation of SIRT1 promotes membrane resealing via cortactin. Scientific Reports, 2022, 12, .	1.6	3
28	Role of macrophages during skeletal muscle regeneration and hypertrophy—Implications for immunomodulatory strategies. Physiological Reports, 2022, 10, .	0.7	10
30	Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 3106-3121.	2.9	17
31	Nuclear movement in multinucleated cells. Development (Cambridge), 2022, 149, .	1.2	5
32	Elevated Ca2+ at the triad junction underlies dysregulation of Ca2+ signaling in dysferlin-null skeletal muscle. Frontiers in Physiology, 0, 13, .	1.3	1
33	RACK1 is evolutionary conserved in satellite stem cell activation and adult skeletal muscle regeneration. Cell Death Discovery, 2022, 8, .	2.0	1
34	Going nuclear: Molecular adaptations to exercise mediated by myonuclei. Sports Medicine and Health Science, 2023, 5, 2-9.	0.7	3
35	Dystrophin myonuclear domain restoration governs treatment efficacy in dystrophic muscle. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	12
36	The molecular athlete: exercise physiology from mechanisms to medals. Physiological Reviews, 2023, 103, 1693-1787.	13.1	19
37	The myonuclear domain in adult skeletal muscle fibres: past, present and future. Journal of Physiology, 2023, 601, 723-741.	1.3	12
38	Signaling pathways of adipose stem cell-derived exosomes promoting muscle regeneration. Chinese Medical Journal, 2022, 135, 2525-2534.	0.9	5
39	Temporal static and dynamic imaging of skeletal muscle in vivo. Experimental Cell Research, 2023, 424, 113484.	1.2	2
40	Facioscapulohumeral Disease as a myodevelopmental disease: Applying Ockham's razor to its various features. Journal of Neuromuscular Diseases, 2023, , 1-15.	1.1	Ο

CITATION REPORT

		CITATION R	CITATION REPORT		
#	Article		IF	CITATIONS	
41	Nuclear mechanosignaling in striated muscle diseases. Frontiers in Physiology, 0, 14, .		1.3	0	
42	The Role of Mitochondria in Mediation of Skeletal Muscle Repair. , 2023, 2, 119-163.			4	
43	Delayed skeletal muscle repair following inflammatory damage in simulated agent-bas muscle regeneration. PLoS Computational Biology, 2023, 19, e1011042.	ed models of	1.5	3	
44	Diabetes mellitus in peripheral artery disease: Beyond a risk factor. Frontiers in Cardio Medicine, 0, 10, .	vascular	1.1	2	
63	Muscle stem cell niche dynamics during muscle homeostasis and regeneration. Currer Developmental Biology, 2024, , .	it Topics in	1.0	0	