Quantification of microenvironmental metabolites in m determinants of tumor nutrient availability

ELife 8, DOI: 10.7554/elife.44235

Citation Report

#	Article	IF	CITATIONS
1	Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer. Cancer Discovery, 2019, 9, 1268-1287.	7.7	119
2	Cell Culture Medium Formulation and Its Implications in Cancer Metabolism. Trends in Cancer, 2019, 5, 329-332.	3.8	91
3	Growth factors stimulate anabolic metabolism by directing nutrient uptake. Journal of Biological Chemistry, 2019, 294, 17883-17888.	1.6	15
4	The Rise of Physiologic Media. Trends in Cell Biology, 2019, 29, 854-861.	3.6	59
5	Transsulfuration Activity Can Support Cell Growth upon Extracellular Cysteine Limitation. Cell Metabolism, 2019, 30, 865-876.e5.	7.2	155
6	Glutamine Metabolism in Brain Tumors. Cancers, 2019, 11, 1628.	1.7	53
7	Mechanisms and Implications of Metabolic Heterogeneity in Cancer. Cell Metabolism, 2019, 30, 434-446.	7.2	355
8	A framework for examining how diet impacts tumour metabolism. Nature Reviews Cancer, 2019, 19, 651-661.	12.8	87
9	Glucose Metabolism in Pancreatic Cancer. Cancers, 2019, 11, 1460.	1.7	74
10	The Tumor Metabolic Microenvironment: Lessons from Lactate. Cancer Research, 2019, 79, 3155-3162.	0.4	140
11	The Pleiotropic Effects of Glutamine Metabolism in Cancer. Cancers, 2019, 11, 770.	1.7	89
12	Determinants of nutrient limitation in cancer. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 193-207.	2.3	36
13	The Non-Essential Amino Acid Cysteine Becomes Essential for Tumor Proliferation and Survival. Cancers, 2019, 11, 678.	1.7	172
14	Putting the K+ in K+aloric Restriction. Immunity, 2019, 50, 1129-1131.	6.6	4
15	The Diverse Functions of Non-Essential Amino Acids in Cancer. Cancers, 2019, 11, 675.	1.7	119
16	Deoxycytidine Release from Pancreatic Stellate Cells Promotes Gemcitabine Resistance. Cancer Research, 2019, 79, 5723-5733.	0.4	90
17	Exploiting metabolic vulnerabilities of Non small cell lung carcinoma. Seminars in Cell and Developmental Biology, 2020, 98, 54-62.	2.3	36
18	Metabolism in the Tumor Microenvironment. Annual Review of Cancer Biology, 2020, 4, 17-40.	2.3	61

#	Article	IF	CITATIONS
19	Metastasis in Pancreatic Ductal Adenocarcinoma: Current Standing and Methodologies. Genes, 2020, 11, 6.	1.0	31
20	Histone deacetylase inhibition is synthetically lethal with arginine deprivation in pancreatic cancers with low argininosuccinate synthetase 1 expression. Theranostics, 2020, 10, 829-840.	4.6	21
21	Mind your media. Nature Metabolism, 2020, 2, 1369-1372.	5.1	34
22	Clycometabolic rearrangementsaerobic glycolysis in pancreatic cancer: causes, characteristics and clinical applications. Journal of Experimental and Clinical Cancer Research, 2020, 39, 267.	3.5	39
23	The Tumor Microenvironment—A Metabolic Obstacle to NK Cells' Activity. Cancers, 2020, 12, 3542.	1.7	30
24	Cancer cell metabolic reprogramming: a keystone for the response to immunotherapy. Cell Death and Disease, 2020, 11, 964.	2.7	61
25	Distribution and prognostic significance of gluconeogenesis and glycolysis in lung cancer. Molecular Oncology, 2020, 14, 2853-2867.	2.1	51
26	How Reciprocal Interactions Between the Tumor Microenvironment and Ion Transport Proteins Drive Cancer Progression. Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 1-38.	0.9	9
27	Pancreatic cancer SLUGged. Journal of Experimental Medicine, 2020, 217, .	4.2	0
28	pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise. Cell, 2020, 183, 62-75.e17.	13.5	129
29	Metabolic Signaling Cascades Prompted by Glutaminolysis in Cancer. Cancers, 2020, 12, 2624.	1.7	23
30	Metabolic Potential of Cancer Cells in Context of the Metastatic Cascade. Cells, 2020, 9, 2035.	1.8	17
31	De novo synthesis and salvage pathway coordinately regulate polyamine homeostasis and determine T cell proliferation and function. Science Advances, 2020, 6, .	4.7	46
32	Obesity Shapes Metabolism in the Tumor Microenvironment to Suppress Anti-Tumor Immunity. Cell, 2020, 183, 1848-1866.e26.	13.5	347
33	A metastasis map of human cancer cell lines. Nature, 2020, 588, 331-336.	13.7	214
34	Selective Alanine Transporter Utilization Creates a Targetable Metabolic Niche in Pancreatic Cancer. Cancer Discovery, 2020, 10, 1018-1037.	7.7	104
35	Dietary Approaches to Cancer Therapy. Cancer Cell, 2020, 37, 767-785.	7.7	105
36	Myeloid Cell-Derived Arginase in Cancer Immune Response. Frontiers in Immunology, 2020, 11, 938.	2.2	249

#	Article	IF	CITATIONS
37	Minimally Invasive Biospecimen Collection for Exposome Research in Children's Health. Current Environmental Health Reports, 2020, 7, 198-210.	3.2	13
38	Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Molecular Cell, 2020, 78, 1019-1033.	4.5	450
39	Limited Environmental Serine and Glycine Confer Brain Metastasis Sensitivity to PHGDH Inhibition. Cancer Discovery, 2020, 10, 1352-1373.	7.7	145
40	mTOR Signaling and SREBP Activity Increase FADS2 Expression and Can Activate Sapienate Biosynthesis. Cell Reports, 2020, 31, 107806.	2.9	41
41	Stratifying nutritional restriction in cancer therapy: Next stop, personalized medicine. International Review of Cell and Molecular Biology, 2020, 354, 231-259.	1.6	12
42	WISP1 Predicts Clinical Prognosis and Is Associated With Tumor Purity, Immunocyte Infiltration, and Macrophage M2 Polarization in Pan-Cancer. Frontiers in Genetics, 2020, 11, 502.	1.1	10
43	The immunological Warburg effect: Can a metabolicâ€ŧumorâ€stroma score (MeTS) guide cancer immunotherapy?. Immunological Reviews, 2020, 295, 187-202.	2.8	71
44	Dietary modifications for enhanced cancer therapy. Nature, 2020, 579, 507-517.	13.7	219
45	Comparison of unsupervised machine-learning methods to identify metabolomic signatures in patients with localized breast cancer. Computational and Structural Biotechnology Journal, 2020, 18, 1509-1524.	1.9	21
46	Tumor Cell-Intrinsic Immunometabolism and Precision Nutrition in Cancer Immunotherapy. Cancers, 2020, 12, 1757.	1.7	17
47	Exploiting immunometabolism and T cell function for solid organ transplantation. Cellular Immunology, 2020, 351, 104068.	1.4	7
48	Emerging Roles for Branched-Chain Amino Acid Metabolism in Cancer. Cancer Cell, 2020, 37, 147-156.	7.7	233
49	Metabolome of Pancreatic Juice Delineates Distinct Clinical Profiles of Pancreatic Cancer and Reveals a Link between Glucose Metabolism and PD-1+ Cells. Cancer Immunology Research, 2020, 8, 493-505.	1.6	26
50	Cell Intrinsic and Systemic Metabolism in Tumor Immunity and Immunotherapy. Cancers, 2020, 12, 852.	1.7	19
51	Functional Genomics InÂVivo Reveal Metabolic Dependencies of Pancreatic Cancer Cells. Cell Metabolism, 2021, 33, 211-221.e6.	7.2	63
52	Functional Genomics Identifies Metabolic Vulnerabilities in Pancreatic Cancer. Cell Metabolism, 2021, 33, 199-210.e8.	7.2	42
53	Metabolic Coordination of Cell Fate by Î \pm -Ketoglutarate-Dependent Dioxygenases. Trends in Cell Biology, 2021, 31, 24-36.	3.6	63
54	Crosstalk between mechanotransduction and metabolism. Nature Reviews Molecular Cell Biology, 2021, 22, 22-38.	16.1	193

#	Article	IF	CITATIONS
55	Cysteine metabolic circuitries: druggable targets in cancer. British Journal of Cancer, 2021, 124, 862-879.	2.9	103
56	Single cell metabolomics using mass spectrometry: Techniques and data analysis. Analytica Chimica Acta, 2021, 1143, 124-134.	2.6	37
57	Immunometabolism in the Tumor Microenvironment. Annual Review of Cancer Biology, 2021, 5, 137-159.	2.3	28
58	High Fructose Drives the Serine Synthesis Pathway in Acute Myeloid Leukemic Cells. Cell Metabolism, 2021, 33, 145-159.e6.	7.2	34
59	Immunometabolic Interplay in the Tumor Microenvironment. Cancer Cell, 2021, 39, 28-37.	7.7	183
60	Netrin G1 Promotes Pancreatic Tumorigenesis through Cancer-Associated Fibroblast–Driven Nutritional Support and Immunosuppression. Cancer Discovery, 2021, 11, 446-479.	7.7	97
61	Inhibition of arginase modulates T-cell response in the tumor microenvironment of lung carcinoma. Oncolmmunology, 2021, 10, 1956143.	2.1	30
62	OSCAR facilitates malignancy with enhanced metastasis correlating to inhibitory immune microenvironment in multiple cancer types. Journal of Cancer, 2021, 12, 3769-3780.	1.2	3
63	Arginase Therapy Combines Effectively with Immune Checkpoint Blockade or Agonist Anti-OX40 Immunotherapy to Control Tumor Growth. Cancer Immunology Research, 2021, 9, 415-429.	1.6	11
64	Circulating Endothelial Cells: Characteristics and Clinical Relevance. , 2021, , 163-168.		0
65	Metabolic Reprogramming of Cancer Cells during Tumor Progression and Metastasis. Metabolites, 2021, 11, 28.	1.3	83
67	Flexibility and Adaptation of Cancer Cells in a Heterogenous Metabolic Microenvironment. International Journal of Molecular Sciences, 2021, 22, 1476.	1.8	19
68	Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites, 2021, 11, 112.	1.3	21
69	GEM-Based Metabolic Profiling for Human Bone Osteosarcoma under Different Glucose and Glutamine Availability. International Journal of Molecular Sciences, 2021, 22, 1470.	1.8	5
71	Metabolic plasticity allows cancer cells to thrive under nutrient starvation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
72	Adaptation of pancreatic cancer cells to nutrient deprivation is reversible and requires glutamine synthetase stabilization by mTORC1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
74	GLUT5 (SLC2A5) enables fructose-mediated proliferation independent of ketohexokinase. Cancer & Metabolism, 2021, 9, 12.	2.4	12
75	Glycine suppresses kidney calcium oxalate crystal depositions via regulating urinary excretions of oxalate and citrate. Journal of Cellular Physiology, 2021, 236, 6824-6835.	2.0	9

.,		15	Cizizionia
#	ARTICLE Simultaneous Integration of Gene Expression and Nutrient Availability for Studying the Metabolism of	IF	CITATIONS
76	Hepatocellular Carcinoma Cell Lines. Biomolecules, 2021, 11, 490.	1.8	11
77	Harnessing metabolic dependencies in pancreatic cancers. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 482-492.	8.2	81
78	Challenges in Studying Stem Cell Metabolism. Cell Stem Cell, 2021, 28, 409-423.	5.2	19
79	Pemetrexed Hinders Translation Inhibition upon Low Glucose in Non-Small Cell Lung Cancer Cells. Metabolites, 2021, 11, 198.	1.3	3
80	Cystathionineâ€gammaâ€lyase overexpression in T cells enhances antitumor effect independently of cysteine autonomy. Cancer Science, 2021, 112, 1723-1734.	1.7	11
81	Mimicking and surpassing the xenograft model with cancer-on-chip technology. EBioMedicine, 2021, 66, 103303.	2.7	9
82	Vitamin D regulation of energy metabolism in cancer. British Journal of Pharmacology, 2022, 179, 2890-2905.	2.7	12
83	Fatty acid synthesis is required for breast cancer brain metastasis. Nature Cancer, 2021, 2, 414-428.	5.7	147
84	Cell-programmed nutrient partitioning in the tumour microenvironment. Nature, 2021, 593, 282-288.	13.7	491
85	The Complex Integration of T-cell Metabolism and Immunotherapy. Cancer Discovery, 2021, 11, 1636-1643.	7.7	64
86	The Effects of Quercetin on the Gene Expression of Arginine Metabolism Key Enzymes in Human Embryonic Kidney 293 Cells. Jundishapur Journal of Natural Pharmaceutical Products, 2021, 16, .	0.3	2
87	Metabolic barriers to cancer immunotherapy. Nature Reviews Immunology, 2021, 21, 785-797.	10.6	245
88	Amino acids and RagD potentiate mTORC1 activation in CD8 ⁺ T cells to confer antitumor immunity. , 2021, 9, e002137.		13
89	Karyotype Aberrations in Action: The Evolution of Cancer Genomes and the Tumor Microenvironment. Genes, 2021, 12, 558.	1.0	13
90	Mitochondrial NADPH is a pro at Pro synthesis. Nature Metabolism, 2021, 3, 453-455.	5.1	2
91	Tissue Nutrient Environments and Their Effect on Regulatory T Cell Biology. Frontiers in Immunology, 2021, 12, 637960.	2.2	10
92	Metabolic Interdependency of Th2 Cell-Mediated Type 2 Immunity and the Tumor Microenvironment. Frontiers in Immunology, 2021, 12, 632581.	2.2	44
93	UCP1 governs liver extracellular succinate and inflammatory pathogenesis. Nature Metabolism, 2021, 3, 604-617.	5.1	82

#	Article	IF	CITATIONS
94	The role of metabolic reprogramming and de novo amino acid synthesis in collagen protein production by myofibroblasts: implications for organ fibrosis and cancer. Amino Acids, 2021, 53, 1851-1862.	1.2	12
95	Serine Metabolism Regulates YAP Activity Through USP7 in Colon Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 639111.	1.8	17
96	Metabolomics in cancer research and emerging applications in clinical oncology. Ca-A Cancer Journal for Clinicians, 2021, 71, 333-358.	157.7	267
97	Chromatin accessibility governs the differential response of cancer and TÂcells to arginine starvation. Cell Reports, 2021, 35, 109101.	2.9	20
98	Proteomic Screens for Suppressors of Anoikis Identify IL1RAP as a Promising Surface Target in Ewing Sarcoma. Cancer Discovery, 2021, 11, 2884-2903.	7.7	51
99	The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes and Development, 2021, 35, 940-962.	2.7	51
100	Immune-regulated IDO1-dependent tryptophan metabolism is source of one-carbon units for pancreatic cancer and stellate cells. Molecular Cell, 2021, 81, 2290-2302.e7.	4.5	54
101	Predicting cancer malignancy and proliferation in glioma patients: intra-subject inter-metabolite correlation analyses using MRI and MRSI contrast scans. Quantitative Imaging in Medicine and Surgery, 2021, 11, 2721-2732.	1.1	1
102	Tumor Microenvironment-Derived Metabolites: A Guide to Find New Metabolic Therapeutic Targets and Biomarkers. Cancers, 2021, 13, 3230.	1.7	17
103	Can tumor cells take it all away?. Cell Metabolism, 2021, 33, 1071-1072.	7.2	2
105	Metabolic Phenotypes, Dependencies, and Adaptation in Lung Cancer. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a037838.	2.9	2
106	Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1–Dependent Myeloid Cells. Cancer Research, 2021, 81, 5047-5059.	0.4	28
107	RalA and PLD1 promote lipid droplet growth in response to nutrient withdrawal. Cell Reports, 2021, 36, 109451.	2.9	16
108	Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ TÂcells in tumors. Immunity, 2021, 54, 1561-1577.e7.	6.6	260
109	Cancer metabolism: looking forward. Nature Reviews Cancer, 2021, 21, 669-680.	12.8	676
110	Targeted Glucose or Glutamine Metabolic Therapy Combined With PD-1/PD-L1 Checkpoint Blockade Immunotherapy for the Treatment of Tumors - Mechanisms and Strategies. Frontiers in Oncology, 2021, 11, 697894.	1.3	19
111	The therapeutic implications of immunosuppressive tumor aerobic glycolysis. Cellular and Molecular Immunology, 2022, 19, 46-58.	4.8	39
112	GOT1 inhibition promotes pancreatic cancer cell death by ferroptosis. Nature Communications, 2021, 12, 4860.	5.8	131

#	Article	IF	CITATIONS
113	Metabolic regulation of T cells in the tumor microenvironment by nutrient availability and diet. Seminars in Immunology, 2021, 52, 101485.	2.7	24
114	Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cellular and Molecular Immunology, 2022, 19, 370-383.	4.8	38
115	Dietary fructose improves intestinal cell survival and nutrient absorption. Nature, 2021, 597, 263-267.	13.7	133
116	The Effect of Oxygen and Micronutrient Composition of Cell Growth Media on Cancer Cell Bioenergetics and Mitochondrial Networks. Biomolecules, 2021, 11, 1177.	1.8	11
117	Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metabolism, 2021, 33, 1701-1715.e5.	7.2	189
118	Heterogeneous response of cancer-associated fibroblasts to the glucose deprivation through mitochondrial calcium uniporter. Experimental Cell Research, 2021, 406, 112778.	1.2	1
120	Metabolic orchestration of the wound healing response. Cell Metabolism, 2021, 33, 1726-1743.	7.2	101
121	Supply and demand: Cellular nutrient uptake and exchange in cancer. Molecular Cell, 2021, 81, 3731-3748.	4.5	18
122	Metabolites Profiling of Melanoma Interstitial Fluids Reveals Uridine Diphosphate as Potent Immune Modulator Capable of Limiting Tumor Growth. Frontiers in Cell and Developmental Biology, 2021, 9, 730726.	1.8	13
123	Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions. Redox Biology, 2021, 46, 102065.	3.9	63
124	Physiological impact of inÂvivo stable isotope tracing on cancer metabolism. Molecular Metabolism, 2021, 53, 101294.	3.0	9
125	PCK2 opposes mitochondrial respiration and maintains the redox balance in starved lung cancer cells. Free Radical Biology and Medicine, 2021, 176, 34-45.	1.3	11
126	Exercise, selenium, and cancer cells. , 2021, , 475-482.		1
127	Systematic alteration of inÂvitro metabolic environments reveals empirical growth relationships in cancer cell phenotypes. Cell Reports, 2021, 34, 108647.	2.9	5
128	Metabolic cell communication within tumour microenvironment: models, methods and perspectives. Current Opinion in Biotechnology, 2020, 63, 210-219.	3.3	7
134	Transcriptional activation of macropinocytosis by the Hippo pathway following nutrient limitation. Genes and Development, 2020, 34, 1253-1255.	2.7	2
135	Nutrient metabolism and cancer in the <i>inÂvivo</i> context: a metabolic game of give and take. EMBO Reports, 2020, 21, e50635.	2.0	56
136	Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. ELife, 2019, 8, .	2.8	350

	CHAHON R		
#	ARTICLE	IF	CITATIONS
137	Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer. ELife, 2019, 8, .	2.8	69
138	The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy. ELife, 2020, 9, .	2.8	168
139	Dissecting cell-type-specific metabolism in pancreatic ductal adenocarcinoma. ELife, 2020, 9, .	2.8	61
140	The effects of age and systemic metabolism on anti-tumor T cell responses. ELife, 2020, 9, .	2.8	34
141	Low glycaemic diets alter lipid metabolism to influence tumour growth. Nature, 2021, 599, 302-307.	13.7	142
142	Therapeutic Values of Myeloid-Derived Suppressor Cells in Hepatocellular Carcinoma: Facts and Hopes. Cancers, 2021, 13, 5127.	1.7	15
143	Sulforaphane Causes Cell Cycle Arrest and Apoptosis in Human Glioblastoma U87MG and U373MG Cell Lines under Hypoxic Conditions. International Journal of Molecular Sciences, 2021, 22, 11201.	1.8	4
144	Non-immune Cell Components in the Gastrointestinal Tumor Microenvironment Influencing Tumor Immunotherapy. Frontiers in Cell and Developmental Biology, 2021, 9, 729941.	1.8	4
145	Nuclear PHGDH protects cancer cells from nutrient stress. Nature Metabolism, 2021, 3, 1284-1285.	5.1	2
146	New roles for gluconeogenesis in vertebrates. Current Opinion in Systems Biology, 2021, 28, 100389.	1.3	3
148	Isolation and Quantification of Metabolite Levels in Murine Tumor Interstitial Fluid by LC/MS. Bio-protocol, 2019, 9, e3427.	0.2	7
154	The impact of physiological metabolite levels on serine uptake, synthesis and utilization in cancer cells. Nature Communications, 2021, 12, 6176.	5.8	19
155	Dietary intervention as a therapeutic for cancer. Cancer Science, 2021, 112, 498-504.	1.7	10
156	Introduction to Dietary Research and Cancer. , 2021, , 1-8.		0
161	Reprogrammed transsulfuration promotes basal-like breast tumor progression via realigning cellular cysteine persulfidation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
162	Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Molecular Metabolism, 2021, 54, 101389.	3.0	15
165	Targeting Metabolism to Control Immune Responses in Cancer and Improve Checkpoint Blockade Immunotherapy. Cancers, 2021, 13, 5912.	1.7	13
166	Metabolic reprogramming by driver mutation-tumor microenvironment interplay in pancreatic cancer: new therapeutic targets. Cancer and Metastasis Reviews, 2021, 40, 1093-1114.	2.7	10

TION

#	Article	IF	CITATIONS
167	Intracellular IL-32 regulates mitochondrial metabolism, proliferation, and differentiation of malignant plasma cells. IScience, 2022, 25, 103605.	1.9	6
169	Lineage-specific silencing of PSAT1 induces serine auxotrophy and sensitivity to dietary serine starvation in luminal breast tumors. Cell Reports, 2022, 38, 110278.	2.9	14
170	Targeting memory T cell metabolism to improve immunity. Journal of Clinical Investigation, 2022, 132, .	3.9	61
171	Interactions with stromal cells promote a more oxidized cancer cell redox state in pancreatic tumors. Science Advances, 2022, 8, eabg6383.	4.7	20
172	Anti-Tumor Role of CAMK2B in Remodeling the Stromal Microenvironment and Inhibiting Proliferation in Papillary Renal Cell Carcinoma. Frontiers in Oncology, 2022, 12, 740051.	1.3	9
173	Microenvironmental influences on T cell immunity in cancer and inflammation. Cellular and Molecular Immunology, 2022, 19, 316-326.	4.8	38
174	Metabolic regulation of ferroptosis in the tumor microenvironment. Journal of Biological Chemistry, 2022, 298, 101617.	1.6	44
175	Resistance to immune checkpoint inhibitors in KRAS-mutant non-small cell lung cancer. Cancer Drug Resistance (Alhambra, Calif), 2022, 5, 129-146.	0.9	4
176	Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Seminars in Cancer Biology, 2022, 86, 542-565.	4.3	51
177	The hallmarks of cancer metabolism: Still emerging. Cell Metabolism, 2022, 34, 355-377.	7.2	386
178	Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med, 2022, 3, 119-136.e8.	2.2	31
179	Targeting fuel pocket of cancer cell metabolism: A focus on glutaminolysis. Biochemical Pharmacology, 2022, 198, 114943.	2.0	15
180	Modifying dietary amino acids in cancer patients. International Review of Cell and Molecular Biology, 2022, , 1-36.	1.6	1
181	New Immunometabolic Strategy Based on Cell Type-Specific Metabolic Reprogramming in the Tumor Immune Microenvironment. Cells, 2022, 11, 768.	1.8	14
182	The Role of Cystine/Glutamate Antiporter SLC7A11/xCT in the Pathophysiology of Cancer. Frontiers in Oncology, 2022, 12, 858462.	1.3	67
183	Bcl-xL Enforces a Slow-Cycling State Necessary for Survival in the Nutrient-Deprived Microenvironment of Pancreatic Cancer. Cancer Research, 2022, 82, 1890-1908.	0.4	6
184	Kynurenine importation by SLC7A11 propagates anti-ferroptotic signaling. Molecular Cell, 2022, 82, 920-932.e7.	4.5	41
185	A network-based approach to integrate nutrient microenvironment in the prediction of synthetic lethality in cancer metabolism. PLoS Computational Biology, 2022, 18, e1009395.	1.5	5

#	Article	IF	CITATIONS
186	Transsulfuration, minor player or crucial for cysteine homeostasis in cancer. Trends in Cell Biology, 2022, 32, 800-814.	3.6	41
187	The biology of pancreatic cancer morphology. Pathology, 2022, 54, 236-247.	0.3	5
188	Immune Regulatory Processes of the Tumor Microenvironment under Malignant Conditions. International Journal of Molecular Sciences, 2021, 22, 13311.	1.8	54
189	Impact of cancer metabolism on therapy resistance – Clinical implications. Drug Resistance Updates, 2021, 59, 100797.	6.5	43
190	Metabolic reprogramming of tumor-associated macrophages by collagen turnover promotes fibrosis in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119168119.	3.3	31
197	Combination strategies to target metabolic flexibility in cancer. International Review of Cell and Molecular Biology, 2022, , 159-197.	1.6	5
198	Impact of tumor microenvironment on adoptive T cell transfer activity. International Review of Cell and Molecular Biology, 2022, , 1-31.	1.6	8
199	Targeting autophagy as a therapeutic strategy against pancreatic cancer. Journal of Gastroenterology, 2022, 57, 603-618.	2.3	12
200	Cancer cells depend on environmental lipids for proliferation when electron acceptors are limited. Nature Metabolism, 2022, 4, 711-723.	5.1	29
201	The Liver Pre-Metastatic Niche in Pancreatic Cancer: A Potential Opportunity for Intervention. Cancers, 2022, 14, 3028.	1.7	9
202	lsotope tracing in health and disease. Current Opinion in Biotechnology, 2022, 76, 102739.	3.3	13
205	Evidence for a novel, effective approach to targeting carcinoma catabolism exploiting the first-in-class, anti-cancer mitochondrial drug, CPI-613. PLoS ONE, 2022, 17, e0269620.	1.1	2
207	Metabolic requirement for GOT2 in pancreatic cancer depends on environmental context. ELife, 0, 11, .	2.8	32
208	Antibody-mediated blockade for galectin-3 binding protein in tumor secretome abrogates PDAC metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
209	Activating mTOR Mutations Are Detrimental in Nutrient-Poor Conditions. Cancer Research, 2022, 82, 3263-3274.	0.4	4
210	Tumoral microenvironment prevents de novo asparagine biosynthesis in B cell lymphoma, regardless of ASNS expression. Science Advances, 2022, 8, .	4.7	7
211	Emerging metabolomic tools to study cancer metastasis. Trends in Cancer, 2022, 8, 988-1001.	3.8	20
212	Artificial Diets Based on Selective Amino Acid Restriction versus Capecitabine in Mice with Metastatic Colon Cancer. Nutrients, 2022, 14, 3378.	1.7	5

#	Article	IF	CITATIONS
213	OATD-02 Validates the Benefits of Pharmacological Inhibition of Arginase 1 and 2 in Cancer. Cancers, 2022, 14, 3967.	1.7	10
214	Nucleotide imbalance decouples cell growth from cell proliferation. Nature Cell Biology, 2022, 24, 1252-1264.	4.6	43
215	TCR-Independent Metabolic Reprogramming Precedes Lymphoma-Driven Changes in T-cell Fate. Cancer Immunology Research, 2022, 10, 1263-1279.	1.6	0
218	Carbon source availability drives nutrient utilization in CD8+ TÂcells. Cell Metabolism, 2022, 34, 1298-1311.e6.	7.2	47
220	Metabolic dysregulation in cancer progression. , 2022, , 1-39.		0
221	Diet and Exercise in Cancer Metabolism. Cancer Discovery, 2022, 12, 2249-2257.	7.7	7
222	Perspectives of lipid metabolism reprogramming in head and neck squamous cell carcinoma: An overview. Frontiers in Oncology, 0, 12, .	1.3	6
224	Targeting the Metabolic Rewiring in Pancreatic Cancer and Its Tumor Microenvironment. Cancers, 2022, 14, 4351.	1.7	15
225	Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. Annual Review of Pathology: Mechanisms of Disease, 2023, 18, 123-148.	9.6	63
226	Primary and metastatic tumors exhibit systems-level differences in dependence on mitochondrial respiratory function. PLoS Biology, 2022, 20, e3001753.	2.6	2
227	Pan-Cancer Analysis and Experimental Validation Identify ACOT7 as a Novel Oncogene and Potential Therapeutic Target in Lung Adenocarcinoma. Cancers, 2022, 14, 4522.	1.7	1
228	Nutritional Niches of Cancer Therapy-Induced Senescent Cells. Nutrients, 2022, 14, 3636.	1.7	7
229	Ferroptosis inhibition by lysosome-dependent catabolism of extracellular protein. Cell Chemical Biology, 2022, 29, 1588-1600.e7.	2.5	26
230	Metabolic communication in the tumour–immune microenvironment. Nature Cell Biology, 2022, 24, 1574-1583.	4.6	65
231	Salmonella as a Promising Curative Tool against Cancer. Pharmaceutics, 2022, 14, 2100.	2.0	12
232	Tracing the electron flow in redox metabolism: The appropriate distribution of electrons is essential to maintain redox balance in cancer cells. Seminars in Cancer Biology, 2022, 87, 32-47.	4.3	3
233	Metabolic regulation of immune responses to cancer. Cancer Biology and Medicine, 0, , 1-15.	1.4	1
234	The exploitation of enzyme-based cancer immunotherapy. Human Cell, 2023, 36, 98-120.	1.2	1

#	ARTICLE	IF	CITATIONS
235	CD8+ TÂcell metabolic rewiring defined by scRNA-seq identifies a critical role of ASNS expression dynamics in TÂcell differentiation. Cell Reports, 2022, 41, 111639.	2.9	12
236	ATM inhibition drives metabolic adaptation via induction of macropinocytosis. Journal of Cell Biology, 2023, 222, .	2.3	3
237	Differential integrated stress response and asparagine production drive symbiosis and therapy resistance of pancreatic adenocarcinoma cells. Nature Cancer, 2022, 3, 1386-1403.	5.7	15
238	Metabolic determinants of tumour initiation. Nature Reviews Endocrinology, 2023, 19, 134-150.	4.3	16
239	Dynamic partitioning of branched-chain amino acids-derived nitrogen supports renal cancer progression. Nature Communications, 2022, 13, .	5.8	7
240	Opa1 and Drp1 reciprocally regulate cristae morphology, ETC function, and NAD+ regeneration in KRas-mutant lung adenocarcinoma. Cell Reports, 2022, 41, 111818.	2.9	12
241	Barriers and opportunities for gemcitabine in pancreatic cancer therapy. American Journal of Physiology - Cell Physiology, 2023, 324, C540-C552.	2.1	16
242	Oleic acid from cancer-associated fibroblast promotes cancer cell stemness by stearoyl-CoA desaturase under glucose-deficient condition. Cancer Cell International, 2022, 22, .	1.8	6
243	Diverse effects of obesity on antitumor immunity and immunotherapy. Trends in Molecular Medicine, 2022, , .	3.5	2
244	The Role of Pericytes in Tumor Angiogenesis. Biology of Extracellular Matrix, 2023, , 257-275.	0.3	0
245	Modelling cancer metabolism <i>inÂvitro</i> : current improvements and future challenges. FEBS Journal, 2024, 291, 402-411.	2.2	2
246	Immune Cell Metabolism and Immuno-Oncology. Annual Review of Cancer Biology, 2023, 7, 93-110.	2.3	4
247	Metabolic adaptations of cancer in extreme tumor microenvironments. Cancer Science, 2023, 114, 1200-1207.	1.7	2
249	Targeting fatty acid metabolism in glioblastoma. Journal of Clinical Investigation, 2023, 133, .	3.9	20
250	Microenvironment-driven metabolic adaptations guiding CD8+ TÂcell anti-tumor immunity. Immunity, 2023, 56, 32-42.	6.6	33
251	Multi-substrate Metabolic Tracing Reveals Marked Heterogeneity and Dependency on Fatty Acid Metabolism in Human Prostate Cancer. Molecular Cancer Research, 2023, 21, 359-373.	1.5	2
252	Isolation of extracellular fluids reveals novel secreted bioactive proteins from muscle and fat tissues. Cell Metabolism, 2023, 35, 535-549.e7.	7.2	17
253	Arginine limitation drives a directed codon-dependent DNA sequence evolution response in colorectal cancer cells. Science Advances, 2023, 9, .	4.7	8

щ			CITATIONS
#	ARTICLE A design of experiments screen reveals that Clostridium novyi-NT spore germinant sensing is	IF	CITATIONS
255	stereoflexible for valine and its analogs. Communications Biology, 2023, 6, .	2.0	2
257	Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers, 2023, 15, 724.	1.7	2
258	Effects of extracellular vesicle-derived noncoding RNAs on pre-metastatic niche and tumor progression. Genes and Diseases, 2024, 11, 176-188.	1.5	0
259	Arginase 1 is a key driver of immune suppression in pancreatic cancer. ELife, 0, 12, .	2.8	17
260	Pancreatic cancer: Advances and challenges. Cell, 2023, 186, 1729-1754.	13.5	142
261	Molecular principles of tissue invasion and metastasis. American Journal of Physiology - Cell Physiology, 2023, 324, C971-C991.	2.1	4
262	Cancer metabolism within tumor microenvironments. Biochimica Et Biophysica Acta - General Subjects, 2023, 1867, 130330.	1.1	7
263	The role of amino acid metabolism alterations in pancreatic cancer: From mechanism to application. Biochimica Et Biophysica Acta: Reviews on Cancer, 2023, 1878, 188893.	3.3	7
264	Accumulated cholesterol protects tumours from elevated lipid peroxidation in the microenvironment. Redox Biology, 2023, 62, 102678.	3.9	13
265	Metabolic dialogs between B cells and the tumor microenvironment: Implications for anticancer immunity. Cancer Letters, 2023, 556, 216076.	3.2	1
266	Tissue-specific abundance of interferon-gamma drives regulatory TÂcells to restrain DC1-mediated priming of cytotoxic TÂcells against lung cancer. Immunity, 2023, 56, 386-405.e10.	6.6	22
268	The opportunities and challenges for nutritional intervention in childhood cancers. Frontiers in Nutrition, 0, 10, .	1.6	2
269	Identification of four metabolic subtypes and key prognostic markers in lung adenocarcinoma based on glycolytic and glutaminolytic pathways. BMC Cancer, 2023, 23, .	1.1	0
270	Acidityâ€mediated induction of FoxP3 ⁺ regulatory T cells. European Journal of Immunology, 2023, 53, .	1.6	2
271	Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell, 2023, 41, 421-433.	7.7	70
272	<scp>HIF</scp> : a master regulator of nutrient availability and metabolic crossâ€ŧalk in the tumor microenvironment. EMBO Journal, 2023, 42, .	3.5	13
274	What is cancer metabolism?. Cell, 2023, 186, 1670-1688.	13.5	41
275	Comprehensive Metabolic Tracing Reveals the Origin and Catabolism of Cysteine in Mammalian Tissues and Tumors. Cancer Research, 2023, 83, 1426-1442.	0.4	4

IF CITATIONS # ARTICLE Thermogenic adipocyte-derived zinc promotes sympathetic innervation in male mice. Nature 276 5.13 Metabolism, 2023, 5, 481-494. Single cell metabolic imaging of tumor and immune cells in vivo in melanoma bearing mice. Frontiers 278 1.3 in Oncology, 0, 13, . Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm, 2023, 4, . 279 3.118 Nucleotide metabolism: a pan-cancer metabolic dependency. Nature Reviews Cancer, 2023, 23, 275-294. 44 Ornithine aminotransferase supports polyamine synthesis in pancreatic cancer. Nature, 2023, 616, 281 13.7 26 339-347. KRAS mutation: The booster of pancreatic ductal adenocarcinoma transformation and progression. Frontiers in Cell and Developmental Biology, 0, 11, . 1.8 Rethinking our approach to cancer metabolism to deliver patient benefit. British Journal of Cancer, 0, 291 2.9 0 ,. Spatial Metabolomics Using Imaging Mass Spectrometry., 2023, , 423-477. 340 Metabolic heterogeneity in cancer. Nature Metabolism, 2024, 6, 18-38. 5.11

CITATION REPORT