Environmental impacts, pollution sources and pathway

Energy and Environmental Science 14, 6099-6121 DOI: 10.1039/d1ee00691f

Citation Report

#	Article	IF	CITATIONS
1	Challenges and recent developments in supply and value chains of electric vehicle batteries: A sustainability perspective. Resources, Conservation and Recycling, 2022, 180, 106144.	10.8	98
2	Effect of Graphite on the Recovery of Valuable Metals from Spent Li-Ion Batteries in Baths of Hot Metal and Steel. Recycling, 2022, 7, 5.	5.0	3
3	Enabling the sustainable recycling of LiFePO ₄ from spent lithium-ion batteries. Green Chemistry, 2022, 24, 2506-2515.	9.0	68
4	Electric potential-determined redox intermediates for effective recycling of spent lithium-ion batteries. Green Chemistry, 2022, 24, 3723-3735.	9.0	10
5	Recycle cathode materials from spent lithium-ion batteries by an innovative method. Ionics, 2022, 28, 2135-2141.	2.4	3
6	Synergistic iron ion and alkylammonium cation intercalated vanadium oxide cathode for highly efficient aqueous zinc ion battery. Journal of Power Sources, 2022, 528, 231226.	7.8	17
7	Porous carbon architectures with different dimensionalities for lithium metal storage. Science and Technology of Advanced Materials, 2022, 23, 169-188.	6.1	21
8	Transformation and migration mechanism of fluorine-containing pollutants in the pyrolysis process of spent lithium-ion battery. Journal of Hazardous Materials, 2022, 435, 128974.	12.4	24
9	Environmental impact assessment of second life and recycling for LiFePO4 power batteries in China. Journal of Environmental Management, 2022, 314, 115083.	7.8	31
10	Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission. Energy, 2022, 254, 123987.	8.8	74
11	Sustainable Electric Vehicle Batteries for a Sustainable World: Perspectives on Battery Cathodes, Environment, Supply Chain, Manufacturing, Life Cycle, and Policy. Advanced Energy Materials, 2022, 12,	19.5	72
12	Eco-Friendly Keratin-Based Additives in Polymer Matrix to Enhance the Output of Triboelectric Nanogenerators. SSRN Electronic Journal, 0, , .	0.4	0
13	Progress, Key Issues, and Future Prospects for Liâ€lon Battery Recycling. Global Challenges, 2022, 6, .	3.6	56
14	Supercapacitor performance based on nitrogen and sulfur coâ€doped hierarchically porous carbons: Superior rate capability and cycle stability. International Journal of Energy Research, 2022, 46, 15602-15616.	4.5	31
15	Prospects for managing endâ€ofâ€life lithiumâ€ion batteries: Present and future. , 2022, 1, 417-433.		66
16	LAYERS: A Decision-Support Tool to Illustrate and Assess the Supply and Value Chain for the Energy Transition. Sustainability, 2022, 14, 7120.	3.2	4
17	Transient, Biodegradable Energy Systems as a Promising Power Solution for Ecofriendly and Implantable Electronics. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	8
18	Research progress on recovering the components of spent Li-ion batteries. New Carbon Materials, 2022, 37, 435-460.	6.1	25

ARTICLE IF CITATIONS # What is the best scenario to utilize landfill gas? Quantitative and qualitative approaches for 9.0 2 19 technical, economic, and environmental feasibility. Green Chemistry, 0, , . Organic Electrolytes Recycling From Spent Lithiumâ€Ion Batteries. Global Challenges, 2022, 6, . 3.6 Template-free preparation of porous Co microfibers from spent lithium-ion batteries as a promising 21 7.1 8 microwave absorber. Rare Metals, 2022, 41, 3475-3485. Creating a circular EV battery value chain: End-of-life strategies and future perspective. Resources, Conservation and Recycling, 2022, 185, 106484. Recycling of waste power lithium-ion batteries to prepare nickel/cobalt/manganese-containing catálysts with inter-valence cobalt/manganese synergistic effect for peroxymonosulfate activation. Journal of Colloid and Interface Science, 2022, 626, 564-580. 23 9.4 22 Advances and challenges in anode graphite recycling from spent lithium-ion batteries. Journal of Hazardous Materials, 2022, 439, 129678. 12.4 56 Advances in Intelligent Regeneration of Cathode Materials for Sustainable Lithiumâ€Ion Batteries. 25 19.5 34 Advanced Energy Materials, 2022, 12, . Power management strategy for unidirectional current pulsed triboelectric nanogenerator. 26 2.6 Nanotechnology, 2022, 33, 465401. 27 Proactive approach to minimize lithium pollution. Journal of Environmental Quality, 2022, 51, 872-876. 2.0 4 A comprehensive review and classification of unit operations with assessment of outputs quality in 39 lithium-ion battery recycling. Journal of Power Sources, 2022, 546, 231979. Preprocessing of spent lithium-ion batteries for recycling: Need, methods, and trends. Renewable and 29 16.452 Sustainable Energy Reviews, 2022, 168, 112809. Optimization and dynamic responses of an integrated fuel cell and battery system for an 800ÅkW ferry: 5.1 A case study. Energy Reports, 2022, 8, 9757-9776. Low-carbon technologies and just energy transition: Prospects for electric vehicles. Energy $\mathbf{31}$ 1.6 12 Conversion and Management: X, 2022, 16, 100271. Submerged comminution of lithium-ion batteries in water in inert atmosphere for safe recycling. 3.3 Energy Ădvances, 2022, 1, 935-940. Efficient separation of electrode active materials and current collector metal foils from spent 33 9.0 12 lithium-ion batteries by a green deep eutectic solvent. Green Chemistry, 2022, 24, 8131-8141. Current Challenges in Efficient Lithiumâ€Ion Batteries' Recycling: A Perspective. Global Challenges, 2022, 6, . Lithium as a risk factor for human health and modern environmental pollution sources (literature) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 36

37	Metal Recovery of LiCoO ₂ /LiNiO ₂ Cathode Materials by Hydrothermal Leaching and Precipitation Separation. ACS Sustainable Chemistry and Engineering, 2022, 10, 12852-12863.	6.7	3	
----	---	-----	---	--

#	Article	IF	CITATIONS
38	Selective bacterial separation of critical metals: towards a sustainable method for recycling lithium ion batteries. Green Chemistry, 2022, 24, 8512-8522.	9.0	2
39	Mathematical Modelling and Simulation of Second Life Battery Pack with Heterogeneous State of Health. Mathematics, 2022, 10, 3843.	2.2	4
40	Recovery of Valuable Metals from Spent LiNi0.8Co0.1Mn0.1O2 Cathode Materials Using Compound Leaching Agents of Sulfuric Acid and Oxalic Acid. Sustainability, 2022, 14, 14169.	3.2	7
41	Bionic flutter wing piezoelectric-electromagnetic composite energy harvesting system. Energy Conversion and Management, 2022, 271, 116319.	9.2	14
42	Kinetics of Ion-Exchange Extraction of Lithium from Aqueous Solutions by Protonated Potassium Polytitanates. Processes, 2022, 10, 2258.	2.8	1
43	Recycled value-added circular energy materials for new battery application: Recycling strategies, challenges, and sustainability-a comprehensive review. Journal of Environmental Chemical Engineering, 2022, 10, 108728.	6.7	18
44	Comprehensive recycling of lithium-ion batteries: Fundamentals, pretreatment, and perspectives. Energy Storage Materials, 2023, 54, 172-220.	18.0	50
45	Additional use cases for RFID tags by implementing 3D printed push-button functionalities. , 2022, , .		0
46	Electrochemical methods contribute to the recycling and regeneration path of lithium-ion batteries. Energy Storage Materials, 2023, 55, 606-630.	18.0	20
47	Direct reuse of aluminium and copper current collectors from spent lithium-ion batteries. Green Chemistry, 2023, 25, 3503-3514.	9.0	6
48	Metal-based folded-thermopile for 2.5D micro-thermoelectric generators. Sensors and Actuators A: Physical, 2023, 349, 114090.	4.1	2
49	Influences of lithium on soil properties and enzyme activities. Chemosphere, 2023, 313, 137458.	8.2	3
50	Pathway towards the commercialization of sustainable microbial fuel cell-based wastewater treatment technologies. Renewable and Sustainable Energy Reviews, 2023, 173, 113095.	16.4	12
51	A social life cycle assessment of vanadium redox flow and lithiumâ€ion batteries for energy storage. Journal of Industrial Ecology, 2023, 27, 223-237.	5.5	8
52	Understanding the Molecular-Level Structure and Dynamics of Sodium Ions in Water in Ionic Liquid Electrolytes by Molecular Dynamics Simulations. Journal of Chemical & Engineering Data, 2023, 68, 162-172.	1.9	2
53	Eco-Friendly Keratin-Based Additives in the Polymer Matrix to Enhance the Output of Triboelectric Nanogenerators. ACS Applied Bio Materials, 2022, 5, 5706-5715.	4.6	1
54	Multiscale in-situ quantification of the role of surface roughness and contact area using a novel Mica-PVS triboelectric nanogenerator. Nano Energy, 2023, 107, 108122.	16.0	11
55	Coal-fired power plant CCUS project comprehensive benefit evaluation and forecasting model study. Journal of Cleaner Production, 2023, 385, 135657.	9.3	12

#	Article	IF	CITATIONS
56	A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges. International Journal of Environmental Research and Public Health, 2022, 19, 16169.	2.6	4
57	New outlook on hazardous pollutants in the wastewater environment: Occurrence, risk assessment and elimination by electrodeionization technologies. Environmental Research, 2023, 219, 115112.	7.5	5
58	Roadmap for a sustainable circular economy in lithium-ion and future battery technologies. JPhys Energy, 2023, 5, 021501.	5.3	16
59	Screening of Raw and Modified Biochars from Food Processing Wastes for the Removal of Phosphates, Nitrates, and Ammonia from Water. Sustainability, 2022, 14, 16483.	3.2	2
60	What is necessary to fill the technological gap to design sustainable dye-sensitized solar cells?. Sustainable Energy and Fuels, 2023, 7, 916-927.	4.9	11
61	Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: a review. Environmental Chemistry Letters, 2023, 21, 765-801.	16.2	54
62	Solvent-Free Processed Cathode Slurry with Carbon Nanotube Conductors for Li-Ion Batteries. Nanomaterials, 2023, 13, 324.	4.1	1
63	Recovery and regeneration of anode graphite from spent lithium-ion batteries through deep eutectic solvent treatment: Structural characteristics, electrochemical performance and regeneration mechanism. Chemical Engineering Journal, 2023, 457, 141196.	12.7	18
64	Optical and quantitative detection of cobalt ion using graphitic carbon nitride-based chemosensor for hydrometallurgy of waste lithium-ion batteries. Chemosphere, 2023, 315, 137789.	8.2	3
65	Spent lithium ion battery (LIB) recycle from electric vehicles: A mini-review. Science of the Total Environment, 2023, 866, 161380.	8.0	26
66	Ambitious EV policy expedites the e-waste and socio-environmental impacts in India. Resources, Conservation and Recycling, 2023, 190, 106829.	10.8	8
67	Revealing the Phase Evolution in Na ₄ Fe _{<i>x</i>} P ₄ O _{12+<i>x</i>} (2 a‰¤i>x a‰¤) Cathode Materials. ACS Energy Letters, 2023, 8, 753-761.	17.4	20
68	Evaluation of photocatalytic properties of zinc and cobalt mixed oxide recycled from spent Li-ion and Zn–MnO2 batteries in photo-Fenton-like process. Materials Research Bulletin, 2023, 162, 112179.	5.2	1
71	Opportunities for disruptive digital technologies to ensure circularity in supply Chain: A critical review of drivers, barriers and challenges. Computers and Industrial Engineering, 2023, 178, 109140.	6.3	15
72	Impact of automated battery sorting for mineral recovery from lithium-ion battery recycling in the United States. Resources, Conservation and Recycling, 2023, 192, 106936.	10.8	6
73	Micromobility: Progress, benefits, challenges, policy and regulations, energy sources and storage, and its role in achieving sustainable development goals. International Journal of Thermofluids, 2023, 17, 100292.	7.8	14
74	Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nature Communications, 2023, 14, .	12.8	73
75	Challenges in Recycling Spent Lithiumâ€lon Batteries: Spotlight on Polyvinylidene Fluoride Removal. Global Challenges, 2023, 7, .	3.6	10

#	Article	IF	Citations
76	High performance wide frequency band triboelectric nanogenerator based on multilayer wave superstructure for harvesting vibration energy. Nano Research, 2023, 16, 6933-6939.	10.4	6
77	An Analysis of Circular Economy Literature at the Macro Level, with a Particular Focus on Energy Markets. Energies, 2023, 16, 1779.	3.1	8
78	Piezoelectric Vibration Energy Harvester Based On Bionic Structure. , 2022, , .		1
79	MOPTIC-SM: Sleep mode-enabled multi-optimized intermittent computing for transiently powered systems. Journal of Systems Architecture, 2023, 137, 102850.	4.3	0
80	A Study on Capacity and State of Charge Estimation of VRFB Systems Using Cumulated Charge and Electrolyte Volume under Rebalancing Conditions. Energies, 2023, 16, 2478.	3.1	1
81	Migration and Transformation Mechanism of Toxic Electrolytes During Mechanical Treatment of Spent Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 4707-4715.	6.7	2
82	Sustainability for all? The challenges of predicting and managing the potential risks of end-of-life electric vehicles and their batteries in the Global South. Environmental Earth Sciences, 2023, 82, .	2.7	3
83	Chronic exposure to complex metal oxide nanomaterials induces production of reactive oxygen species in bacteria. Environmental Science: Nano, 0, , .	4.3	2
84	Battery Management System (BMS) for Electric Vehicle Applications. , 2022, , .		0
85	Oneâ€Pot, Threeâ€Phase Recycling of Metals from Liâ€Ion Batteries in Rotating, Concentricâ€Liquid Reactors. Advanced Materials, 2023, 35, .	21.0	3
86	Dual-Emission Metal–Organic Framework for Highly Selective Ratiometric Sensing of Lithium(I) Ions in Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2023, 11, 5262-5269.	6.7	6
88	Life Cycle Analysis of Lithium-ion Batteries: An Assessment of Sustainability Impact. , 2023, , .		0
89	Application of machine learning to guide efficient metal leaching from spent lithium-ion batteries and comprehensively reveal the process parameter influences. Journal of Cleaner Production, 2023, 410, 137188.	9.3	3
90	Can circular economy and cathode chemistry evolution stabilize the supply chain of Li-ion batteries?. The Extractive Industries and Society, 2023, 14, 101253.	1.2	0
91	Material Flow Analysis of Lithium-Ion Battery Recycling in Europe: Environmental and Economic Implications. Batteries, 2023, 9, 231.	4.5	6
92	A Critical Review on the Recycling Strategy of Lithium Iron Phosphate from Electric Vehicles. Small Methods, 2023, 7, .	8.6	5
93	A Recyclable Standalone Microporous Layer with Interpenetrating Network for Sustainable Fuel Cells. Advanced Materials, 2023, 35, .	21.0	1
94	Toward Sustainable All Solidâ€6tate Li–Metal Batteries: Perspectives on Battery Technology and Recycling Processes. Advanced Materials, 2023, 35, .	21.0	14

#	ARTICLE	IF	CITATIONS
95	Direct Conversion of Waste Battery Cathodes to Highâ€Volumetric apacity Anodes with Assembled Secondaryâ€Particle Morphology. Advanced Energy Materials, 2023, 13, .	19.5	9
96	Engineering Multi-field-coupled Synergistic Ion Transport System Based on the Heterogeneous Nanofluidic Membrane for High-Efficient Lithium Extraction. Nano-Micro Letters, 2023, 15, .	27.0	1
97	Biofabrication of carbon quantum dots and their food packaging applications: a review. Food Science and Biotechnology, 2023, 32, 1159-1171.	2.6	2
98	Sustainable Development of Lithium-Based New Energy in China from an Industry Chain Perspective: Risk Analysis and Policy Implications. Sustainability, 2023, 15, 7962.	3.2	1
100	Advanced NASICON-Type Na ₄ Fe ₃ (PO ₄) ₂ (P ₂ O ₇) Cathode for High-Performance Na ⁺ /Li ⁺ Batteries. Inorganic Chemistry, 2023, 62, 9099-9110.	4.0	3
101	Use of IDeS Method to Design an Innovative HYICE Sportscar. Inventions, 2023, 8, 75.	2.5	Ο
102	A Systematic Review on Lithium-Ion Battery Disassembly Processes for Efficient Recycling. Batteries, 2023, 9, 297.	4.5	6
103	In-situ pyrolysis based on alkaline medium removes fluorine-containing contaminants from spent lithium-ion batteries. Journal of Hazardous Materials, 2023, 457, 131782.	12.4	5
104	Hydroxylamine facilitated catalytic degradation of methylene blue in a Fenton-like system for heat-treatment modified drinking water treatment residues. Environmental Science and Pollution Research, 2023, 30, 79282-79296.	5.3	0
105	An integrated CIS, MIF, and TOPSIS approach for appraising electric vehicle charging station suitability zones in Mumbai, India. Sustainable Cities and Society, 2023, 97, 104717.	10.4	12
106	An analysis of li-ion induced potential incidents in battery electrical energy storage system by use of computational fluid dynamics modeling and simulations: The Beijing April 2021 case study. Engineering Failure Analysis, 2023, 151, 107384.	4.0	5
107	Rapid, Direct Regeneration of Spent LiCoO ₂ Cathodes for Li-Ion Batteries. ACS Energy Letters, 2023, 8, 3005-3012.	17.4	15
108	Effect of peak current on battery performance. , 2023, , .		0
109	Electrification of New Zealand transport: Environmental impacts and role of renewable energy. Science of the Total Environment, 2023, 894, 164936.	8.0	0
110	Recycling Hazardous and Valuable Electrolyte in Spent Lithium-Ion Batteries: Urgency, Progress, Challenge, and Viable Approach. Chemical Reviews, 2023, 123, 8718-8735.	47.7	12
111	Pyrometallurgical recycling of different lithium-ion battery cell systems: Economic and technical analysis. Journal of Cleaner Production, 2023, 416, 137834.	9.3	10
112	Advancing recycling of spent lithium-ion batteries: From green chemistry to circular economy. Energy Storage Materials, 2023, 61, 102870.	18.0	5
113	Regeneration of high-performance materials for electrochemical energy storage from assorted solid waste: A review. Journal of Cleaner Production, 2023, 416, 137628.	9.3	2

#	Article	IF	Citations
"	Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research. Molecules, 2023, 28, 5080.	3.8	1
115	Triboelectric nanogenerator integrated in a turbine using a radial rotating system and a sandwich structure. Nano Energy, 2023, 112, 108484.	16.0	0
116	Extraction of valuable metals from spent cathode materials by reductive roasting in methane atmosphere. Separation and Purification Technology, 2023, 318, 123995.	7.9	10
117	Efficient Photo-Oxidation Leaching of Ni and Co in a Spent Lithium-Ion Battery Cathode by Homogeneous UV/H ₂ O ₂ . ACS Sustainable Chemistry and Engineering, 2023, 11, 9330-9336.	6.7	2
118	Uncertainty parameters of battery energy storage integrated grid and their modeling approaches: A review and future research directions. Journal of Energy Storage, 2023, 68, 107698.	8.1	19
119	Surface Textured Double Layer Triboelectric Nanogenerator for Autonomous and Ultraâ€Sensitive Biomedical Sensing. Advanced Materials Technologies, 2023, 8, .	5.8	2
120	Biofluidâ€Activated Biofuel Cells, Batteries, and Supercapacitors: A Comprehensive Review. Advanced Materials, 2023, 35, .	21.0	10
121	Hesperidin via maintenance of mitochondrial function and antioxidant activity protects lithium toxicity in rat heart isolated mitochondria. Drug and Chemical Toxicology, 0, , 1-9.	2.3	1
122	Sustainable Development Goals and End-of-Life Electric Vehicle Battery: Literature Review. Batteries, 2023, 9, 353.	4.5	3
123	Automated Disassembly of Lithium Batteries; Methods, Challenges, and a Roadmap. Procedia CIRP, 2023, 119, 1216-1221.	1.9	1
124	Leaching Kinetics of Spent 6F22 Dry Cells Roast Residue in Nitric and Hydrochloric Acids Using a Modified Shrinking Core Model. Chemistry Africa, 0, , .	2.4	0
125	Recycling of Lithium Iron Phosphate Cathode Materials from Spent Lithium-Ion Batteries: A Mini-Review. Industrial & Engineering Chemistry Research, 2023, 62, 11768-11783.	3.7	3
126	Pyrometallurgical recycling of spent lithium-ion batteries from conventional roasting to synergistic pyrolysis with organic wastes. Journal of Energy Chemistry, 2023, 85, 547-561.	12.9	4
127	A comprehensive review of full recycling and utilization of cathode and anode as well as electrolyte from spent lithium-ion batteries. Journal of Energy Storage, 2023, 72, 108486.	8.1	10
128	Effects of incineration and pyrolysis on removal of organics and liberation of cathode active materials derived from spent ternary lithium-ion batteries. Waste Management, 2023, 169, 342-350.	7.4	4
129	Biocompatible polydopamine based triboelectric nanogenerator for humidity sensing. Sensors and Actuators B: Chemical, 2023, 394, 134384.	7.8	12
130	Future Technologies for Recycling Spent Lithium-Ion Batteries (LIBs) from Electric Vehicles—Overview of Latest Trends and Challenges. Energies, 2023, 16, 5777.	3.1	0
131	Preparation and performance of 3-D woven triboelectric nanogenerators with integrated friction and spacer layers. Composite Structures, 2023, 322, 117430.	5.8	1

#	Article	IF	CITATIONS
132	Assessing resource depletion of NCM lithium-ion battery production for electric vehicles: An exergy-based perspective. Journal of Cleaner Production, 2023, 420, 138415.	9.3	1
133	In situ recycling of Al foil and cathode materials from spent lithium-ion batteries through exogenous advanced oxidation. Separation and Purification Technology, 2023, 326, 124788.	7.9	2
134	Challenges to the low carbon energy transition: A systematic literature review and research agenda. Energy Strategy Reviews, 2023, 49, 101163.	7.3	6
135	Liquid interfaces: an emerging platform for energy conversion and harvesting. Journal of Materials Chemistry A, 2023, 11, 21009-21028.	10.3	2
136	Excellent Performance of Glycine in Isolating Mn during Hydrothermal Leaching of LiMn ₂ O ₄ Cathode Materials. ACS Sustainable Chemistry and Engineering, 2023, 11, 13033-13042.	6.7	0
137	The potential application of the triboelectric nanogenerator in the new type futuristic power grid intelligent sensing. EcoMat, 2023, 5, .	11.9	0
138	An Emerging and Consummate Photocatalysis-Assisted Strategy for Efficient Recycling of Spent Lithium-Ion Batteries. ACS Energy Letters, 2023, 8, 4287-4295.	17.4	3
139	Integrating Renewable Microbial Fuel Cells in Dual Inâ€Line Package for Chipâ€Onâ€Board Circuits. Advanced Materials Technologies, 2023, 8, .	5.8	0
140	A comprehensive review of the reclamation of resources from spent lithium-ion batteries. Chemical Engineering Journal, 2023, 474, 145822.	12.7	4
141	Construction of a Preoxidation and Cation Doping Regeneration Strategy to Improve Rate Performance Recycling Spent LiFePO ₄ Materials. Langmuir, 2023, 39, 13132-13139.	3.5	1
143	Resynthesis of cathode active material from heterogenous leachate composition produced by electric vehicle (EV) battery recycling stream. Journal of Cleaner Production, 2023, , 139343.	9.3	0
144	Application of green chemistry for environmental remediation. , 2024, , 67-91.		0
145	Global landfill leachate characteristics: Occurrences and abundances of environmental contaminants and the microbiome. Journal of Hazardous Materials, 2024, 461, 132446.	12.4	0
146	Efficient separation of Fe and Li from spent LiFePO4 materials and preparation of high-performance P-C/FeS anode material by cation exchange resin. Chemical Engineering Journal, 2023, 476, 146554.	12.7	2
147	Fire-retardant hydroxyapatite/cellulosic triboelectric materials for energy harvesting and sensing at extreme conditions. Nano Energy, 2023, 117, 108851.	16.0	8
148	A Systematic Review of Battery Recycling Technologies: Advances, Challenges, and Future Prospects. Energies, 2023, 16, 6571.	3.1	4
149	High Electrochemical Performance Recycling Spent LiFePO ₄ Materials through the Preoxidation Regeneration Strategy. ACS Sustainable Chemistry and Engineering, 2023, 11, 14457-14466.	6.7	4
150	Cost-trivial material contributes greatly: A review of the application of starch in energy storage systems. Journal of Energy Storage, 2023, 73, 109060.	8.1	1

#	Article	IF	CITATIONS
152	Recovery of Lithium and Heavy Non-Ferrous Metals from Spent Lithium-Ion Batteries. Jom, 0, , .	1.9	0
153	Nanofibrous PANâ€PDMS Filmsâ€Based Highâ€Performance Triboelectric Artificial Whisker for Selfâ€Powered Obstacle Detection. Macromolecular Rapid Communications, 2024, 45, .	3.9	0
154	Recent Advances in Functional Fiber-Based Wearable Triboelectric Nanogenerators. Nanomaterials, 2023, 13, 2718.	4.1	1
155	Long-term energy transition planning: Integrating battery system degradation and replacement for sustainable power systems. Sustainable Production and Consumption, 2023, 42, 335-350.	11.0	2
156	Introduction to <scp>gridâ€scale</scp> battery energy storage system concepts and fire hazards. Process Safety Progress, 0, , .	1.0	0
157	Synthesis, properties, environmental stability and practical application of organometallic compounds: A comprehensive review. Inorganic Chemistry Communication, 2023, 158, 111567.	3.9	0
158	Lithium-Ion Batteries Recycling Trends and Pathways: A Comparison. , 2023, , 197-203.		0
159	A Multistage Leaching Method for Selective Recovery and Enrichment of Lithium from the Industrial-Grade Powder of Waste Lithium-Ion Batteries. , 2023, , 937-940.		0
160	Rugby-ball-like Zinc molybdate electrodes for Li-ion battery anode applications. Journal of Alloys and Compounds, 2024, 970, 172589.	5.5	0
161	ecoEDA: Recycling E-waste During Electronics Design. , 2023, , .		3
162	Synergistic integration of Bi2O3 CoWO4 for asymmetric supercapattery: A binder-free approach ensuring high endurance cycling stability. Journal of Energy Storage, 2023, 72, 109269.	8.1	1
163	Promoting Homogeneous Zincâ€lon Transfer Through Preferential Ion Coordination Effect in Gel Electrolyte for Stable Zinc Metal Batteries. Advanced Science, 2023, 10, .	11.2	0
164	Recycling valuable metals from spent lithium-ion battery cathode materials based on microwave-assisted hydrogen reduction followed by grind-leaching and magnetic separation. Journal of Cleaner Production, 2023, 428, 139488.	9.3	1
165	Deciphering Electrolyte Degradation in Sodium-Based Batteries: The Role of Conductive Salt Source, Additives, and Storage Condition. Batteries, 2023, 9, 530.	4.5	0
166	The Influence of Spent Portable Battery Waste on the Aquatic Environment. Applied Sciences (Switzerland), 2023, 13, 11658.	2.5	0
167	Extended producer responsibility and trade flows in waste: The case of batteries. SSRN Electronic Journal, 0, , .	0.4	0
168	Extended producer responsibility and trade flows in waste: The case of batteries. SSRN Electronic Journal, 0, , .	0.4	0
169	Influence of graphene-based additives on behaviours of electrode materials of Li-ion batteries: A systematic evaluation. Journal of Energy Storage, 2023, 74, 109525.	8.1	7

#	Article	IF	CITATIONS
170	Converting intercalation-type cathode in spent lithium-ion batteries into conversion-type cathode. Nano Research, 0, , .	10.4	0
171	Polypyrrole Solid-State Supercapacitors Drawn on Paper. Nanomaterials, 2023, 13, 3040.	4.1	1
172	Lithium recovery from the spent lithium-ion batteries by commercial acid-resistant nanofiltration membranes: A comparative study. Desalination, 2024, 572, 117142.	8.2	5
173	Naphthalene Monoimides with Peri-Annulated Disulfide Bridge—Synthesis and Electrochemical Redox Activity. Materials, 2023, 16, 7471.	2.9	0
174	Sustainable recovery of LiCoO2 from spent lithium-ion batteries: Simplicity, scalability, and superior electrochemical performance. Chemical Engineering Journal, 2024, 479, 147710.	12.7	1
175	High-performance triboelectric nanogenerator using ZIF-67/PVDF hybrid film for energy harvesting. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
176	Sustainable recovery and resynthesis of electroactive materials from spent Li-ion batteries to ensure material sustainability. Resources, Conservation and Recycling, 2024, 200, 107292.	10.8	2
177	rGO coated cotton fabric and thermoelectric module arrays for efficient solar desalination and electricity generation. Journal of Materials Chemistry A, 0, , .	10.3	0
178	International Schools and the World. Advances in Educational Marketing, Administration, and Leadership Book Series, 2023, , 114-133.	0.2	0
179	Edible Electronics for Sustainable Agrifood: Towards the Integration of Edible Rechargeable Batteries with Sensor Networks. , 2023, , .		1
180	The Current Status and Prospect of Air Quality Management Technologies in the Era of Carbon Neutrality. Journal of Korean Society for Atmospheric Environment, 2023, 39, 615-626.	1.1	0
181	3D binder-free nanoarchitecture design of porous silicon/graphene fibers for ultrastable lithium storage. Chemical Engineering Journal, 2023, 477, 147101.	12.7	0
182	Feasibility Study and Design of a Stand-alone Floating Photovoltaic Structure for Toshka Lake. , 2023, 5, 151-162.		1
184	An opinion on minimizing the need for agricultural and public areas while renewable energy production capacity is increasing rapidly. Frontiers in Energy Research, 0, 11, .	2.3	0
185	Upcycling electrode materials from spent single-use zinc‑carbon/alkaline batteries into rechargeable lithium-ion battery application. Journal of Energy Storage, 2024, 76, 109755.	8.1	1
186	Comparable investigation for incorporation of zirconium MOF@PVDF membrane as cation selective membranes for lithium-ion separation. Results in Chemistry, 2024, 7, 101236.	2.0	0
187	Advancing the Ferroelectric-Based Triboelectric Nanogenerator via Composition Optimization. , 2023, ,		0
188	Life cycle environmental impacts of pyrometallurgical and hydrometallurgical recovery processes for spent lithium-ion batteries: present and future perspectives. Clean Technologies and Environmental Policy, 2024, 26, 381-400.	4.1	0

#	Article	IF	CITATIONS
189	Direct Upcycling of Leached FePO ₄ from Spent Lithiumâ€lon Batteries toward Gradientâ€Doped LiMn <i>_x</i> Fe _{1â^²} <i>_x</i> PO ₄ Cathode Material. Advanced Energy Materials, 2024, 14, .	19.5	1
190	Examining green-sustainable approaches for recycling of lithium-ion batteries. , 2024, 3, 100034.		0
191	A review on the recycling of spent lithium iron phosphate batteries. Journal of Environmental Management, 2024, 351, 119670.	7.8	5
192	Recycling and Reusing of Graphite from Retired Lithiumâ€ion Batteries: A Review. Advanced Materials, 0, ,	21.0	1
193	Potential environmental and human health menace of spent graphite in lithium-ion batteries. Environmental Research, 2024, 244, 117967.	7.5	0
194	Deepâ€Learningâ€Assisted Neck Motion Monitoring System Selfâ€Powered Through Biodegradable Triboelectric Sensors. Advanced Functional Materials, 0, , .	14.9	2
195	Battery-Free NFC Sub-ppm Gas Sensor for Distributed Gas Monitoring Applications at Room Temperature. IEEE Journal of Radio Frequency Identification, 2023, 7, 630-643.	2.3	1
196	Global deletome profile of <i>Saccharomyces cerevisiae</i> exposed to lithium. Metallomics, 2024, 16, .	2.4	0
197	Evaluating lithium slag for geopolymer concrete: A review of its properties and sustainable construction applications. Case Studies in Construction Materials, 2024, 20, e02822.	1.7	0
198	Ab Initio Study of the Adsorption of Li and Na on the Surface of a MgCl2 Monolayer. JETP Letters, 2023, 118, 670-675.	1.4	Ο
199	Triboelectric-electromagnetic hybrid generator with Savonius flapping wing for low-velocity water flow energy harvesting. Applied Energy, 2024, 357, 122512.	10.1	1
200	Sensitive Detection of Metal Concentrations in Aqueous Solution Using Real-Time Micro-Plasma Emission Spectroscopy. Analytical Letters, 0, , 1-12.	1.8	0
201	Direct recycling industrialization of Li-ion batteries: The pre-processing barricade. , 2024, 2, 100091.		0
202	Recycling of electrolyte from spent lithium-ion batteries. , 2024, 3, 100015.		Ο
203	Opportunity and challenges in recovering and functionalizing anode graphite from spent lithium-ion batteries: A review. Environmental Research, 2024, 247, 118216.	7.5	1
204	Environmental impact and economic assessment of recycling lithium iron phosphate battery cathodes: Comparison of major processes in China. Resources, Conservation and Recycling, 2024, 203, 107449.	10.8	1
205	Advances in Self-powered Triboelectric Sensor toward Marine IoT. Nano Energy, 2024, 122, 109316.	16.0	0
206	Magnetization roasting combined with multi-stage extraction for selective recovery of lithium from spent lithium-ion batteries. Separation and Purification Technology, 2024, 338, 126349.	7.9	0

#	Article	IF	CITATIONS
207	A high-efficiency and low-carbon strategy for selective lithium recovery from spent lithium-ion batteries: Combining mechanochemical activation with biomass reduction roasting. Separation and Purification Technology, 2024, 338, 126458.	7.9	0
208	LIFE CYCLE ASSESSMENT OF SCENARIOS FOR END-OF-LIFE MANAGEMENT OF LITHIUM-ION BATTERIES FROM SMARTPHONES AND LAPTOPS. Detritus, 2023, , 33-53.	0.9	1
209	Dilemma of Low-Cost Filter Paper as Separator: Toughen Its Wet Strength for Robust Aqueous Zinc-Ion Batteries. Journal of Physical Chemistry Letters, 2024, 15, 380-390.	4.6	0
210	Multiscale observations on mechanisms for direct regeneration of degraded NCM cathode materials. Energy Storage Materials, 2024, 65, 103182.	18.0	0
211	An effective magnetic nanobiocomposite: Preparation, characterization and its application for adsorption removal of P-nitroaniline from aquatic environments. Environmental Research, 2024, 246, 118128.	7.5	0
213	European Green Deal + Poland + hydroelectric plants = Future?. Hungarian Geographical Bulletin, 2023, 72, 399-414.	0.9	0
215	All-element recovery and regeneration of mixed LiNi _{<i>x</i>} Co _{<i>y</i>} Mn _{1â^'<i>x</i>â^'<i>y</i>} O ₂ /LiFePO cathode materials by synergistic redox processes. Chemical Communications, 2024, 60, 1778-1781.	<suabt⊵4< s<="" td=""><td>subo</td></suabt⊵4<>	subo
216	Intermolecular hydrogen bonding in DNA base pairs interacting with different numbers of bare and hydrated Li+: NBO, QTAIM, and computational spectroscopic studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2024, 310, 123896.	3.9	0
217	Recent progress in pyrometallurgy for the recovery of spent lithium-ion batteries: A review of state-of-the-art developments. Current Opinion in Green and Sustainable Chemistry, 2024, 46, 100881.	5.9	0
218	A review on the impacts of fluorinated organic additives in lithium battery industry—an emerging source of per-and polyfluoroalkyl substances. Critical Reviews in Environmental Science and Technology, 0, , 1-21.	12.8	1
219	Advances in Smart Photovoltaic Textiles. ACS Nano, 2024, 18, 3871-3915.	14.6	0
220	Battery deactivation with redox shuttles for safe and efficient recycling. Scientific Reports, 2024, 14, .	3.3	0
221	The strategic role of lithium in the green energy transition: Towards an OPEC-style framework for green energy-mineral exporting countries (GEMEC). Resources Policy, 2024, 90, 104737.	9.6	0
222	Peroxymonosulfate activation by N-doped 3D graphene from spent lithium-ion batteries for organic pollutants degradation: An insight into the degradation mechanism. Chemical Engineering Journal, 2024, 484, 149379.	12.7	0
223	Raw Materials and Recycling of Lithium-Ion Batteries. The Materials Research Society Series, 2024, , 143-169.	0.2	0
224	Exploring the potential impact of electric passenger vehicle battery recycling on China's cobalt supply and demand under the goals of carbon peaking and carbon neutrality during 2010–2060. Journal of Cleaner Production, 2024, 444, 141139.	9.3	0
225	Creating an optimal electric vehicle ecosystem: an investigation of electric vehicle stakeholders and ecosystem trends in the US. SN Business & Economics, 2024, 4, .	1.1	1
226	Comprehensive Technology for Recycling and Regenerating Materials from Spent Lithium Iron Phosphate Battery. Environmental Science & Technology, 2024, 58, 3609-3628.	10.0	0

#	Article	IF	CITATIONS
227	NFC-enabled potentiostat and nitrocellulose-based metal electrodes for electrochemical lateral flow assay. Biosensors and Bioelectronics, 2024, 251, 116124.	10.1	0
228	The potential and challenges of off-grid solar photovoltaics in resource-challenged settings: the case of sub-Saharan Africa. Nature Reviews Materials, 2024, 9, 151-153.	48.7	Ο
229	Enabling Fluorineâ€Free Lithiumâ€Ion Capacitors and Lithiumâ€Ion Batteries for Highâ€Temperature Applications by the Implementation of Lithium Bis(oxalato)Borate and Ethyl Isopropyl Sulfone as Electrolyte. Advanced Energy Materials, 2024, 14, .	19.5	0
230	Nondestructive Electrical Activation Enables Multiple Life Cycles for Degraded Batteries. Advanced Functional Materials, 0, , .	14.9	0
231	Metal anion-cation coordination ionic liquid for polycarbonate synthesis from spent lithium battery electrolyte. European Polymer Journal, 2024, 209, 112875.	5.4	0
232	Nanohoneycomb rGO foam as a promising anode material for unprecedented ultrahigh Li storage and excellent endurance at ampere current stability. Applied Surface Science, 2024, 657, 159824.	6.1	0
233	Achieving reusability of leachate for multi-element recovery of the discarded LiNixCoyMn1-x-yO2 cathode by regulating the co-precipitation coefficient. Chinese Chemical Letters, 2024, , 109726.	9.0	0
234	Highly Selective Extraction of Lithium from Spent NCM Cathode Powder Reconstructive Electrode by Acid-Free Electrochemical Process. Energy & Fuels, 2024, 38, 5558-5567.	5.1	0
235	End-of-life electric vehicle battery disassembly enabled by intelligent and human-robot collaboration technologies: A review. Robotics and Computer-Integrated Manufacturing, 2024, 89, 102758.	9.9	0
236	Pathways for MXenes in Solving the Issues of Zincâ€lon Batteries: Achievements and Perspectives. Advanced Functional Materials, 0, , .	14.9	0
237	Resource recovery and regeneration strategies for spent lithium-ion batteries: Toward sustainable high-value cathode materials. Waste Management, 2024, 179, 120-129.	7.4	0
238	Efficient recovery of electrode materials from lithium iron phosphate batteries through heat treatment, ball milling, and foam flotation. Journal of Material Cycles and Waste Management, 2024, 26, 1622-1632.	3.0	0
239	Review of life cycle assessment on lithium-ion batteries (LIBs) recycling. , 2024, 3, 100032.		0
240	Challenges and perspectives towards direct regeneration of spent LiFePO4 cathode. Journal of Power Sources, 2024, 602, 234365.	7.8	0