Heterogeneity in surface sensing suggests a division of populations

ELife 8, DOI: 10.7554/elife.45084

Citation Report

#	Article	IF	CITATIONS
1	Discovery and Therapeutic Targeting of Differentiated Biofilm Subpopulations. Frontiers in Microbiology, 2019, 10, 1908.	1.5	28
2	How bacteria recognise and respond to surface contact. FEMS Microbiology Reviews, 2020, 44, 106-122.	3.9	92
3	Bacterial nanotubes mediate bacterial growth on periodic nano-pillars. Soft Matter, 2020, 16, 7613-7623.	1.2	6
4	Single-Cell Tracking on Polymer Microarrays Reveals the Impact of Surface Chemistry on <i>Pseudomonas aeruginosa</i> Twitching Speed and Biofilm Development. ACS Applied Bio Materials, 2020, 3, 8471-8480.	2.3	6
5	Current Knowledge and Future Directions in Developing Strategies to Combat Pseudomonas aeruginosa Infection. Journal of Molecular Biology, 2020, 432, 5509-5528.	2.0	27
6	Enhancing bacterial survival through phenotypic heterogeneity. PLoS Pathogens, 2020, 16, e1008439.	2.1	36
7	A 3D soil-like nanostructured fabric for the development of bacterial biofilms for agricultural and environmental uses. Environmental Science: Nano, 2020, 7, 2546-2572.	2.2	7
8	Overcoming the challenge of establishing biofilms in vivo: a roadmap for Enterococci. Current Opinion in Microbiology, 2020, 53, 9-18.	2.3	13
9	Pseudomonas aeruginosa polymicrobial interactions during lung infection. Current Opinion in Microbiology, 2020, 53, 1-8.	2.3	42
10	Social Cooperativity of Bacteria during Reversible Surface Attachment in Young Biofilms: a Quantitative Comparison of Pseudomonas aeruginosa PA14 and PAO1. MBio, 2020, 11, .	1.8	47
11	Taming the flagellar motor of pseudomonads with a nucleotide messenger. Environmental Microbiology, 2020, 22, 2496-2513.	1.8	8
12	Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Physical Biology, 2021, 18, 051501.	0.8	46
13	Analysis of Pseudomonas aeruginosa c-di-GMP High and Low Subpopulations Using Flow-assisted Cell Sorting (FACS) and Quantitative Reverse Transcriptase PCR (qRT-PCR). Bio-protocol, 2021, 11, e3891.	0.2	0
14	Effect of collagen and EPS components on the viscoelasticity of <i>Pseudomonas aeruginosa</i> biofilms. Soft Matter, 2021, 17, 6225-6237.	1.2	13
15	Quantitative confocal microscopy and calibration for measuring differences in cyclic-di-GMP signalling by bacteria on biomedical hydrogels. Royal Society Open Science, 2021, 8, 201453.	1.1	3
17	<i>Pseudomonas aeruginosa</i> as a Model To Study Chemosensory Pathway Signaling. Microbiology and Molecular Biology Reviews, 2021, 85, .	2.9	39
18	Topological signatures in regulatory network enable phenotypic heterogeneity in small cell lung cancer. ELife, 2021, 10, .	2.8	42
19	Generation of Genetic Tools for Gauging Multiple-Gene Expression at the Single-Cell Level. Applied and Environmental Microbiology, 2021, 87, .	1.4	6

#	Article	IF	CITATIONS
21	Integrated control of surface adaptation by the bacterial flagellum. Current Opinion in Microbiology, 2021, 61, 1-7.	2.3	8
22	Interaction between the type 4 pili machinery and a diguanylate cyclase fine-tune c-di-GMP levels during early biofilm formation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29
24	How Can a Histidine Kinase Respond to Mechanical Stress?. Frontiers in Microbiology, 2021, 12, 655942.	1.5	5
25	Molecular and structural facets of c-di-GMP signalling associated with biofilm formation in Pseudomonas aeruginosa. Molecular Aspects of Medicine, 2021, 81, 101001.	2.7	21
28	Single-Cell Imaging Reveals That Staphylococcus aureus Is Highly Competitive Against Pseudomonas aeruginosa on Surfaces. Frontiers in Cellular and Infection Microbiology, 2021, 11, 733991.	1.8	6
30	Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science, 2021, 373, .	6.0	140
31	Evolutionary Divergence of the Wsp Signal Transduction Systems in Beta- and Gammaproteobacteria. Applied and Environmental Microbiology, 2021, 87, e0130621.	1.4	9
32	Differential Surface Competition and Biofilm Invasion Strategies of Pseudomonas aeruginosa PA14 and PAO1. Journal of Bacteriology, 2021, 203, e0026521.	1.0	7
34	Sensory Perception in Bacterial Cyclic Diguanylate Signal Transduction. Journal of Bacteriology, 2022, 204, JB0043321.	1.0	24
35	The Diguanylate Cyclase YfiN of Pseudomonas aeruginosa Regulates Biofilm Maintenance in Response to Peroxide. Journal of Bacteriology, 2022, 204, JB0039621.	1.0	8
36	Relatedness and the evolution of mechanisms to divide labor in microorganisms. Ecology and Evolution, 2021, 11, 14475-14489.	0.8	10
39	The evolution of germ-soma specialization under different genetic and environmental effects. Journal of Theoretical Biology, 2022, 534, 110964.	0.8	4
41	Of biofilms and beehives: An analogy-based instructional tool to introduce biofilms in school and undergraduate curriculum. Biofilm, 2022, 4, 100066.	1.5	2
42	Broadcasting of amplitude- and frequency-modulated c-di-GMP signals facilitates cooperative surface commitment in bacterial lineages. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
43	Multiscale X-ray study of <i>Bacillus subtilis</i> biofilms reveals interlinked structural hierarchy and elemental heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	19
44	Force-Induced Changes of PilY1 Drive Surface Sensing by Pseudomonas aeruginosa. MBio, 2022, 13, e0375421.	1.8	15
45	Fluid dynamics and cellâ€bound Psl polysaccharide allows microplastic capture, aggregation and subsequent sedimentation by <i>Pseudomonas aeruginosa</i> in water. Environmental Microbiology, 2022, 24, 1560-1572.	1.8	1
46	Signaling events that occur when cells of Escherichia coli encounter a glass surface. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116830119.	3.3	2

#	Article	IF	CITATIONS
47	Wsp system oppositely modulates antibacterial activity and biofilm formation via <scp>FleQâ€FleN</scp> complex in <i>Pseudomonas putida</i> . Environmental Microbiology, 2022, 24, 1543-1559.	1.8	9
49	Biofilm Maintenance as an Active Process: Evidence that Biofilms Work Hard to Stay Put. Journal of Bacteriology, 2022, 204, e0058721.	1.0	13
50	A Motile Doublet Form of <i>Salmonella Typhimurium</i> Diversifies Target Search Behaviour at the Epithelial Surface. Molecular Microbiology, 2022, , .	1.2	2
51	Rapid detection of microorganisms in a fish infection microfluidics platform. Journal of Hazardous Materials, 2022, 431, 128572.	6.5	8
52	Ecological drivers of division of labour in Streptomyces. Current Opinion in Microbiology, 2022, 67, 102148.	2.3	9
53	The Wsp system of <i>Pseudomonas aeruginosa</i> links surface sensing and cell envelope stress. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117633119.	3.3	33
54	Quorum Sensing (QS)-regulated target predictions of Hafnia alvei H4 based on the joint application of genome and STRING database. Food Research International, 2022, 157, 111356.	2.9	4
55	Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression. MSphere, 2022, 7, .	1.3	10
57	Phenotypic and integrated analysis of a comprehensive Pseudomonas aeruginosa PAO1 library of mutants lacking cyclic-di-GMP-related genes. Frontiers in Microbiology, 0, 13, .	1.5	5
58	Regulation of flagellar motility and biosynthesis in enterohemorrhagic <i>Escherichia coli</i> O157:H7. Gut Microbes, 2022, 14, .	4.3	12
59	An adaptive tracking illumination system for optogenetic control of single bacterial cells. Applied Microbiology and Biotechnology, 0, , .	1.7	0
61	Identification of Cyclic-di-GMP-Modulating Protein Residues by Bidirectionally Evolving a Social Behavior in Pseudomonas fluorescens. MSystems, 2022, 7, .	1.7	1
62	Controlling Biofilm Development Through Cyclic di-GMP Signaling. Advances in Experimental Medicine and Biology, 2022, , 69-94.	0.8	11
63	Flagella, Chemotaxis and Surface Sensing. Advances in Experimental Medicine and Biology, 2022, , 185-221.	0.8	3
64	Shared biophysical mechanisms determine early biofilm architecture development across different bacterial species. PLoS Biology, 2022, 20, e3001846.	2.6	5
65	Navigating Environmental Transitions: the Role of Phenotypic Variation in Bacterial Responses. MBio, 2022, 13, .	1.8	15
66	Bacterial biofilm and extracellular polymeric substances in the treatment of environmental pollutants: Beyond the protective role in survivability. Journal of Cleaner Production, 2022, 379, 134759.	4.6	45
67	History-dependent attachment of Pseudomonas aeruginosa to solid–liquid interfaces and the dependence of the bacterial surface density on the residence time distribution. Physical Biology, 2023, 20, 016004.	0.8	0

#	Article	IF	Citations
69	The NET response to biofilm infections. , 2023, , 575-589.		0
70	Novel Insights into Microbial Behavior Gleaned Using Microfluidics. Microbes and Environments, 2023, 38, n/a.	0.7	1
71	Material Substrate Physical Properties Control Pseudomonas aeruginosa Biofilm Architecture. MBio, 2023, 14, .	1.8	5
73	Immune Response Modulation by Pseudomonas aeruginosa Persister Cells. MBio, 2023, 14, .	1.8	4
74	Polarity of c-di-GMP synthesis and degradation. MicroLife, 2023, 4, .	1.0	2
75	Recent advances and perspectives in nucleotide second messenger signaling in bacteria. MicroLife, 2023, 4, .	1.0	10
79	Studying gene expression in biofilms. Methods in Microbiology, 2023, , .	0.4	0
92	Understanding the intricacies of microbial biofilm formation and its endurance in chronic infections: a key to advancing biofilm-targeted therapeutic strategies. Archives of Microbiology, 2024, 206, .	1.0	1
96	Single-Molecule Fluorescent In Situ Hybridization (smFISH) for RNA Detection in Bacteria. Methods in Molecular Biology, 2024, , 3-23.	0.4	0

CITATION REPORT