Evolutionary stability of collateral sensitivity to antibio Pseudomonas aeruginosa

ELife 8, DOI: 10.7554/elife.51481

Citation Report

#	Article	IF	CITATIONS
1	Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance. PLoS Biology, 2019, 17, e3000515.	5.6	92
2	Using Selection by Nonantibiotic Stressors to Sensitize Bacteria to Antibiotics. Molecular Biology and Evolution, 2020, 37, 1394-1406.	8.9	16
3	Rapid and robust evolution of collateral sensitivity in <i>Pseudomonas aeruginosa</i> antibiotic-resistant mutants. Science Advances, 2020, 6, eaba5493.	10.3	33
4	Systematic Investigation of Resistance Evolution to Common Antibiotics Reveals Conserved Collateral Responses across Common Human Pathogens. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	9
5	Evolutionary Approaches to Combat Antibiotic Resistance: Opportunities and Challenges for Precision Medicine. Frontiers in Immunology, 2020, 11, 1938.	4.8	35
6	Extreme Antagonism Arising from Gene-Environment Interactions. Biophysical Journal, 2020, 119, 2074-2086.	0.5	6
7	The Genomic Basis of Rapid Adaptation to Antibiotic Combination Therapy in <i>Pseudomonas aeruginosa</i> . Molecular Biology and Evolution, 2021, 38, 449-464.	8.9	21
8	Roadmap on biology in time varying environments. Physical Biology, 2021, 18, 041502.	1.8	23
10	Price equation captures the role of drug interactions and collateral effects in the evolution of multidrug resistance. ELife, 2021, 10, .	6.0	18
12	High potency of sequential therapy with only \hat{l}^2 -lactam antibiotics. ELife, 2021, 10, .	6.0	29
13	The roles of history, chance, and natural selection in the evolution of antibiotic resistance. ELife, 2021, 10, .	6.0	20
14	Design principles of collateral sensitivity-based dosing strategies. Nature Communications, 2021, 12, 5691.	12.8	23
15	Finding the right sequence of drugs. ELife, 2021, 10, .	6.0	1
16	Identification of antibiotic pairs that evade concurrent resistance via a retrospective analysis of antimicrobial susceptibility test results. Lancet Microbe, The, 2021, 2, e545-e554.	7.3	26
17	Mechanisms and therapeutic potential of collateral sensitivity to antibiotics. PLoS Pathogens, 2021, 17, e1009172.	4.7	28
22	Collateral Sensitivity Interactions between Antibiotics Depend on Local Abiotic Conditions. MSystems, 2021, 6, e0105521.	3.8	7
24	Rapid Decline of Ceftazidime Resistance in Antibiotic-Free and Sublethal Environments Is Contingent on Genetic Background. Molecular Biology and Evolution, 2022, 39, .	8.9	16
25	The physiology and genetics of bacterial responses to antibiotic combinations. Nature Reviews Microbiology, 2022, 20, 478-490.	28.6	54

#	Article	IF	CITATIONS
26	Mutational background influences <i>P. aeruginosa</i> ciprofloxacin resistance evolution but preserves collateral sensitivity robustness. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2109370119.	7.1	18
28	A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens. IScience, 2022, 25, 104121.	4.1	12
29	Revisiting Antibiotic Resistance: Mechanistic Foundations to Evolutionary Outlook. Antibiotics, 2022, 11, 40.	3.7	26
30	The population genetics of collateral resistance and sensitivity. ELife, 2021, 10, .	6.0	14
32	Extensively Drug-Resistant KlebsiellaÂpneumoniae Counteracts Fitness and Virulence Costs That Accompanied Ceftazidime-Avibactam Resistance Acquisition. Microbiology Spectrum, 2022, 10, e0014822.	3.0	18
33	Microbial Interspecies Interactions and Their Impact on the Emergence and Spread of Antimicrobial Resistance. Annual Review of Microbiology, 2022, 76, 179-192.	7.3	7
34	Evolutionary Instability of Collateral Susceptibility Networks in Ciprofloxacin-Resistant Clinical Escherichia coli Strains. MBio, 2022, 13, .	4.1	3
37	Unblinding the watchmaker: cancer treatment and drug design in the face of evolutionary pressure. Expert Opinion on Drug Discovery, 2022, 17, 1081-1094.	5.0	1
38	Evolutionary History and Strength of Selection Determine the Rate of Antibiotic Resistance Adaptation. Molecular Biology and Evolution, 2022, 39, .	8.9	9
39	Evaluation of a Sequential Antibiotic Treatment Regimen of Ampicillin, Ciprofloxacin and Fosfomycin against Escherichia coli CFT073 in the Hollow Fiber Infection Model Compared with Simultaneous Combination Treatment. Antibiotics, 2022, 11, 1705.	3.7	3
40	Rapid Phenotypic Convergence towards Collateral Sensitivity in Clinical Isolates of Pseudomonas aeruginosa Presenting Different Genomic Backgrounds. Microbiology Spectrum, 2023, 11, .	3.0	7
41	Antibiotic Cycling Affects Resistance Evolution Independently of Collateral Sensitivity. Molecular Biology and Evolution, 2022, 39, .	8.9	4
42	Towards evolutionary predictions: Current promises and challenges. Evolutionary Applications, 2023, 16, 3-21.	3.1	19
43	Resistance-resistant antibacterial treatment strategies. , 0, 2, .		4
44	Tackling antibiotic resistance by inducing transient and robust collateral sensitivity. Nature Communications, 2023, 14, .	12.8	10
45	The Fitness of Beta-Lactamase Mutants Depends Nonlinearly on Resistance Level at Sublethal Antibiotic Concentrations. MBio, 2023, 14, .	4.1	2
46	Translating eco-evolutionary biology into therapy to tackle antibiotic resistance. Nature Reviews Microbiology, 2023, 21, 671-685.	28.6	12
47	The evolution of colistin resistance increases bacterial resistance to host antimicrobial peptides and virulence. ELife, 0, 12, .	6.0	7

	~
CITATION	DEDODT
	REPORT

#	Article	IF	CITATIONS
49	The Effects of Preservatives on Antibiotic- and Preservative-Resistant Microbes and Nitrogen/Sulfur Cycle Associated Microbial Communities in Freshwater River Sediments. Antibiotics, 2023, 12, 1082.	3.7	1
50	The evolution of antibiotic resistance in an incurable and ultimately fatal infection. Evolution, Medicine and Public Health, 2023, 11, 163-173.	2.5	0
51	Fitness Costs of Antibiotic Resistance Impede the Evolution of Resistance to Other Antibiotics. ACS Infectious Diseases, 2023, 9, 1834-1845.	3.8	1
52	Diverse evolutionary pathways challenge the use of collateral sensitivity as a strategy to suppress resistance. ELife, 0, 12, .	6.0	0
53	A comprehensive profiling of quorum quenching by bacterial pigments identifies quorum sensing inhibition and antibiofilm action of prodigiosin against Acinetobacter baumannii. Archives of Microbiology, 2023, 205, .	2.2	0
54	The evolution of resistance to synergistic multiâ€drug combinations is more complex than evolving resistance to each individual drug component. Evolutionary Applications, 2023, 16, 1901-1920.	3.1	1
56	The role of hypermutation and collateral sensitivity in antimicrobial resistance diversity of <i>Pseudomonas aeruginosa</i> populations in cystic fibrosis lung infection. MBio, 2024, 15, .	4.1	1