UBP12 and UBP13 negatively regulate the activity of the DAR1 and DAR2

ELife 9, DOI: 10.7554/elife.52276

Citation Report

CITATION REPORT

#	Article	IF	CITATIONS
1	The ubiquitin system affects agronomic plant traits. Journal of Biological Chemistry, 2020, 295, 13940-13955.	1.6	32
2	The F-box protein MIO1/SLB1 regulates organ size and leaf movement in <i>Medicago truncatula</i> . Journal of Experimental Botany, 2021, 72, 2995-3011.	2.4	20
3	Post-translational modifications regulate the activity of the growth-restricting protease DA1. Journal of Experimental Botany, 2021, 72, 3352-3366.	2.4	24
5	TRAF proteins as key regulators of plant development and stress responses. Journal of Integrative Plant Biology, 2022, 64, 431-448.	4.1	12
7	Ubiquitin-specific proteases UBP12 and UBP13 promote shade avoidance response by enhancing PIF7 stability. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
8	Deubiquitinating enzymes UBP12 and UBP13 stabilize the brassinosteroid receptor BRI1. EMBO Reports, 2022, 23, e53354.	2.0	25
9	Past accomplishments and future challenges of the multi-omics characterization of leaf growth. Plant Physiology, 2022, 189, 473-489.	2.3	6
11	The deubiquitinases UBP12 and UBP13 integrate with the E3 ubiquitin ligase XBAT35.2 to modulate VPS23A stability in ABA signaling. Science Advances, 2022, 8, eabl5765.	4.7	18
12	Deubiquitination of BES1 by UBP12/UBP13 promotes brassinosteroid signaling and plant growth. Plant Communications, 2022, 3, 100348.	3.6	16
13	The emerging roles of deubiquitinases in plant proteostasis. Essays in Biochemistry, 2022, 66, 147-154.	2.1	7
14	UBP12 and UBP13 deubiquitinases destabilize the CRY2 blue light receptor to regulate Arabidopsis growth. Current Biology, 2022, 32, 3221-3231.e6.	1.8	8
15	The deubiquitinating enzymes UBP12 and UBP13 positively regulate recovery after carbon starvation by modulating BES1 stability in <i>Arabidopsis thaliana</i> . Plant Cell, 2022, 34, 4516-4530.	3.1	9
16	Ubiquitome profiling reveals a regulatory pattern of UPL3 with UBP12 on metabolic-leaf senescence. Life Science Alliance, 2022, 5, e202201492.	1.3	3
17	Modulation of receptor-like transmembrane kinase 1 nuclear localization by DA1 peptidases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
18	Deubiquitinating enzymes UBP12 and UBP13 regulate carbon/nitrogen-nutrient stress responses by interacting with the membrane-localized ubiquitin ligase ATL31 in Arabidopsis. Biochemical and Biophysical Research Communications, 2022, 636, 55-61.	1.0	4
19	Parental regulation of seed development. , 2022, 1, 1-12.		1
20	Mechanisms controlling plant proteases and their substrates. Cell Death and Differentiation, 2023, 30, 1047-1058.	5.0	1
21	Oat AsDA1-2D enhances heat stress tolerance and negatively regulates seed-storage globulin. Journal of Plant Physiology, 2023, 284, 153981.	1.6	2

#	Article	IF	CITATIONS
22	KNO1â€mediated autophagic degradation of the Bloom syndrome complex component RMI1 promotes homologous recombination. EMBO Journal, 2023, 42, .	3.5	4