New tools for automated high-resolution cryo-EM strue

ELife 7, DOI: 10.7554/elife.42166

Citation Report

#	Article	IF	CITATIONS
1	Structure of transcribing RNA polymerase II-nucleosome complex. Nature Communications, 2018, 9, 5432.	5.8	85
2	Inhibition of bacterial ubiquitin ligases by SidJ–calmodulin catalysed glutamylation. Nature, 2019, 572, 382-386.	13.7	98
3	CryoTEM with a Cold Field Emission Gun That Moves Structural Biology into a New Stage. Microscopy and Microanalysis, 2019, 25, 998-999.	0.2	45
4	T3S injectisome needle complex structures in four distinct states reveal the basis of membrane coupling and assembly. Nature Microbiology, 2019, 4, 2010-2019.	5.9	58
5	Imaging of Unstained DNA Origami Triangles with Electron Microscopy. Small Methods, 2019, 3, 1900393.	4.6	7
6	Cryo-EM structures capture the transport cycle of the P4-ATPase flippase. Science, 2019, 365, 1149-1155.	6.0	143
7	Structure and conformational plasticity of the intact <i>Thermus thermophilus</i> V/A-type ATPase. Science, 2019, 365, .	6.0	47
8	Atomic structures of an entire contractile injection system in both the extended and contracted states. Nature Microbiology, 2019, 4, 1885-1894.	5.9	45
9	Structural Basis for Tetherin Antagonism as a Barrier to Zoonotic Lentiviral Transmission. Cell Host and Microbe, 2019, 26, 359-368.e8.	5.1	26
10	Structural basis of Cullin 2 RING E3 ligase regulation by the COP9 signalosome. Nature Communications, 2019, 10, 3814.	5.8	40
11	Conformation space of a heterodimeric ABC exporter under turnover conditions. Nature, 2019, 571, 580-583.	13.7	185
12	Similarities and differences between native HIV-1 envelope glycoprotein trimers and stabilized soluble trimer mimetics. PLoS Pathogens, 2019, 15, e1007920.	2.1	61
13	Unique Structural Features of the Mitochondrial AAA+ Protease AFG3L2 Reveal the Molecular Basis for Activity in Health and Disease. Molecular Cell, 2019, 75, 1073-1085.e6.	4.5	58
14	Structural basis for transcription antitermination at bacterial intrinsic terminator. Nature Communications, 2019, 10, 3048.	5.8	18
15	Structure of the eukaryotic protein O-mannosyltransferase Pmt1â^'Pmt2 complex. Nature Structural and Molecular Biology, 2019, 26, 704-711.	3.6	38
16	Structural basis of TFIIH activation for nucleotide excision repair. Nature Communications, 2019, 10, 2885.	5.8	112
17	Evolutionary compaction and adaptation visualized by the structure of the dormant microsporidian ribosome. Nature Microbiology, 2019, 4, 1798-1804.	5.9	60
18	Asymmetric analysis reveals novel virus capsid features. Biophysical Reviews, 2019, 11, 603-609.	1.5	14

#	Article	IF	CITATIONS
19	Structure of the Helicobacter pylori Cag type IV secretion system. ELife, 2019, 8, .	2.8	78
20	Interpretation of medium resolution cryoEM maps of multi-protein complexes. Current Opinion in Structural Biology, 2019, 58, 166-174.	2.6	18
21	A one-gate elevator mechanism for the human neutral amino acid transporter ASCT2. Nature Communications, 2019, 10, 3427.	5.8	76
22	Structure and mechanism of the cation–chloride cotransporter NKCC1. Nature, 2019, 572, 488-492.	13.7	89
23	Microfluidic protein isolation and sample preparation for high-resolution cryo-EM. Proceedings of the United States of America, 2019, 116, 15007-15012.	3.3	41
24	Structure of the substrate-engaged SecA-SecY protein translocation machine. Nature Communications, 2019, 10, 2872.	5.8	55
25	Toxic Activation of an AAA+ Protease by the Antibacterial Drug Cyclomarin A. Cell Chemical Biology, 2019, 26, 1169-1179.e4.	2.5	36
26	Cryo–electron microscopy structure and analysis of the P-Rex1–Gβγ signaling scaffold. Science Advances, 2019, 5, eaax8855.	4.7	28
27	Structure of ribosome-bound azole-modified peptide phazolicin rationalizes its species-specific mode of bacterial translation inhibition. Nature Communications, 2019, 10, 4563.	5.8	45
28	Structural and functional insights into the tetrameric photosystem I from heterocyst-forming cyanobacteria. Nature Plants, 2019, 5, 1087-1097.	4.7	57
29	Cas9 Allosteric Inhibition by the Anti-CRISPR Protein AcrIIA6. Molecular Cell, 2019, 76, 922-937.e7.	4.5	44
30	Structural basis for the docking of mTORC1 on the lysosomal surface. Science, 2019, 366, 468-475.	6.0	132
31	Cryo-EM structure of the bacterial Ton motor subcomplex ExbB–ExbD provides information on structure and stoichiometry. Communications Biology, 2019, 2, 358.	2.0	60
32	Structure, Function, and Evolution of the Pseudomonas aeruginosa Lysine Decarboxylase LdcA. Structure, 2019, 27, 1842-1854.e4.	1.6	9
33	Structure and Function of the Proteasome Activator PA28 of the Malaria Parasite Plasmodium falciparum. Microscopy and Microanalysis, 2019, 25, 1324-1325.	0.2	0
34	Stanford-SLAC Cryo-EM Center (S ² C ²). Microscopy and Microanalysis, 2019, 25, 2658-2659.	0.2	1
35	High-End Data Collection for Single-Particle Cryo-EM. Microscopy and Microanalysis, 2019, 25, 2688-2689.	0.2	0
36	A packing for A-form DNA in an icosahedral virus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22591-22597.	3.3	23

	CITATION REF	CITATION REPORT	
#	Article	IF	Citations
37	Structure of the Decorated Ciliary Doublet Microtubule. Cell, 2019, 179, 909-922.e12.	13.5	186
38	Structural consequences of the interaction of RbgA with a 50S ribosomal subunit assembly intermediate. Nucleic Acids Research, 2019, 47, 10414-10425.	6.5	38
39	Dynamic modulation of the lipid translocation groove generates a conductive ion channel in Ca2+-bound nhTMEM16. Nature Communications, 2019, 10, 4972.	5.8	23
40	Conservative transcription in three steps visualized in a double-stranded RNA virus. Nature Structural and Molecular Biology, 2019, 26, 1023-1034.	3.6	33
41	Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex. Science, 2019, 366, 971-977.	6.0	108
42	Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex. Cell, 2019, 179, 1319-1329.e8.	13.5	98
43	LDAF1 and Seipin Form a Lipid Droplet Assembly Complex. Developmental Cell, 2019, 51, 551-563.e7.	3.1	152
44	Structural Basis of H2B Ubiquitination-Dependent H3K4 Methylation by COMPASS. Molecular Cell, 2019, 76, 712-723.e4.	4.5	80
45	Homologous bd oxidases share the same architecture but differ in mechanism. Nature Communications, 2019, 10, 5138.	5.8	65
46	Cryo-EM structure of the spinach cytochrome b6 fâ€complex at 3.6Âà resolution. Nature, 2019, 575, 535	-53.9.	83
47	Structures of a RAG-like transposase during cut-and-paste transposition. Nature, 2019, 575, 540-544.	13.7	30
48	CryoEM reconstruction approaches to resolve asymmetric features. Advances in Virus Research, 2019, 105, 73-91.	0.9	19
49	Partially inserted nascent chain unzips the lateral gate of the Sec translocon. EMBO Reports, 2019, 20, e48191.	2.0	39
50	Structure of a P element transposase–DNA complex reveals unusual DNA structures and GTP-DNA contacts. Nature Structural and Molecular Biology, 2019, 26, 1013-1022.	3.6	30
51	Structure and mechanism of mitochondrial proton-translocating transhydrogenase. Nature, 2019, 573, 291-295.	13.7	55
52	Atomic structure of the Epstein-Barr virus portal. Nature Communications, 2019, 10, 3891.	5.8	28
53	Visualizing structural transitions of ligand-dependent gating of the TRPM2 channel. Nature Communications, 2019, 10, 3740.	5.8	34
54	Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature, 2019, 573, 225-229.	13.7	218

CITATION REPORT ARTICLE IF CITATIONS The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase 5.8 101 TMEM16K. Nature Communications, 2019, 10, 3956. Structural basis of nucleosome recognition and modification by MLL methyltransferases. Nature, 13.7 134 2019, 573, 445-449. Molecular Basis for ATP-Hydrolysis-Driven DNA Translocation by the CMG Helicase of the Eukaryotic 2.9 74 Replisome. Cell Reports, 2019, 28, 2673-2688.e8. Agonist Selectivity and Ion Permeation in the $\hat{I}\pm 3\hat{I}^24$ Ganglionic Nicotinic Receptor. Neuron, 2019, 104, 501-511.e6. Structure of the Centromere Binding Factor 3 Complex from Kluyveromyces lactis. Journal of 2.0 3 Molecular Biology, 2019, 431, 4444-4454. Structure Determination by Single-Particle Cryo-Electron Microscopy: Only the Sky (and Intrinsic) Tj ETQq1 1 0.784314 rgBT Qverloc Structural basis of assembly of the human T cell receptorâ€"CD3 complex. Nature, 2019, 573, 546-552. 13.7 218 Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer's and Pick's 2.8 309 diseases. ELife, 2019, 8, . The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed 5.8 65 gene 1. Nature Communications, 2019, 10, 4288. Filling Adeno-Associated Virus Capsids: Estimating Success by Cryo-Electron Microscopy, Human Gene 1.4 Therapy, 2019, 30, 1449-1460. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf 6.0 127 kinases. Science, 2019, 366, 109-115. The Architecture of Talin1 Reveals an Autoinhibition Mechanism. Cell, 2019, 179, 120-131.e13. 13.5 Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common 2.1 56 ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. PLoS Pathogens, 2019, 15, e1008026. Autoinhibition and activation mechanisms of the eukaryotic lipid flippase Drs2p-Cdc50p. Nature 5.8 Communications, 2019, 10, 4142. Tubulin lattice in cilia is in a stressed form regulated by microtubule inner proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19930-19938 3.3 61

	the National Academy of Sciences of the United States of America, 2019, 116, 19950-19956.		
70	The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA. Nature Structural and Molecular Biology, 2019, 26, 919-929.	3.6	25
71	Structural insights into the mechanism of human soluble guanylate cyclase. Nature, 2019, 574, 206-210.	13.7	102
	Chio EM structure and dynamics of euhanyotic DNA polymerace î beleanzyme. Nature Structural and		

Molecular Biology, 2019, 26, 955-962.

#

55

57

59

61

63

64

65

67

#	Article	IF	CITATIONS
73	Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD. Cell Reports, 2019, 28, 3395-3405.e6.	2.9	63
74	High-quality, high-throughput cryo-electron microscopy data collection via beam tilt and astigmatism-free beam-image shift. Journal of Structural Biology, 2019, 208, 107396.	1.3	91
75	Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. Science, 2019, 366, 100-104.	6.0	90
76	Structural basis of sterol recognition by human hedgehog receptor PTCH1. Science Advances, 2019, 5, eaaw6490.	4.7	57
77	Structure of the post-translational protein translocation machinery of the ER membrane. Nature, 2019, 566, 136-139.	13.7	108
78	Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell, 2019, 176, 1026-1039.e15.	13.5	558
79	A human postcatalytic spliceosome structure reveals essential roles of metazoan factors for exon ligation. Science, 2019, 363, 710-714.	6.0	87
80	Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity, 2019, 50, 1513-1529.e9.	6.6	85
81	Atomic resolution cryo-EM structure of a native-like CENP-A nucleosome aided by an antibody fragment. Nature Communications, 2019, 10, 2301.	5.8	56
82	Multifunctional graphene supports for electron cryomicroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11718-11724.	3.3	105
83	Structural and biochemical analyses of the nuclear pore complex component ELYS identify residues responsible for nucleosome binding. Communications Biology, 2019, 2, 163.	2.0	17
84	Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire. Communications Biology, 2019, 2, 219.	2.0	120
85	The big picture of chromatin biology by cryo-EM. Current Opinion in Structural Biology, 2019, 58, 76-87.	2.6	12
86	Structure and autoregulation of a P4-ATPase lipid flippase. Nature, 2019, 571, 366-370.	13.7	126
87	The Structure of an Injectisome Export Gate Demonstrates Conservation of Architecture in the Core Export Gate between Flagellar and Virulence Type III Secretion Systems. MBio, 2019, 10, .	1.8	48
88	Iron-Sequestering Nanocompartments as Multiplexed Electron Microscopy Gene Reporters. ACS Nano, 2019, 13, 8114-8123.	7.3	33
89	Metabolic control of BRISC–SHMT2 assembly regulates immune signalling. Nature, 2019, 570, 194-199.	13.7	51
90	Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature, 2019, 570, 468-473.	13.7	145

#	Article	IF	CITATIONS
91	Structural Basis for the Inhibition of CRISPR-Cas12a by Anti-CRISPR Proteins. Cell Host and Microbe, 2019, 25, 815-826.e4.	5.1	63
92	Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nature Communications, 2019, 10, 2342.	5.8	688
93	Structural basis for human coronavirus attachment to sialic acid receptors. Nature Structural and Molecular Biology, 2019, 26, 481-489.	3.6	475
94	Structures of the otopetrin proton channels Otop1 and Otop3. Nature Structural and Molecular Biology, 2019, 26, 518-525.	3.6	48
95	Structural basis for selective stalling of human ribosome nascent chain complexes by a drug-like molecule. Nature Structural and Molecular Biology, 2019, 26, 501-509.	3.6	67
96	Cryo-EM structure of the human L-type amino acid transporter 1 in complex with glycoprotein CD98hc. Nature Structural and Molecular Biology, 2019, 26, 510-517.	3.6	110
97	Hands on Methods for High Resolution Cryo-Electron Microscopy Structures of Heterogeneous Macromolecular Complexes. Frontiers in Molecular Biosciences, 2019, 6, 33.	1.6	38
98	Cryoâ€ <scp>EM</scp> structure of the Min <scp>CD</scp> copolymeric filament from <i>Pseudomonas aeruginosa</i> at 3.1 à resolution. FEBS Letters, 2019, 593, 1915-1926.	1.3	6
99	Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature, 2019, 570, 338-343.	13.7	467
100	3.1â€ [–] à structure of yeast RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion solved using streptavidin affinity grids. Journal of Structural Biology, 2019, 207, 270-278.	1.3	27
101	The pore structure of Clostridium perfringens epsilon toxin. Nature Communications, 2019, 10, 2641.	5.8	44
102	Reducing cryoEM file storage using lossy image formats. Journal of Structural Biology, 2019, 207, 49-55.	1.3	8
103	Structure of full-length human phenylalanine hydroxylase in complex with tetrahydrobiopterin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11229-11234.	3.3	44
104	Cryo-EM Structure of Chikungunya Virus in Complex with the Mxra8 Receptor. Cell, 2019, 177, 1725-1737.e16.	13.5	104
105	Structure of the DNA-Bound Spacer Capture Complex of a Type II CRISPR-Cas System. Molecular Cell, 2019, 75, 90-101.e5.	4.5	35
106	Cryo-Electron Microscopy Methodology: Current Aspects and Future Directions. Trends in Biochemical Sciences, 2019, 44, 837-848.	3.7	176
107	Fusion of DARPin to Aldolase Enables Visualization of Small Protein by Cryo-EM. Structure, 2019, 27, 1148-1155.e3.	1.6	32
108	Molecular Basis for poly(A) RNP Architecture and Recognition by the Pan2-Pan3 Deadenylase. Cell, 2019, 177, 1619-1631.e21.	13.5	70

#	Article	IF	CITATIONS
109	A new cryo-EM system for single particle analysis. Journal of Structural Biology, 2019, 207, 40-48.	1.3	57
110	Structural basis for elF2B inhibition in integrated stress response. Science, 2019, 364, 495-499.	6.0	91
111	Custom-Size, Functional, and Durable DNA Origami with Design-Specific Scaffolds. ACS Nano, 2019, 13, 5015-5027.	7.3	103
112	Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature, 2019, 568, 420-423.	13.7	528
113	Engineering the PP7 Virus Capsid as a Peptide Display Platform. ACS Nano, 2019, 13, 4443-4454.	7.3	40
114	Structural basis for assembly of vertical single Î ² -barrel viruses. Nature Communications, 2019, 10, 1184.	5.8	25
115	Architecture of the heteromeric GluA1/2 AMPA receptor in complex with the auxiliary subunit TARP γ8. Science, 2019, 364, .	6.0	78
116	Advances in domain and subunit localization technology for electron microscopy. Biophysical Reviews, 2019, 11, 149-155.	1.5	3
117	Mechanism of 5 \hat{E}^1 splice site transfer for human spliceosome activation. Science, 2019, 364, 362-367.	6.0	109
118	A Tail-Based Mechanism Drives Nucleosome Demethylation by the LSD2/NPAC Multimeric Complex. Cell Reports, 2019, 27, 387-399.e7.	2.9	31
119	Structural Basis of Dot1L Stimulation by Histone H2B Lysine 120ÂUbiquitination. Molecular Cell, 2019, 74, 1010-1019.e6.	4.5	115
120	An anti-CRISPR protein disables type V Cas12a by acetylation. Nature Structural and Molecular Biology, 2019, 26, 308-314.	3.6	104
121	An allosteric mechanism for potent inhibition of human ATP-citrate lyase. Nature, 2019, 568, 566-570.	13.7	105
122	Structural nanotechnology: three-dimensional cryo-EM and its use in the development of nanoplatforms for <i>in vitro</i> catalysis. Nanoscale, 2019, 11, 4130-4146.	2.8	15
123	Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science, 2019, 363, .	6.0	171
124	Mechanism of Cross-talk between H2B Ubiquitination and H3 Methylation by Dot1L. Cell, 2019, 176, 1490-1501.e12.	13.5	177
125	Structure of the complex I-like molecule NDH ofÂoxygenic photosynthesis. Nature, 2019, 566, 411-414.	13.7	123
126	Challenges and opportunities in cryo-EM single-particle analysis. Journal of Biological Chemistry, 2019, 294, 5181-5197.	1.6	273

TION

#	Article	IF	CITATIONS
127	The cryo-electron microscopy structure of Broad Bean Stain Virus suggests a common capsid assembly mechanism among comoviruses. Virology, 2019, 530, 75-84.	1.1	3
128	Structural organization of a Type III-A CRISPR effector subcomplex determined by X-ray crystallography and cryo-EM. Nucleic Acids Research, 2019, 47, 3765-3783.	6.5	7
129	Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science, 2019, 363, 753-756.	6.0	330
130	A role for the Saccharomyces cerevisiae ABCF protein New1 in translation termination/recycling. Nucleic Acids Research, 2019, 47, 8807-8820.	6.5	26
131	Future prospects of structural studies to advance our understanding of phage biology. Microbiology Australia, 2019, 40, 42.	0.1	0
132	Asymmetric opening of HIV-1 Env bound to CD4 and a coreceptor-mimicking antibody. Nature Structural and Molecular Biology, 2019, 26, 1167-1175.	3.6	43
133	Dimeric structures of quinol-dependent nitric oxide reductases (qNORs) revealed by cryo–electron microscopy. Science Advances, 2019, 5, eaax1803.	4.7	14
134	Structure of a Synthetic <i>β</i> -Carboxysome Shell. Plant Physiology, 2019, 181, 1050-1058.	2.3	54
135	Large-scale Parallel Design for Cryo-EM Structure Determination on Heterogeneous Many-core Architectures. , 2019, , .		1
136	Structure of an endosomal signaling GPCR–G protein–β-arrestin megacomplex. Nature Structural and Molecular Biology, 2019, 26, 1123-1131.	3.6	139
137	Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution. Nature Structural and Molecular Biology, 2019, 26, 1158-1166.	3.6	129
138	Cryo-EM structure of SMG1–SMG8–SMG9 complex. Cell Research, 2019, 29, 1027-1034.	5.7	26
139	Architecture of autoinhibited and active BRAF–MEK1–14-3-3 complexes. Nature, 2019, 575, 545-550.	13.7	197
140	Cryo-EM structure of substrate-free E.Âcoli Lon protease provides insights into the dynamics of Lon machinery. Current Research in Structural Biology, 2019, 1, 13-20.	1.1	19
141	A complex structure of arrestin-2 bound to a G protein-coupled receptor. Cell Research, 2019, 29, 971-983.	5.7	155
142	An MPER antibody neutralizes HIV-1 using germline features shared among donors. Nature Communications, 2019, 10, 5389.	5.8	44
143	Release factor-dependent ribosome rescue by BrfA in the Gram-positive bacterium Bacillus subtilis. Nature Communications, 2019, 10, 5397.	5.8	32
144	Overcoming Steric Restrictions of VRC01 HIV-1 Neutralizing Antibodies through Immunization. Cell Reports, 2019, 29, 3060-3072.e7.	2.9	26

#	Article	IF	CITATIONS
145	Diverse roles of TssAâ€like proteins in the assembly of bacterial type VI secretion systems. EMBO Journal, 2019, 38, e100825.	3.5	38
146	Structural determinants of microtubule minus end preference in CAMSAP CKK domains. Nature Communications, 2019, 10, 5236.	5.8	36
147	Cryo-EM Structure of the African Swine Fever Virus. Cell Host and Microbe, 2019, 26, 836-843.e3.	5.1	113
148	Mechanism of ribosome stalling during translation of a poly(A) tail. Nature Structural and Molecular Biology, 2019, 26, 1132-1140.	3.6	114
149	Structure of the native supercoiled flagellar hook as a universal joint. Nature Communications, 2019, 10, 5295.	5.8	28
150	Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Nature Structural and Molecular Biology, 2019, 26, 1151-1157.	3.6	218
151	InsP6 binding to PIKK kinases revealed by the cryo-EM structure of an SMG1–SMG8–SMG9 complex. Nature Structural and Molecular Biology, 2019, 26, 1089-1093.	3.6	30
152	Structures of the AMPA receptor in complex with its auxiliary subunit cornichon. Science, 2019, 366, 1259-1263.	6.0	61
153	High-resolution cryo-EM structures of respiratory complex I: Mechanism, assembly, and disease. Science Advances, 2019, 5, eaax9484.	4.7	109
154	Cryo-EM structure of the human MLL1 core complex bound to the nucleosome. Nature Communications, 2019, 10, 5540.	5.8	47
155	Structural basis of nucleosome assembly by the Abo1 AAA+ÂATPase histone chaperone. Nature Communications, 2019, 10, 5764.	5.8	36
156	Transferrin receptor binds virus capsid with dynamic motion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20462-20471.	3.3	24
157	Architecture of the mycobacterial type VII secretion system. Nature, 2019, 576, 321-325.	13.7	89
158	Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature, 2019, 575, 395-401.	13.7	146
159	Structure of the Fanconi anaemia monoubiquitin ligase complex. Nature, 2019, 575, 234-237.	13.7	80
160	Real-time cryo-electron microscopy data preprocessing with Warp. Nature Methods, 2019, 16, 1146-1152.	9.0	833
161	An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections. Nature Structural and Molecular Biology, 2019, 26, 980-987.	3.6	69
162	Structural basis of temperature sensation by the TRP channel TRPV3. Nature Structural and Molecular Biology, 2019, 26, 994-998.	3.6	84

#	Article	IF	CITATIONS
163	Structural Basis of Poxvirus Transcription: Transcribing and Capping Vaccinia Complexes. Cell, 2019, 179, 1525-1536.e12.	13.5	37
164	Cryo-EM structures of apo and antagonist-bound human Cav3.1. Nature, 2019, 576, 492-497.	13.7	116
165	Cryo–electron microscopy structures of human oligosaccharyltransferase complexes OST-A and OST-B. Science, 2019, 366, 1372-1375.	6.0	77
166	Structural Basis of Poxvirus Transcription: Vaccinia RNA Polymerase Complexes. Cell, 2019, 179, 1537-1550.e19.	13.5	41
167	Targeted selection of HIV-specific antibody mutations by engineering B cell maturation. Science, 2019, 366, .	6.0	118
168	GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature, 2019, 565, 454-459.	13.7	386
169	Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science, 2019, 363, 257-260.	6.0	162
170	The Molecular Control of Calcitonin Receptor Signaling. ACS Pharmacology and Translational Science, 2019, 2, 31-51.	2.5	38
171	Electron cryo-microscopy for elucidating the dynamic nature of live-protein complexes. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129436.	1.1	5
172	Non-uniformity of projection distributions attenuates resolution in Cryo-EM. Progress in Biophysics and Molecular Biology, 2020, 150, 160-183.	1.4	35
173	A microtubule RELION-based pipeline for cryo-EM image processing. Journal of Structural Biology, 2020, 209, 107402.	1.3	38
174	Cryo-Electron Microscopy: Moving Beyond X-Ray Crystal Structures for Drug Receptors and Drug Development. Annual Review of Pharmacology and Toxicology, 2020, 60, 51-71.	4.2	87
175	Interconversion between Anticipatory and Active GID E3ÂUbiquitin Ligase Conformations via Metabolically Driven Substrate Receptor Assembly. Molecular Cell, 2020, 77, 150-163.e9.	4.5	50
176	Tidy up cryo-EM sample grids with 3D printed tools. Journal of Structural Biology, 2020, 209, 107414.	1.3	1
177	Structural insights into the transition of Clostridioides difficile binary toxin from prepore to pore. Nature Microbiology, 2020, 5, 102-107.	5.9	34
178	The cryo-EM structure of African swine fever virus unravels a unique architecture comprising two icosahedral protein capsids and two lipoprotein membranes. Journal of Biological Chemistry, 2020, 295, 1-12.	1.6	76
179	Structural basis for itraconazole-mediated NPC1 inhibition. Nature Communications, 2020, 11, 152.	5.8	55
180	FACT caught in the act of manipulating the nucleosome. Nature, 2020, 577, 426-431.	13.7	160

	CITATION R	EPORT	
#	Article	IF	CITATIONS
181	Activation of the GLP-1 receptor by a non-peptidic agonist. Nature, 2020, 577, 432-436.	13.7	119
182	Structural insights and activating mutations in diverse pathologies define mechanisms of deregulation for phospholipase C gamma enzymes. EBioMedicine, 2020, 51, 102607.	2.7	31
183	Structure of the Vesicular Stomatitis Virus L Protein in Complex with Its Phosphoprotein Cofactor. Cell Reports, 2020, 30, 53-60.e5.	2.9	51
184	Cardiac muscle thin filament structures reveal calcium regulatory mechanism. Nature Communications, 2020, 11, 153.	5.8	145
185	Structural Basis of Human KCNQ1 Modulation and Gating. Cell, 2020, 180, 340-347.e9.	13.5	188
186	In Situ Structure of an Intact Lipopolysaccharide-Bound Bacterial Surface Layer. Cell, 2020, 180, 348-358.e15.	13.5	79
187	Cryo-EM Structure of a Bacterial Lipid Transporter YebT. Journal of Molecular Biology, 2020, 432, 1008-1019.	2.0	31
188	The cryo-EM Structure of Thermotoga maritima β-Galactosidase: Quaternary Structure Guides Protein Engineering. ACS Chemical Biology, 2020, 15, 179-188.	1.6	14
189	Structure of the human lipid exporter ABCB4 in a lipid environment. Nature Structural and Molecular Biology, 2020, 27, 62-70.	3.6	68
190	An inhibitor of complement C5 provides structural insights into activation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 362-370.	3.3	27
191	High-yield monolayer graphene grids for near-atomic resolution cryoelectron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1009-1014.	3.3	84
192	Asymmetric Molecular Architecture of the Human γ-Tubulin Ring Complex. Cell, 2020, 180, 165-175.e16.	13.5	111
193	Insights into the mechanism and regulation of the CbbQO-type Rubisco activase, a MoxR AAA+ ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 381-387.	3.3	33
194	TTC5 mediates autoregulation of tubulin via mRNA degradation. Science, 2020, 367, 100-104.	6.0	74
195	Cryo-EM Structure of Nucleotide-Bound Tel1ATM Unravels the Molecular Basis of Inhibition and Structural Rationale for Disease-Associated Mutations. Structure, 2020, 28, 96-104.e3.	1.6	28
196	Near-Complete Structure and Model of Tel1ATM from Chaetomium thermophilum Reveals a Robust Autoinhibited ATP State. Structure, 2020, 28, 83-95.e5.	1.6	24
197	Structures of virus-like capsids formed by the Drosophila neuronal Arc proteins. Nature Neuroscience, 2020, 23, 172-175.	7.1	46
198	A conformational switch in response to Chi converts RecBCD from phage destruction to DNA repair. Nature Structural and Molecular Biology, 2020, 27, 71-77.	3.6	55

#	Article	IF	CITATIONS
199	Point-group symmetry detection in three-dimensional charge density of biomolecules. Bioinformatics, 2020, 36, 2237-2243.	1.8	5
200	Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nature Chemical Biology, 2020, 16, 15-23.	3.9	150
201	Structure of H3K36-methylated nucleosome–PWWP complex reveals multivalent cross-gyre binding. Nature Structural and Molecular Biology, 2020, 27, 8-13.	3.6	57
202	Structural Insights into Electrophile Irritant Sensing by the Human TRPA1 Channel. Neuron, 2020, 105, 882-894.e5.	3.8	81
203	Structural basis of DNA targeting by a transposon-encoded CRISPR–Cas system. Nature, 2020, 577, 271-274.	13.7	86
204	Scaffold Simplification Strategy Leads to a Novel Generation of Dual Human Immunodeficiency Virus and Enterovirus-A71 Entry Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 349-368.	2.9	20
205	Isolation and characterization of a large photosystem l–lightâ€harvesting complex II supercomplex with an additional Lhca1–a4 dimer in Arabidopsis. Plant Journal, 2020, 102, 398-409.	2.8	17
206	Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nature Chemical Biology, 2020, 16, 7-14.	3.9	136
207	Overexpression, purification, enzymatic and microscopic characterization of recombinant mycobacterial F-ATP synthase. Biochemical and Biophysical Research Communications, 2020, 522, 374-380.	1.0	8
208	Structural Insights into the Human Pre-mRNA 3′-End Processing Machinery. Molecular Cell, 2020, 77, 800-809.e6.	4.5	53
209	Molecular mechanism of translational stalling by inhibitory codon combinations and poly(A) tracts. EMBO Journal, 2020, 39, e103365.	3.5	113
210	Structural insight into the <i>Staphylococcus aureus</i> ATP-driven exporter of virulent peptide toxins. Science Advances, 2020, 6, .	4.7	9
211	A Key Motif in the Cholesterol-Dependent Cytolysins Reveals a Large Family of Related Proteins. MBio, 2020, 11, .	1.8	15
212	Structural and Proteomic Studies of the Aureococcus anophagefferens Virus Demonstrate a Global Distribution of Virus-Encoded Carbohydrate Processing. Frontiers in Microbiology, 2020, 11, 2047.	1.5	5
213	Cryo-EM and MD infer water-mediated proton transport and autoinhibition mechanisms of V _o complex. Science Advances, 2020, 6, .	4.7	51
214	Structure and Reconstitution of an MCU–EMRE Mitochondrial Ca2+ Uniporter Complex. Journal of Molecular Biology, 2020, 432, 5632-5648.	2.0	8
215	Need for Speed: Examining Protein Behavior during CryoEM Grid Preparation at Different Timescales. Structure, 2020, 28, 1238-1248.e4.	1.6	61
216	A Structural Model of the Endogenous Human BAF Complex Informs Disease Mechanisms. Cell, 2020, 183, 802-817.e24.	13.5	100

#	Article	IF	CITATIONS
217	Structure of the 70S Ribosome from the Human Pathogen Acinetobacter baumannii in Complex with Clinically Relevant Antibiotics. Structure, 2020, 28, 1087-1100.e3.	1.6	16
218	Specific features and assembly of the plant mitochondrial complex I revealed by cryo-EM. Nature Communications, 2020, 11, 5195.	5.8	61
219	Analysis of translating mitoribosome reveals functional characteristics of translation in mitochondria of fungi. Nature Communications, 2020, 11, 5187.	5.8	34
220	Structure of inhibitor-bound mammalian complex I. Nature Communications, 2020, 11, 5261.	5.8	68
221	Cryo-EM structures reveal two distinct conformational states in a picornavirus cell entry intermediate. PLoS Pathogens, 2020, 16, e1008920.	2.1	17
222	Cryo-EM as a powerful tool for drug discovery. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127524.	1.0	48
223	Structure and Function of Stator Units of the Bacterial Flagellar Motor. Cell, 2020, 183, 244-257.e16.	13.5	151
224	Human Antibodies Targeting Influenza B Virus Neuraminidase Active Site Are Broadly Protective. Immunity, 2020, 53, 852-863.e7.	6.6	46
225	Light-coupled cryo-plunger for time-resolved cryo-EM. Journal of Structural Biology, 2020, 212, 107624.	1.3	23
226	Structural Basis of Tail-Anchored Membrane Protein Biogenesis by the GET Insertase Complex. Molecular Cell, 2020, 80, 72-86.e7.	4.5	71
227	Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell, 2020, 183, 1024-1042.e21.	13.5	1,195
228	Structures of B.Âsubtilis Maturation RNases Captured on 50S Ribosome with Pre-rRNAs. Molecular Cell, 2020, 80, 227-236.e5.	4.5	12
229	Structural basis for pH gating of the two-pore domain K+ channel TASK2. Nature, 2020, 586, 457-462.	13.7	45
230	High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica. Nature Communications, 2020, 11, 5101.	5.8	17
231	The structure of a red-shifted photosystem I reveals a red site in the core antenna. Nature Communications, 2020, 11, 5279.	5.8	17
232	Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. Science, 2020, 370, 1089-1094.	6.0	290
233	Adeno-Associated Virus (AAV-DJ)—Cryo-EM Structure at 1.56 à Resolution. Viruses, 2020, 12, 1194.	1.5	18
234	Structural Basis for Activation of the Heterodimeric GABAB Receptor. Journal of Molecular Biology, 2020, 432, 5966-5984.	2.0	33

#	Article	IF	CITATIONS
235	Cryoelectron-Microscopic Structure of the pKpQIL Conjugative Pili from Carbapenem-Resistant Klebsiella pneumoniae. Structure, 2020, 28, 1321-1328.e2.	1.6	26
236	Structural analysis reveals TLR7 dynamics underlying antagonism. Nature Communications, 2020, 11, 5204.	5.8	39
237	Single-particle cryo-EM at atomic resolution. Nature, 2020, 587, 152-156.	13.7	572
238	Atomic-resolution protein structure determination by cryo-EM. Nature, 2020, 587, 157-161.	13.7	454
239	Cryo-EM structure of the highly atypical cytoplasmic ribosome of <i>Euglena gracilis</i> . Nucleic Acids Research, 2020, 48, 11750-11761.	6.5	19
240	Insights into Lysosomal PI(3,5)P2 Homeostasis from a Structural-Biochemical Analysis of the PIKfyve Lipid Kinase Complex. Molecular Cell, 2020, 80, 736-743.e4.	4.5	45
241	Cryo-EM structure of a Ca2+-bound photosynthetic LH1-RC complex containing multiple αβ-polypeptides. Nature Communications, 2020, 11, 4955.	5.8	35
242	Cryo-EM with sub–1 à specimen movement. Science, 2020, 370, 223-226.	6.0	97
243	HIV-1 VRC01 Germline-Targeting Immunogens Select Distinct Epitope-Specific B Cell Receptors. Immunity, 2020, 53, 840-851.e6.	6.6	27
244	Cryo-EM structure of the deltaretroviral intasome in complex with the PP2A regulatory subunit B56Î ³ . Nature Communications, 2020, 11, 5043.	5.8	21
245	Functional analysis and cryo-electron microscopy of <i>Campylobacter jejuni</i> serine protease HtrA. Gut Microbes, 2020, 12, 1810532.	4.3	12
246	The Structural Basis for Kinetochore Stabilization by Cnn1/CENP-T. Current Biology, 2020, 30, 3425-3431.e3.	1.8	19
247	Rapid Response Subunit Vaccine Design in the Absence of Structural Information. Frontiers in Immunology, 2020, 11, 592370.	2.2	11
248	Genome Modularization Reveals Overlapped Gene Topology Is Necessary for Efficient Viral Reproduction. ACS Synthetic Biology, 2020, 9, 3079-3090.	1.9	14
249	Discovery of a Family of Mixed Lineage Kinase Domain-like Proteins in Plants and Their Role in Innate Immune Signaling. Cell Host and Microbe, 2020, 28, 813-824.e6.	5.1	50
250	Mechanism of strand exchange from RecA–DNA synaptic and D-loop structures. Nature, 2020, 586, 801-806.	13.7	45
251	Differential GLP-1R Binding and Activation by Peptide and Non-peptide Agonists. Molecular Cell, 2020, 80, 485-500.e7.	4.5	111
252	Structural and mechanistic bases for a potent HIV-1 capsid inhibitor. Science, 2020, 370, 360-364.	6.0	114

#	Article	IF	CITATIONS
253	Binding Mechanism Elucidation of the Acute Respiratory Disease Causing Agent Adenovirus of Serotype 7 to Desmoglein-2. Viruses, 2020, 12, 1075.	1.5	7
254	Consensus mutagenesis approach improves the thermal stability of system x _c ^{â^²} transporter, <scp>xCT</scp> , and enables <scp>cryoâ€EM</scp> analyses. Protein Science, 2020, 29, 2398-2407.	3.1	19
255	Structure of the human secretin receptor coupled to an engineered heterotrimeric G protein. Biochemical and Biophysical Research Communications, 2020, 533, 861-866.	1.0	15
256	Transport Cycle of Plasma Membrane Flippase ATP11C by Cryo-EM. Cell Reports, 2020, 32, 108208.	2.9	50
258	Structure of the Visual Signaling Complex between Transducin and Phosphodiesterase 6. Molecular Cell, 2020, 80, 237-245.e4.	4.5	21
259	Arrangement and symmetry of the fungal E3BP-containing core of the pyruvate dehydrogenase complex. Nature Communications, 2020, 11, 4667.	5.8	20
260	Selective inhibition of human translation termination by a drug-like compound. Nature Communications, 2020, 11, 4941.	5.8	31
261	Structural basis for the transition from translation initiation to elongation by an 80S-eIF5B complex. Nature Communications, 2020, 11, 5003.	5.8	26
262	The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin. Nature Plants, 2020, 6, 1300-1305.	4.7	33
263	Cryo-EM structures reveal distinct mechanisms of inhibition of the human multidrug transporter ABCB1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26245-26253.	3.3	137
264	Long-range intramolecular allostery and regulation in the dynein-like AAA protein Mdn1. Proceedings of the United States of America, 2020, 117, 18459-18469.	3.3	6
265	Structural basis of seamless excision and specific targeting by piggyBac transposase. Nature Communications, 2020, 11, 3446.	5.8	53
266	Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism. Nature Structural and Molecular Biology, 2020, 27, 743-751.	3.6	90
267	Construction of the Central Protuberance and L1 Stalk during 60S Subunit Biogenesis. Molecular Cell, 2020, 79, 615-628.e5.	4.5	48
268	Structure of the Inhibited State of the Sec Translocon. Molecular Cell, 2020, 79, 406-415.e7.	4.5	44
269	Structural Insights into the Mechanism of Mitoribosomal Large Subunit Biogenesis. Molecular Cell, 2020, 79, 629-644.e4.	4.5	54
270	Cryo-EM analysis of a membrane protein embedded in the liposome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18497-18503.	3.3	89
271	Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science, 2020, 369, 1249-1255.	6.0	635

ARTICLE IF CITATIONS # Structure of a filamentous virus uncovers familial ties within the archaeal virosphere. Virus 272 2.2 13 Evolution, 2020, 6, veaa023. Nucleosome binding by the pioneer transcription factor OCT4. Scientific Reports, 2020, 10, 11832. 1.6 Cryo-EM structures of calcium homeostasis modulator channels in diverse oligomeric assemblies. 274 4.7 32 Science Advances, 2020, 6, eaba8105. Structural basis of host protein hijacking in human T-cell leukemia virus integration. Nature 5.8 Communications, 2020, 11, 3121. Modular microfluidics enables kinetic insight from time-resolved cryo-EM. Nature Communications, 276 5.8 56 2020, 11, 3465. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nature Structural and Molecular Biology, 2020, 27, 846-854. 3.6 434 Haruspex: A Neural Network for the Automatic Identification of Oligonucleotides and Protein 278 1.6 7 Secondary Structure in Cryoâ€Electron Microscopy Maps. Angewandte Chemie, 2020, 132, 14898-14905. Small-molecule-induced polymerization triggers degradation of BCL6. Nature, 2020, 588, 164-168. 279 13.7 143 Structural basis for tuning activity and membrane specificity of bacterial cytolysins. Nature 280 5.8 13 Communications, 2020, 11, 5818. Structural basis for the final steps of human 40S ribosome maturation. Nature, 2020, 587, 683-687. 13.7 The Structure of an AAV5-AAVR Complex at 2.5 â,,« Resolution: Implications for Cellular Entry and Immune 282 1.5 20 Neutralization of AAV Gene Therapy Vectors. Viruses, 2020, 12, 1326. PV1 Protein from Plasmodium falciparum Exhibits Chaperone-Like Functions and Cooperates with 1.8 Hsp100s. International Journal of Molecular Sciences, 2020, 21, 8616. Structural asymmetry governs the assembly and GTPase activity of McrBC restriction complexes. 284 5.8 7 Nature Communications, 2020, 11, 5907. Phosphoregulation of Phase Separation by the SARS-CoV-2ÂN Protein Suggests a Biophysical Basis for its Dual Functions. Molecular Cell, 2020, 80, 1092-1103.e4. 4.5 286 Changes in Membrane Protein Structural Biology. Biology, 2020, 9, 401. 1.3 18 Diverse CRISPR-Cas Complexes Require Independent Translation of Small and Large Subunits from a Single Gene. Molecular Cell, 2020, 80, 971-979.e7. Essential role of accessory subunit LYRM6 in the mechanism of mitochondrial complex I. Nature 288 5.8 25 Communications, 2020, 11, 6008. 289 The structural basis of Rubisco phase separation in the pyrenoid. Nature Plants, 2020, 6, 1480-1490.

#	Article	IF	CITATIONS
290	Mechanism of protein-guided folding of the active site U2/U6 RNA during spliceosome activation. Science, 2020, 370, .	6.0	50
291	Elongational stalling activates mitoribosome-associated quality control. Science, 2020, 370, 1105-1110.	6.0	74
292	Cross-Neutralization of a SARS-CoV-2 Antibody to a Functionally Conserved Site Is Mediated by Avidity. Immunity, 2020, 53, 1272-1280.e5.	6.6	185
293	Identification of Integrator-PP2A complex (INTAC), an RNA polymerase II phosphatase. Science, 2020, 370,	6.0	104
294	Structure of the mature kinetoplastids mitoribosome and insights into its large subunit biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29851-29861.	3.3	42
295	Molecular architecture and domain arrangement of the placental malaria protein VAR2CSA suggests a model for carbohydrate binding. Journal of Biological Chemistry, 2020, 295, 18589-18603.	1.6	15
296	Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nature Methods, 2020, 17, 1214-1221.	9.0	801
297	Virus Assembly Pathways: Straying Away but Not Too Far. Small, 2020, 16, 2004475.	5.2	18
298	Cryo-EM structure of the inhibited (10S) form of myosin II. Nature, 2020, 588, 521-525.	13.7	59
299	Different conformational responses of the β2-adrenergic receptor-Gs complex upon binding of the partial agonist salbutamol or the full agonist isoprenaline. National Science Review, 2021, 8, .	4.6	20
300	Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science, 2020, 370, .	6.0	296
301	Structural insight into the assembly and conformational activation of human origin recognition complex. Cell Discovery, 2020, 6, 88.	3.1	3
302	Structural basis of ion transport and inhibition in ferroportin. Nature Communications, 2020, 11, 5686.	5.8	42
303	Structural basis for GLP-1 receptor activation by LY3502970, an orally active nonpeptide agonist. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29959-29967.	3.3	74
304	The cryo-EM structure of a Î ³ -TuSC elucidates architecture and regulation of minimal microtubule nucleation systems. Nature Communications, 2020, 11, 5705.	5.8	7
305	Cryoâ€EM of ABC transporters: an iceâ€cold solution to everything?. FEBS Letters, 2020, 594, 3776-3789.	1.3	17
306	Cryo-EM structures of intact V-ATPase from bovine brain. Nature Communications, 2020, 11, 3921.	5.8	46
307	Amorphous nickel titanium alloy film: A new choice for cryo electron microscopy sample preparation. Progress in Biophysics and Molecular Biology, 2020, 156, 3-13.	1.4	33

#	Article	IF	CITATIONS
308	The Binding of Palonosetron and Other Antiemetic Drugs to the Serotonin 5-HT3 Receptor. Structure, 2020, 28, 1131-1140.e4.	1.6	20
309	Molecular architecture and activation of the insecticidal protein Vip3Aa from Bacillus thuringiensis. Nature Communications, 2020, 11, 3974.	5.8	44
310	Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation. Nature Structural and Molecular Biology, 2020, 27, 942-949.	3.6	153
311	Structural mechanism for gating of a eukaryotic mechanosensitive channel of small conductance. Nature Communications, 2020, 11, 3690.	5.8	41
312	Enhanced optical imaging properties of lipid nanocapsules as vehicles for fluorescent conjugated polymers. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 297-308.	2.0	8
313	Structural insights into probe-dependent positive allosterism of the GLP-1 receptor. Nature Chemical Biology, 2020, 16, 1105-1110.	3.9	58
314	Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex. Cell, 2020, 182, 1560-1573.e13.	13.5	360
315	Architecture of the AP2/clathrin coat on the membranes of clathrin-coated vesicles. Science Advances, 2020, 6, eaba8381.	4.7	75
316	Crystallographic and cryogenic electron microscopic structures and enzymatic characterization of sulfur oxygenase reductase from Sulfurisphaera tokodaii. Journal of Structural Biology: X, 2020, 4, 100030.	0.7	3
317	Structural insights into differences in G protein activation by family A and family B GPCRs. Science, 2020, 369, .	6.0	103
318	In-cell architecture of an actively transcribing-translating expressome. Science, 2020, 369, 554-557.	6.0	192
319	Structures of the Cmr-β Complex Reveal the Regulation of the Immunity Mechanism of Type III-B CRISPR-Cas. Molecular Cell, 2020, 79, 741-757.e7.	4.5	43
320	Parkinson's disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20305-20315.	3.3	113
321	A Structure-Based Mechanism for DNA Entry into the Cohesin Ring. Molecular Cell, 2020, 79, 917-933.e9.	4.5	112
322	Structures of metabotropic GABAB receptor. Nature, 2020, 584, 310-314.	13.7	70
323	The structures of natively assembled clathrin-coated vesicles. Science Advances, 2020, 6, eaba8397.	4.7	45
324	Inhibition, crystal structures, and in-solution oligomeric structure of aldehyde dehydrogenase 9A1. Archives of Biochemistry and Biophysics, 2020, 691, 108477.	1.4	15
325	Molecular determinants for dsDNA translocation by the transcription-repair coupling and evolvability factor Mfd. Nature Communications, 2020, 11, 3740.	5.8	21

#	ARTICLE Mitochondrial complex I structure reveals ordered water molecules for catalysis and proton	IF 3.6	Citations
327	Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nature Structural and Molecular Biology, 2020, 27, 950-958.	3.6	268
328	High-Throughput Cryo-EM Enabled by User-Free Preprocessing Routines. Structure, 2020, 28, 858-869.e3.	1.6	44
329	Subnanometer-resolution structure determination in situ by hybrid subtomogram averaging - single particle cryo-EM. Nature Communications, 2020, 11, 3709.	5.8	44
330	A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks the Infections of Influenza Viruses and SARS-CoV-2. Cell Reports, 2020, 32, 108016.	2.9	66
331	Heterogeneity in human hippocampal CaMKII transcripts reveals allosteric hub-dependent regulation. Science Signaling, 2020, 13, .	1.6	29
332	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. PLoS Pathogens, 2020, 16, e1008665.	2.1	52
333	Cryo-EM Reveals Unanchored M1-Ubiquitin Chain Binding at hRpn11 of the 26S Proteasome. Structure, 2020, 28, 1206-1217.e4.	1.6	17
334	Structural basis for amino acid exchange by a human heteromeric amino acid transporter. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21281-21287.	3.3	22
336	Mesophasic organization of GABAA receptors in hippocampal inhibitory synapses. Nature Neuroscience, 2020, 23, 1589-1596.	7.1	52
337	Structural and functional analysis of protective antibodies targeting the threefold plateau of enterovirus 71. Nature Communications, 2020, 11, 5253.	5.8	11
338	Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nature Structural and Molecular Biology, 2020, 27, 1185-1193.	3.6	253
339	Visualization of the HIV-1 Env glycan shield across scales. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28014-28025.	3.3	57
340	Structural basis of Chikungunya virus inhibition by monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27637-27645.	3.3	35
341	Type III ATP synthase is a symmetry-deviated dimer that induces membrane curvature through tetramerization. Nature Communications, 2020, 11, 5342.	5.8	37
342	Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nature Structural and Molecular Biology, 2020, 27, 1194-1201.	3.6	196
343	Cryo-EM analysis of the SctV cytosolic domain from the enteropathogenic E. coli T3SS injectisome. Journal of Structural Biology, 2020, 212, 107660.	1.3	19
344	Cryo-EM Structure of Monomeric Photosystem II from Synechocystis sp. PCC 6803 Lacking the Water-Oxidation Complex. Joule, 2020, 4, 2131-2148.	11.7	36

#	Article	IF	CITATIONS
345	CryoEM structure of the type IVa pilus secretin required for natural competence in Vibrio cholerae. Nature Communications, 2020, 11, 5080.	5.8	21
346	Cryo-electron tomography of cardiac myofibrils reveals a 3D lattice spring within the Z-discs. Communications Biology, 2020, 3, 585.	2.0	16
347	MZT Proteins Form Multi-Faceted Structural Modules in the Î ³ -Tubulin Ring Complex. Cell Reports, 2020, 31, 107791.	2.9	42
348	Cryo-electron microscopy structure of the 70S ribosome from Enterococcus faecalis. Scientific Reports, 2020, 10, 16301.	1.6	15
349	Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain. Journal of Cell Biology, 2020, 219, .	2.3	84
350	Single particle cryoâ€EM of the complex between interphotoreceptor retinoidâ€binding protein and a monoclonal antibody. FASEB Journal, 2020, 34, 13918-13934.	0.2	6
351	Structural mechanism for replication origin binding and remodeling by a metazoan origin recognition complex and its co-loader Cdc6. Nature Communications, 2020, 11, 4263.	5.8	24
352	Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9. Nature Structural and Molecular Biology, 2020, 27, 1017-1023.	3.6	37
353	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2020, 16, e1008753.	2.1	61
354	Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature, 2020, 585, 303-308.	13.7	195
355	Structure of the Capsid Size-Determining Scaffold of "Satellite―Bacteriophage P4. Viruses, 2020, 12, 953.	1.5	15
356	Structure of a human 48 <i>S</i> translational initiation complex. Science, 2020, 369, 1220-1227.	6.0	138
357	Apple latent spherical virus structure with stable capsid frame supports quasi-stable protrusions expediting genome release. Communications Biology, 2020, 3, 488.	2.0	7
358	Structure of nucleosome-boundÂDNA methyltransferases DNMT3A and DNMT3B. Nature, 2020, 586, 151-155.	13.7	61
359	Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science, 2020, 370, 950-957.	6.0	504
360	Cryo-EM structure of the varicella-zoster virus A-capsid. Nature Communications, 2020, 11, 4795.	5.8	10
361	Structural characterization of a neutralizing mAb H16.001, a potent candidate for a common potency assay for various HPV16 VLPs. Npj Vaccines, 2020, 5, 89.	2.9	5
362	The coupling mechanism of mammalian respiratory complex I. Science, 2020, 370, .	6.0	157

#	Article	IF	CITATIONS
363	Present and Emerging Methodologies in Cryo-EM Single-Particle Analysis. Biophysical Journal, 2020, 119, 1281-1289.	0.2	43
364	Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy. Cell, 2020, 183, 1013-1023.e13.	13.5	227
365	Structural Basis of the Activation of Heterotrimeric Gs-Protein by Isoproterenol-Bound β1-Adrenergic Receptor. Molecular Cell, 2020, 80, 59-71.e4.	4.5	60
366	Trendbericht Biochemie: Klare Sicht auf zelluläe Nanomaschinen. Nachrichten Aus Der Chemie, 2020, 68, 58-61.	0.0	0
367	Pre-initiation and elongation structures of full-length La Crosse virus polymerase reveal functionally important conformational changes. Nature Communications, 2020, 11, 3590.	5.8	36
368	Connexin-46/50 in a dynamic lipid environment resolved by CryoEM at 1.9 à Nature Communications, 2020, 11, 4331.	5.8	66
369	Pre-pro is a fast pre-processor for single-particle cryo-EM by enhancing 2D classification. Communications Biology, 2020, 3, 508.	2.0	12
370	Assessment of Force Field Accuracy Using Cryogenic Electron Microscopy Data of Hyper-thermostable Glutamate Dehydrogenase. Journal of Physical Chemistry B, 2020, 124, 8479-8494.	1.2	2
371	Structure of the C9orf72 ARF GAP complex that is haploinsufficient in ALS and FTD. Nature, 2020, 585, 251-255.	13.7	55
372	Structural impact of K63 ubiquitin on yeast translocating ribosomes under oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22157-22166.	3.3	21
373	The cryoelectron microscopy structure of the human CDK-activating kinase. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22849-22857.	3.3	42
374	Fibril structures of diabetes-related amylin variants reveal a basis for surface-templated assembly. Nature Structural and Molecular Biology, 2020, 27, 1048-1056.	3.6	71
375	Sterols in an intramolecular channel of Smoothened mediate Hedgehog signaling. Nature Chemical Biology, 2020, 16, 1368-1375.	3.9	55
376	Structures of mouse DUOX1–DUOXA1 provide mechanistic insights into enzyme activation and regulation. Nature Structural and Molecular Biology, 2020, 27, 1086-1093.	3.6	33
377	Human germinal centres engage memory and naive B cells after influenza vaccination. Nature, 2020, 586, 127-132.	13.7	194
378	Cryo-EM structure of coronavirus-HKU1 haemagglutinin esterase reveals architectural changes arising from prolonged circulation in humans. Nature Communications, 2020, 11, 4646.	5.8	24
379	Bridging of DNA breaks activates PARP2–HPF1 to modify chromatin. Nature, 2020, 585, 609-613.	13.7	90
380	Cryo-EM structure of 90 <i>S</i> small ribosomal subunit precursors in transition states. Science, 2020, 369, 1477-1481.	6.0	58

#	Article	IF	CITATIONS
381	90 <i>S</i> pre-ribosome transformation into the primordial 40 <i>S</i> subunit. Science, 2020, 369, 1470-1476.	6.0	59
382	Mechanisms for target recognition and cleavage by the Cas12i RNA-guided endonuclease. Nature Structural and Molecular Biology, 2020, 27, 1069-1076.	3.6	38
383	Structural Insights into Lactococcal Siphophage p2 Baseplate Activation Mechanism. Viruses, 2020, 12, 878.	1.5	7
384	The native structure of the assembled matrix protein 1 of influenza A virus. Nature, 2020, 587, 495-498.	13.7	53
385	Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23571-23580.	3.3	40
386	De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 2020, 370, 426-431.	6.0	464
387	Cryo-EM structure of human Cx31.3/GJC3 connexin hemichannel. Science Advances, 2020, 6, eaba4996.	4.7	46
388	Structural basis for the inhibition of cGAS by nucleosomes. Science, 2020, 370, 455-458.	6.0	149
389	Structural basis for diamide modulation of ryanodine receptor. Nature Chemical Biology, 2020, 16, 1246-1254.	3.9	75
390	Structure and mechanism of B-family DNA polymerase ζ specialized for translesion DNA synthesis. Nature Structural and Molecular Biology, 2020, 27, 913-924.	3.6	42
391	Mechanism of ribosome rescue by alternative ribosome-rescue factor B. Nature Communications, 2020, 11, 4106.	5.8	26
392	In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science, 2020, 370, 203-208.	6.0	531
393	Structure and dynamics of the active Gs-coupled human secretin receptor. Nature Communications, 2020, 11, 4137.	5.8	46
394	A glycoprotein B-neutralizing antibody structure at 2.8 à uncovers a critical domain for herpesvirus fusion initiation. Nature Communications, 2020, 11, 4141.	5.8	23
395	Interaction of the pioneer transcription factor GATA3 with nucleosomes. Nature Communications, 2020, 11, 4136.	5.8	60
396	Structural basis for dimerization quality control. Nature, 2020, 586, 452-456.	13.7	36
397	Allosteric regulation of thioesterase superfamily member 1 by lipid sensor domain binding fatty acids and lysophosphatidylcholine. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22080-22089.	3.3	13
398	A cryptic tubulin-binding domain links MEKK1 to curved tubulin protomers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21308-21318.	3.3	12

ARTICLE IF CITATIONS Structural basis of transcription-translation coupling and collision in bacteria. Science, 2020, 369, 399 6.0 88 1355-1359. Structural basis of transcription-translation coupling. Science, 2020, 369, 1359-1365. 6.0 101 Cryo-electron Microscopy Structure of the Swine Acute Diarrhea Syndrome Coronavirus Spike 401 Glycoprotein Provides Insights into Evolution of Unique Coronavirus Spike Proteins. Journal of 17 1.5 Virology, 2020, 94, . Structural insights into the gating mechanism of human SLC26A9 mediated by its C-terminal sequence. 3.1 Cell Discovery, 2020, 6, 55. Targeting HIV Env immunogens to B cell follicles in nonhuman primates through immune complex or 403 2.9 39 protein nanoparticle formulations. Npj Vaccines, 2020, 5, 72. 404 Molecular insights into the human CLC-7/Ostm1 transporter. Science Advances, 2020, 6, eabb4747. 4.7 Structure of eukaryotic DNA polymerase I' bound to the PCNA clamp while encircling DNA. Proceedings 405 3.3 41 of the National Academy of Sciences of the United States of America, 2020, 117, 30344-30353. Assembly of the asymmetric human $\hat{1}^3$ -tubulin ring complex by RUVBL1-RUVBL2 AAA ATPase. Science 406 4.7 34 Advances, 2020, 6, . TranSPHIRE: automated and feedback-optimized on-the-fly processing for cryo-EM. Nature 407 5.8 60 Communications, 2020, 11, 5716. Structure of the human sodium leak channel NALCN in complex with FAM155A. Nature 408 5.8 24 Communications, 2020, 11, 5831. Structure of voltage-modulated sodium-selective NALCN-FAM155A channel complex. Nature 409 5.8 12 Communications, 2020, 11, 6199. Molecular basis for RNA polymerase-dependent transcription complex recycling by the helicase-like 5.8 29 motor protein HelD. Nature Communications, 2020, 11, 6420. The nuclear localization sequence mediates hnRNPA1 amyloid fibril formation revealed by cryoEM 411 5.8 33 structure. Nature Communications, 2020, 11, 6349. Human TRPC5 structures reveal interaction of a xanthine-based TRPC1/4/5 inhibitor with a conserved 36 lipid binding site. Communications Biology, 2020, 3, 704. The substrate specificity of the human TRAPPII complex's Rab-guanine nucleotide exchange factor 413 2.0 16 activity. Communications Biology, 2020, 3, 735. Gating by ionic strength and safety check by cyclic-di-AMP in the ABC transporter OpuA. Science 414 Advances, 2020, 6, . Structure of human RNA polymerase III. Nature Communications, 2020, 11, 6409. 415 5.8 50

CITATION REPORT

A hybrid approach reveals the allosteric regulation of GTP cyclohydrolase I. Proceedings of the 3.3 7 National Academy of Sciences of the United States of America, 2020, 117, 31838-31849.

#	Article	IF	CITATIONS
417	The Halastavi Ãirva Virus Intergenic Region IRES Promotes Translation by the Simplest Possible Initiation Mechanism. Cell Reports, 2020, 33, 108476.	2.9	11
418	Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs. Communications Biology, 2020, 3, 766.	2.0	32
419	Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction. Nature Communications, 2020, 11, 6437.	5.8	59
420	A Strain-Specific Inhibitor of Receptor-Bound HIV-1 Targets a Pocket near the Fusion Peptide. Cell Reports, 2020, 33, 108428.	2.9	5
421	SIMPLE 3.0. Stream single-particle cryo-EM analysis in real time. Journal of Structural Biology: X, 2020, 4, 100040.	0.7	23
422	The bacterial multidrug resistance regulator BmrR distorts promoter DNA to activate transcription. Nature Communications, 2020, 11, 6284.	5.8	28
423	Structure of native glycolipoprotein filaments in honeybee royal jelly. Nature Communications, 2020, 11, 6267.	5.8	13
424	Human Antibodies Protect against Aerosolized Eastern Equine Encephalitis Virus Infection. Cell, 2020, 183, 1884-1900.e23.	13.5	26
425	CryoEM Analysis of Lecithin:Cholesterol Acyltransferase in Complex with High-Density Lipoprotein Particles. Microscopy and Microanalysis, 2020, 26, 576-577.	0.2	0
426	Cryo-EM and Molecular Biology Approaches for Characterizing Flagellar Filament Structures of Caulobacter crescentus. Microscopy and Microanalysis, 2020, 26, 806-808.	0.2	0
427	Alpha-synuclein Fibrils Structure Determination in the Presence of Tau Using CryoEM. Microscopy and Microanalysis, 2020, 26, 1302-1304.	0.2	0
428	Automatic Pipeline for Cryo-EM Data Preprocessing. Microscopy and Microanalysis, 2020, 26, 2324-2325.	0.2	0
429	Cysteine oxidation and disulfide formation in the ribosomal exit tunnel. Nature Communications, 2020, 11, 5569.	5.8	26
430	Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 2020, 588, 498-502.	13.7	918
431	Structural mechanism of cGAS inhibition by theÂnucleosome. Nature, 2020, 587, 668-672.	13.7	157
432	Structure of LRRK2 in Parkinson's disease and model for microtubule interaction. Nature, 2020, 588, 344-349.	13.7	147
433	Folding of an Intrinsically Disordered Iron-Binding Peptide in Response to Sedimentation Revealed by Cryo-EM. Journal of the American Chemical Society, 2020, 142, 19551-19557.	6.6	14
434	Shotgun EM of mycobacterial protein complexes during stationary phase stress. Current Research in Structural Biology, 2020, 2, 204-212.	1.1	8

#	Article	IF	CITATIONS
435	An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science, 2020, 370, 1473-1479.	6.0	336
436	Cryo-EM Structure of the Fork Protection Complex Bound to CMG at a Replication Fork. Molecular Cell, 2020, 78, 926-940.e13.	4.5	111
437	Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients' B Cells. Cell, 2020, 182, 73-84.e16.	13.5	1,139
438	Local Stabilization of Subunit–Subunit Contacts Causes Global Destabilization of Hepatitis B Virus Capsids. ACS Chemical Biology, 2020, 15, 1708-1717.	1.6	23
439	Structural insights into the inhibition mechanism of human sterol O-acyltransferase 1 by a competitive inhibitor. Nature Communications, 2020, 11, 2478.	5.8	49
440	A distinct inhibitory mechanism of the V-ATPase by Vibrio VopQ revealed by cryo-EM. Nature Structural and Molecular Biology, 2020, 27, 589-597.	3.6	9
441	Structural basis for assembly and function of a diatom photosystem I-light-harvesting supercomplex. Nature Communications, 2020, 11, 2481.	5.8	56
442	Cryo-electron microscopy structure of the glucagon receptor with a dual-agonist peptide. Journal of Biological Chemistry, 2020, 295, 9313-9325.	1.6	31
443	Thermoresponsive Molecular Brushes with Propylene Oxide/Ethylene Oxide Copolymer Side Chains in Aqueous Solution. Macromolecules, 2020, 53, 4068-4081.	2.2	10
444	A unique binding mode of Nek2A to the <scp>APC</scp> /C allows its ubiquitination during prometaphase. EMBO Reports, 2020, 21, e49831.	2.0	18
445	Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nature Microbiology, 2020, 5, 1016-1025.	5.9	46
446	Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex by cryo-electron microscopy single particle analysis. Cell Research, 2020, 30, 520-531.	5.7	51
447	Structural insights into secretory immunoglobulin A and its interaction with a pneumococcal adhesin. Cell Research, 2020, 30, 602-609.	5.7	35
448	Structure of nevanimibe-bound tetrameric human ACAT1. Nature, 2020, 581, 339-343.	13.7	57
449	Anisotropic ESCRT-III architecture governs helical membrane tube formation. Nature Communications, 2020, 11, 1516.	5.8	55
450	Structural insights into assembly, operation and inhibition of a type I restriction–modification system. Nature Microbiology, 2020, 5, 1107-1118.	5.9	25
451	Mechanism of ligand activation of a eukaryotic cyclic nucleotideâ^'gated channel. Nature Structural and Molecular Biology, 2020, 27, 625-634.	3.6	40
452	Steric occlusion regulates proximal interactions of acyl carrier protein domain in fungal fatty acid synthase. Communications Biology, 2020, 3, 274.	2.0	10

#	Article	IF	CITATIONS
453	Interactions of a Bacterial RND Transporter with a Transmembrane Small Protein in a Lipid Environment. Structure, 2020, 28, 625-634.e6.	1.6	47
454	Microtubule Nucleation Properties of Single Human Î ³ TuRCs Explained by Their Cryo-EM Structure. Developmental Cell, 2020, 53, 603-617.e8.	3.1	99
455	Structure of the ER membrane complex, a transmembrane-domain insertase. Nature, 2020, 584, 475-478.	13.7	102
456	Cryo-EM structure of the human cohesin-NIPBL-DNA complex. Science, 2020, 368, 1454-1459.	6.0	171
457	2.7 Ã cryo-EM structure of vitrified M. musculus H-chain apoferritin from a compact 200 keV cryo-microscope. PLoS ONE, 2020, 15, e0232540.	1.1	9
458	HIV-1 Envelope and MPER Antibody Structures in Lipid Assemblies. Cell Reports, 2020, 31, 107583.	2.9	60
459	Structural and Biochemical Characterization of the nsp12-nsp7-nsp8 Core Polymerase Complex from SARS-CoV-2. Cell Reports, 2020, 31, 107774.	2.9	216
460	Parkinson's disease associated mutation E46K of α-synuclein triggers the formation of a distinct fibril structure. Nature Communications, 2020, 11, 2643.	5.8	76
461	Structures of Î \pm -synuclein filaments from multiple system atrophy. Nature, 2020, 585, 464-469.	13.7	446
462	Structural transitions in influenza haemagglutinin at membrane fusionÂpH. Nature, 2020, 583, 150-153.	13.7	87
463	Structural basis for membrane insertion by the human ER membrane protein complex. Science, 2020, 369, 433-436.	6.0	127
464	TEM bright field imaging of thick specimens: nodes in Thon ring patterns. Ultramicroscopy, 2020, 216, 113023.	0.8	10
465	The Integrity of the Intradimer Interface of the Hepatitis B Virus Capsid Protein Dimer Regulates Capsid Self-Assembly. ACS Chemical Biology, 2020, 15, 3124-3132.	1.6	20
466	Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nature Communications, 2020, 11, 2688.	5.8	304
467	Structure and mechanism of the Nap adhesion complex from the human pathogen Mycoplasma genitalium. Nature Communications, 2020, 11, 2877.	5.8	19
468	Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane. Nature, 2020, 584, 125-129.	13.7	128
469	Revisiting the host adhesion determinants of <i>Streptococcus thermophilus</i> siphophages. Microbial Biotechnology, 2020, 13, 1765-1779.	2.0	20
470	CBASS Immunity Uses CARF-Related Effectors to Sense 3′–5′- and 2′–5′-Linked Cyclic Oligonucle Signals and Protect Bacteria from Phage Infection. Cell, 2020, 182, 38-49.e17.	otide 13.5	137

#	Article	IF	CITATIONS
471	Structural Basis of Low-pH-Dependent Lysosomal Cholesterol Egress by NPC1 and NPC2. Cell, 2020, 182, 98-111.e18.	13.5	107
472	Structure and mechanism of DNA delivery of a gene transfer agent. Nature Communications, 2020, 11, 3034.	5.8	71
473	Structural basis for chemokine receptor CCR6 activation by the endogenous protein ligand CCL20. Nature Communications, 2020, 11, 3031.	5.8	69
474	Aldehyde-alcohol dehydrogenase undergoes structural transition to form extended spirosomes for substrate channeling. Communications Biology, 2020, 3, 298.	2.0	16
475	The quantum future of microscopy: Wave function engineering of electrons, ions, and nuclei. Applied Physics Letters, 2020, 116, .	1.5	26
476	Characterization of the Core Ribosomal Binding Region for the Oxazolidone Family of Antibiotics Using Cryo-EM. ACS Pharmacology and Translational Science, 2020, 3, 425-432.	2.5	21
477	Gating of human TRPV3 in a lipid bilayer. Nature Structural and Molecular Biology, 2020, 27, 635-644.	3.6	46
478	The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism. Nature Structural and Molecular Biology, 2020, 27, 645-652.	3.6	51
479	Cryo-EM structures of NPC1L1 reveal mechanisms of cholesterol transport and ezetimibe inhibition. Science Advances, 2020, 6, eabb1989.	4.7	49
480	A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science, 2020, 369, 650-655.	6.0	1,292
481	Structure and energy transfer pathways of the Dunaliella Salina photosystem I supercomplex. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148253.	0.5	21
482	Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 2020, 583, 290-295.	13.7	1,695
483	Structural basis for distinct operational modes and protease activation in AAA+ protease Lon. Science Advances, 2020, 6, eaba8404.	4.7	55
484	The structure of human CST reveals a decameric assembly bound to telomeric DNA. Science, 2020, 368, 1081-1085.	6.0	76
485	Characterization of a Giant PSI Supercomplex in the Symbiotic Dinoflagellate Symbiodiniaceae. Plant Physiology, 2020, 183, 1725-1734.	2.3	8
486	Cryo-EM structures of HKU2 and SADS-CoV spike glycoproteins provide insights into coronavirus evolution. Nature Communications, 2020, 11, 3070.	5.8	44
487	Structural basis of the activation of a metabotropic GABA receptor. Nature, 2020, 584, 298-303.	13.7	92
488	Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature, 2020, 583, 638-643.	13.7	175

		CITATION REPORT		
#	ARTICLE Molecular basis of Î2-arrestin coupling to formoterol-bound Î21-adrenoceptor, Nature, 2020, 583.	862-866	IF 13.7	CITATIONS
409		502 000.	13.7	1//
490	Cryoâ€electron microscopy structure of <scp>CLHM1</scp> ion channel from <scp><i>Caenorhaelegans</i></scp> . Protein Science, 2020, 29, 1803-1815.	bditis	3.1	11
491	DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiatior complex stability. Nature Communications, 2020, 11, 2828.	1	5.8	36
492	Use of paramagnetic 19F NMR to monitor domain movement in a glutamate transporter homolog Nature Chemical Biology, 2020, 16, 1006-1012.		3.9	31
493	Cryo-EM structure of an amyloid fibril formed by full-length human prion protein. Nature Structura and Molecular Biology, 2020, 27, 598-602.	al	3.6	112
494	Employing NaChBac for cryo-EM analysis of toxin action on voltage-gated Na ⁺ chan in nanodisc. Proceedings of the National Academy of Sciences of the United States of America, 20 117, 14187-14193.	nels)20,	3.3	33
495	Distinct Conformational States Underlie Pausing during Initiation of HIV-1 Reverse Transcription. Journal of Molecular Biology, 2020, 432, 4499-4522.		2.0	5
496	FtsK in motion reveals its mechanism for double-stranded DNA translocation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14202-14208.		3.3	35
497	CryoEM structures of human CMG–ATPγS–DNA and CMG–AND-1 complexes. Nucleic Acida 2020, 48, 6980-6995.	s Research,	6.5	56
498	Distinct pre-initiation steps in human mitochondrial translation. Nature Communications, 2020, 1 2932.	1,	5.8	45
499	Mechanism of effector capture and delivery by the type IV secretion system from Legionella pneumophila. Nature Communications, 2020, 11, 2864.		5.8	37
500	Cryo-EM structure of the nonameric CsgG-CsgF complex and its implications for controlling curli biogenesis in Enterobacteriaceae. PLoS Biology, 2020, 18, e3000748.		2.6	11
501	Atomic structure of potato virus X, the prototype of the Alphaflexiviridae family. Nature Chemical Biology, 2020, 16, 564-569.		3.9	29
502	Structural insight into arenavirus replication machinery. Nature, 2020, 579, 615-619.		13.7	51
503	Ball-and-chain inactivation in a calcium-gated potassium channel. Nature, 2020, 580, 288-293.		13.7	45
504	Structures of Three Actinobacteriophage Capsids: Roles of Symmetry and Accessory Proteins. Viru 2020, 12, 294.	ises,	1.5	14
505	Structural basis of G _s and G _i recognition by the human glucagon reception Science, 2020, 367, 1346-1352.	otor.	6.0	117
506	Haruspex: A Neural Network for the Automatic Identification of Oligonucleotides and Protein Secondary Structure in Cryoâ€Electron Microscopy Maps. Angewandte Chemie - International Edi 2020, 59, 14788-14795.	tion,	7.2	26

		CITATION REPORT		
#	Article		IF	CITATIONS
507	Discovery of a Regulatory Subunit of the Yeast Fatty Acid Synthase. Cell, 2020, 180, 11	130-1143.e20.	13.5	40
508	Stepwise Promoter Melting by Bacterial RNA Polymerase. Molecular Cell, 2020, 78, 275	5-288.e6.	4.5	88
509	Cryo-EM structure of the human PAC1 receptor coupled to an engineered heterotrimer Nature Structural and Molecular Biology, 2020, 27, 274-280.	·ic G protein.	3.6	39
510	Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature, 2020), 579, 448-451.	13.7	106
511	DNA clamp function of the monoubiquitinated Fanconi anaemia ID complex. Nature, 20	020, 580, 278-282.	13.7	64
512	Insights into the improved macrolide inhibitory activity from the high-resolution cryo-El of dirithromycin bound to the <i>E. coli</i> 70S ribosome. Rna, 2020, 26, 715-723.	M structure	1.6	15
513	Structural elucidation of the <i>Clostridioides difficile</i> transferase toxin reveals a sin binding mode for the enzyme. Proceedings of the National Academy of Sciences of the America, 2020, 117, 6139-6144.	ngle-site United States of	3.3	17
514	Pathogenic siderophore ABC importer YbtPQ adopts a surprising fold of exporter. Scier 2020, 6, eaay7997.	nce Advances,	4.7	27
515	Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 1444-1448.	, 2020, 367,	6.0	4,319
516	Cryo-EM structures of the human PA200 and PA200-20S complex reveal regulation of popening and two PA200 apertures. PLoS Biology, 2020, 18, e3000654.	proteasome gate	2.6	24
517	Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 2020), 181, 281-292.e6.	13.5	6,979
518	A Plug-and-Latch Mechanism for Gating the Mechanosensitive Piezo Channel. Neuron, 438-451.e6.	2020, 106,	3.8	53
519	Structure and Dynamics of Adrenomedullin Receptors AM ₁ and AM _{ Key Mechanisms in the Control of Receptor Phenotype by Receptor Activity-Modifying Pharmacology and Translational Science, 2020, 3, 263-284.}	2 Reveal Proteins. ACS	2.5	71
520	Cryo-EM structure of the prefusion state of canine distemper virus fusion protein ector Journal of Structural Biology: X, 2020, 4, 100021.	domain.	0.7	4
521	The cryo-EM structure of the SNX–BAR Mvp1 tetramer. Nature Communications, 202	20, 11, 1506.	5.8	22
522	RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1. Nat and Molecular Biology, 2020, 27, 323-332.	ture Structural	3.6	97
523	Molecular analysis of the ribosome recycling factor <scp>ABCE</scp> 1 bound to the 3 postâ€splitting complex. EMBO Journal, 2020, 39, e103788.	305	3.5	24
524	A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds. Natu 409-412.	re, 2020, 580,	13.7	72

		Citation Report		
#	Article		IF	CITATIONS
525	The ABC exporter IrtAB imports and reduces mycobacterial siderophores. Nature, 2020), 580, 413-417.	13.7	63
526	Structure of a trapped radical transfer pathway within a ribonucleotide reductase holo Science, 2020, 368, 424-427.	complex.	6.0	82
527	Structural Basis for pri-miRNA Recognition by Drosha. Molecular Cell, 2020, 78, 423-43	33.e5.	4.5	60
528	Could Egg White Lysozyme be Solved by Single Particle Cryo-EM?. Journal of Chemical Modeling, 2020, 60, 2605-2613.	Information and	2.5	11
529	Structural basis for the increased processivity of D-family DNA polymerases in complex Nature Communications, 2020, 11, 1591.	with PCNA.	5.8	34
530	Synthetic antibodies against BRIL as universal fiducial marks for singleâ^particle cryoE determination of membrane proteins. Nature Communications, 2020, 11, 1598.	M structure	5.8	57
531	Cryo-EM structures of the ATP release channel pannexin 1. Nature Structural and Mole 2020, 27, 373-381.	cular Biology,	3.6	85
532	Structure and mechanism of the RNA polymerase II transcription machinery. Genes and 2020, 34, 465-488.	l Development,	2.7	167
533	A thermophilic phage uses a small terminase protein with a fixed helix–turn–helix of Biological Chemistry, 2020, 295, 3783-3793.	geometry. Journal	1.6	7
534	Novel tau filament fold in corticobasal degeneration. Nature, 2020, 580, 283-287.		13.7	381
535	Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence <i>Drosophila</i> . Science, 2020, 367, 1230-1234.	in	6.0	140
536	The MiDAC histone deacetylase complex is essential for embryonic development and h multivalent structure. Nature Communications, 2020, 11, 3252.	as a unique	5.8	51
537	Beyond protein structure determination with MicroED. Current Opinion in Structural B 64, 51-58.	iology, 2020,	2.6	15
538	Tetracenomycin X inhibits translation by binding within the ribosomal exit tunnel. Natu Biology, 2020, 16, 1071-1077.	ıre Chemical	3.9	43
539	Structure of Human ATG9A, the Only Transmembrane Protein of the Core Autophagy N Reports, 2020, 31, 107837.	Лаchinery. Cell	2.9	108
540	Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading. Nat 640-645.	ure, 2020, 584,	13.7	75
541	Irritant-evoked activation and calcium modulation of the TRPA1 receptor. Nature, 2020), 585, 141-145.	13.7	93
542	Atomic structure of the <i>Campylobacter jejuni</i> flagellar filament reveals how ε P escaped Toll-like receptor 5 surveillance. Proceedings of the National Academy of Scier United States of America, 2020, 117, 16985-16991.	roteobacteria nces of the	3.3	30

# 543	ARTICLE Restriction of HIV-1 Escape by a Highly Broad and Potent Neutralizing Antibody. Cell, 2020, 180, 471-489.e22.	IF 13.5	Citations
544	Structure and dynamics of the ASB9 CUL-RING E3 Ligase. Nature Communications, 2020, 11, 2866.	5.8	18
545	Structural insight into precursor ribosomal RNA processing by ribonuclease MRP. Science, 2020, 369, 656-663.	6.0	28
546	Ctf18-RFC and DNA Pol ïµ form a stable leading strand polymerase/clamp loader complex required for normal and perturbed DNA replication. Nucleic Acids Research, 2020, 48, 8128-8145.	6.5	28
547	How low can we go? Structure determination of small biological complexes using single-particle cryo-EM. Current Opinion in Structural Biology, 2020, 64, 9-16.	2.6	40
548	FlexAlign: An Accurate and Fast Algorithm for Movie Alignment in Cryo-Electron Microscopy. Electronics (Switzerland), 2020, 9, 1040.	1.8	5
549	CryoEM structure of the tegumented capsid of Epstein-Barr virus. Cell Research, 2020, 30, 873-884.	5.7	18
550	Computational Methods for Single-Particle Electron Cryomicroscopy. Annual Review of Biomedical Data Science, 2020, 3, 163-190.	2.8	49
551	Structural insight into mitochondrial \hat{l}^2 -barrel outer membrane protein biogenesis. Nature Communications, 2020, 11, 3290.	5.8	48
552	Structural insights into Fe–S protein biogenesis by the CIA targeting complex. Nature Structural and Molecular Biology, 2020, 27, 735-742.	3.6	22
553	Insights into the assembly and activation of the microtubule nucleator Î ³ -TuRC. Nature, 2020, 578, 467-471.	13.7	106
554	Structural insights into immunoglobulin M. Science, 2020, 367, 1014-1017.	6.0	88
555	Structure of an active human histone pre-mRNA 3′-end processing machinery. Science, 2020, 367, 700-703.	6.0	76
556	Cryo-EM structure of human type-3 inositol triphosphate receptor reveals the presence of a self-binding peptide that acts as an antagonist. Journal of Biological Chemistry, 2020, 295, 1743-1753.	1.6	26
557	Mammalian Retromer Is an Adaptable Scaffold for Cargo Sorting from Endosomes. Structure, 2020, 28, 393-405.e4.	1.6	34
558	Cryo-EM study of an archaeal 30S initiation complex gives insights into evolution of translation initiation. Communications Biology, 2020, 3, 58.	2.0	27
559	Structural basis for energy and electron transfer of the photosystem l–IsiA–flavodoxin supercomplex. Nature Plants, 2020, 6, 167-176.	4.7	48
560	Mechanism of Crosstalk between the LSD1 Demethylase and HDAC1 Deacetylase in the CoREST Complex. Cell Reports, 2020, 30, 2699-2711.e8.	2.9	74

	CITATION	Report	
#	Article	IF	CITATIONS
561	Structure of the neurotensin receptor 1 in complex with \hat{I}^2 -arrestin 1. Nature, 2020, 579, 303-308.	13.7	260
562	Cryo-EM structures of the XPF-ERCC1 endonuclease reveal how DNA-junction engagement disrupts an auto-inhibited conformation. Nature Communications, 2020, 11, 1120.	5.8	24
563	Cryo-EM structures reveal translocational unfolding in the clostridial binary iota toxin complex. Nature Structural and Molecular Biology, 2020, 27, 288-296.	3.6	21
564	Unsupervised particle sorting for high-resolution single-particle cryo-EM. Inverse Problems, 2020, 36, 044002.	1.0	11
565	Hyper-molecules: on the representation and recovery of dynamical structures for applications in flexible macro-molecules in cryo-EM. Inverse Problems, 2020, 36, 044005.	1.0	17
566	Comparing Cryo-EM Reconstructions and Validating Atomic Model Fit Using Difference Maps. Journal of Chemical Information and Modeling, 2020, 60, 2552-2560.	2.5	29
567	Structure of formylpeptide receptor 2-Gi complex reveals insights into ligand recognition and signaling. Nature Communications, 2020, 11, 885.	5.8	85
568	FANCD2–FANCI is a clamp stabilized on DNA by monoubiquitination of FANCD2 during DNA repair. Nature Structural and Molecular Biology, 2020, 27, 240-248.	3.6	80
569	Phage liquid crystalline droplets form occlusive sheaths that encapsulate and protect infectious rod-shaped bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4724-4731.	3.3	80
570	Structure of a paramyxovirus polymerase complex reveals a unique methyltransferase-CTD conformation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4931-4941.	3.3	70
571	What Could Go Wrong? A Practical Guide to Single-Particle Cryo-EM: From Biochemistry to Atomic Models. Journal of Chemical Information and Modeling, 2020, 60, 2458-2469.	2.5	25
572	Structure of Microtubule-Trapped Human Kinesin-5 and Its Mechanism of Inhibition Revealed Using Cryoelectron Microscopy. Structure, 2020, 28, 450-457.e5.	1.6	22
573	Structural Effects and Functional Implications of Phalloidin and Jasplakinolide Binding to Actin Filaments. Structure, 2020, 28, 437-449.e5.	1.6	83
574	Need for Cross-Validation of Single Particle Cryo-EM. Journal of Chemical Information and Modeling, 2020, 60, 2413-2418.	2.5	5
575	Encapsulation mechanisms and structural studies of GRM2 bacterial microcompartment particles. Nature Communications, 2020, 11, 388.	5.8	44
576	Structural insights into NDH-1 mediated cyclic electron transfer. Nature Communications, 2020, 11, 888.	5.8	54
577	Structure of the processive human Pol δholoenzyme. Nature Communications, 2020, 11, 1109.	5.8	103
578	Structure of the M2 muscarinic receptor–β-arrestin complex in a lipid nanodisc. Nature, 2020, 579, 297-302.	13.7	238

#	Article	IF	CITATIONS
579	Structures of Gα Proteins in Complex with Their Chaperone Reveal Quality Control Mechanisms. Cell Reports, 2020, 30, 3699-3709.e6.	2.9	18
580	FBXL5 Regulates IRP2 Stability in Iron Homeostasis via an Oxygen-Responsive [2Fe2S] Cluster. Molecular Cell, 2020, 78, 31-41.e5.	4.5	87
581	MetAP-like Ebp1 occupies the human ribosomal tunnel exit and recruits flexible rRNA expansion segments. Nature Communications, 2020, 11, 776.	5.8	36
582	Measurement of atom resolvability in cryo-EM maps with Q-scores. Nature Methods, 2020, 17, 328-334.	9.0	230
583	Structures of AAA protein translocase Bcs1 suggest translocation mechanism of a folded protein. Nature Structural and Molecular Biology, 2020, 27, 202-209.	3.6	33
584	Structural and Functional Comparison of Salmonella Flagellar Filaments Composed of FljB and FliC. Biomolecules, 2020, 10, 246.	1.8	35
585	NEDD8Ânucleates a multivalent cullin–RING–UBE2D ubiquitin ligation assembly. Nature, 2020, 578, 461-466.	13.7	178
586	Investigating eukaryotic cells with cryo-ET. Molecular Biology of the Cell, 2020, 31, 87-100.	0.9	19
587	Redox-coupled proton pumping drives carbon concentration in the photosynthetic complex I. Nature Communications, 2020, 11, 494.	5.8	62
588	Cryo-Electron Microscopy Structure of the αIIbβ3-Abciximab Complex. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 624-637.	1.1	12
589	Cryo-EM Reveals Integrin-Mediated TGF-β Activation without Release from Latent TGF-β. Cell, 2020, 180, 490-501.e16.	13.5	102
590	Cryo-EM structures of cardiac thin filaments reveal the 3D architecture of troponin. Journal of Structural Biology, 2020, 209, 107450.	1.3	22
591	Structure of spastin bound to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation. Journal of Biological Chemistry, 2020, 295, 435-443.	1.6	38
592	Structure of a rabies virus polymerase complex from electron cryo-microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2099-2107.	3.3	58
593	Structural basis of p62/SQSTM1 helical filaments and their role in cellular cargo uptake. Nature Communications, 2020, 11, 440.	5.8	71
594	Structure of the Bcs1 AAA-ATPase suggests an airlock-like translocation mechanism for folded proteins. Nature Structural and Molecular Biology, 2020, 27, 142-149.	3.6	32
595	Structure of the cell-binding component of the <i>Clostridium difficile</i> binary toxin reveals a di-heptamer macromolecular assembly. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1049-1058.	3.3	23
596	Cryo-EM Structure of the Human Cannabinoid Receptor CB2-Gi Signaling Complex. Cell, 2020, 180, 645-654.e13.	13.5	167

#	Article	IF	CITATIONS
597	Structural basis for electron transport mechanism of complex I-like photosynthetic NAD(P)H dehydrogenase. Nature Communications, 2020, 11, 610.	5.8	68
598	Toward a Structural Understanding of Class B GPCR Peptide Binding and Activation. Molecular Cell, 2020, 77, 656-668.e5.	4.5	92
599	Cryo-EM structure of the respiratory syncytial virus RNA polymerase. Nature Communications, 2020, 11, 368.	5.8	61
600	Constructing protein polyhedra via orthogonal chemical interactions. Nature, 2020, 578, 172-176.	13.7	100
601	Structure of the transcription coactivator SAGA. Nature, 2020, 577, 717-720.	13.7	112
602	Structure of SAGA and mechanism of TBP deposition on gene promoters. Nature, 2020, 577, 711-716.	13.7	87
603	Cryo-EM Structure of Full-length HIV-1 Env Bound With the Fab of Antibody PG16. Journal of Molecular Biology, 2020, 432, 1158-1168.	2.0	47
604	Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization. Immunity, 2020, 52, 388-403.e12.	6.6	71
605	Energy landscape of domain motion in glutamate dehydrogenase deduced from cryoâ€electron microscopy. FEBS Journal, 2020, 287, 3472-3493.	2.2	27
606	The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis. Science Advances, 2020, 6, eaay6415.	4.7	50
607	Structural basis of proton-coupled potassium transport in the KUP family. Nature Communications, 2020, 11, 626.	5.8	60
608	Structure and conformational cycle of a bacteriophage-encoded chaperonin. PLoS ONE, 2020, 15, e0230090.	1.1	8
609	Cryo-EM structure of the Hedgehog release protein Dispatched. Science Advances, 2020, 6, eaay7928.	4.7	36
610	Alternative splicing controls teneurin-latrophilin interaction and synapse specificity by a shape-shifting mechanism. Nature Communications, 2020, 11, 2140.	5.8	36
611	LIS1 promotes the formation of activated cytoplasmic dynein-1 complexes. Nature Cell Biology, 2020, 22, 518-525.	4.6	93
612	Sub-2 Angstrom resolution structure determination using single-particle cryo-EM at 200â€ [–] keV. Journal of Structural Biology: X, 2020, 4, 100020.	0.7	43
613	Impact of GPCR Structures on Drug Discovery. Cell, 2020, 181, 81-91.	13.5	229
614	Structure of the Native Muscle-type Nicotinic Receptor and Inhibition by Snake Venom Toxins. Neuron, 2020, 106, 952-962.e5.	3.8	138

	CHATION	LEPORT	
#	ARTICLE Structural insights into tetraspanin CD9 function. Nature Communications, 2020, 11, 1606.	IF 5.8	CITATIONS
616	Structural morphing in a symmetry-mismatched viral vertex. Nature Communications, 2020, 11, 1713.	5.8	27
617	Cryo-EM structure of the RNA-rich plant mitochondrial ribosome. Nature Plants, 2020, 6, 377-383.	4.7	62
618	Symmetry mismatch in the MS-ring of the bacterial flagellar rotor explains the structural coordination of secretion and rotation. Nature Microbiology, 2020, 5, 966-975.	5.9	62
619	Structural and functional characterization of the bestrophin-2 anion channel. Nature Structural and Molecular Biology, 2020, 27, 382-391.	3.6	25
620	Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core. Nature Structural and Molecular Biology, 2020, 27, 417-423.	3.6	73
621	Comparative Molecular Biology Approaches for the Production of Poliovirus Virus-Like Particles Using <i>Pichia pastoris</i> . MSphere, 2020, 5, .	1.3	22
622	Molecular and Low-Resolution Structural Characterization of the Na+-Translocating Glutaconyl-CoA Decarboxylase From Clostridium symbiosum. Frontiers in Microbiology, 2020, 11, 480.	1.5	4
623	Cryo-EM structure of the PlexinC1/A39R complex reveals inter-domain interactions critical for ligand-induced activation. Nature Communications, 2020, 11, 1953.	5.8	13
624	The structure of helical lipoprotein lipase reveals an unexpected twist in lipase storage. Proceedings of the United States of America, 2020, 117, 10254-10264.	3.3	25
625	Selective PP2A Enhancement through Biased Heterotrimer Stabilization. Cell, 2020, 181, 688-701.e16.	13.5	107
626	Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex. Science, 2020, 368, .	6.0	143
627	Mechanisms of OCT4-SOX2 motif readout on nucleosomes. Science, 2020, 368, 1460-1465.	6.0	160
628	Aligning the Symmetry of the Type III Secretion System Needle Complex. Journal of Chemical Information and Modeling, 2020, 60, 2430-2435.	2.5	7
629	Cryo-EM structures reveal intricate Fe-S cluster arrangement and charging in Rhodobacter capsulatus formate dehydrogenase. Nature Communications, 2020, 11, 1912.	5.8	48
630	Quantifying the heterogeneity of macromolecular machines by mass photometry. Nature Communications, 2020, 11, 1772.	5.8	146
631	Structural and functional characterization of the severe fever with thrombocytopenia syndrome virus L protein. Nucleic Acids Research, 2020, 48, 5749-5765.	6.5	44
632	Cryo-EM structure of the human heteromeric amino acid transporter b ^{0,+} AT-rBAT. Science Advances, 2020, 6, eaay6379.	4.7	27
	Сітат	ion Report	
-----	---	------------	-----------
#	Article	IF	CITATIONS
633	The Ccr4-Not complex monitors the translating ribosome for codon optimality. Science, 2020, 368, .	6.0	180
634	Ribosome Dimerization Protects the Small Subunit. Journal of Bacteriology, 2020, 202, .	1.0	18
635	Dynamics in the murine norovirus capsid revealed by high-resolution cryo-EM. PLoS Biology, 2020, 18, e3000649.	2.6	19
636	Visualization of two architectures in class-II CAP-dependent transcription activation. PLoS Biology, 2020, 18, e3000706.	2.6	25
637	Structure of the protective nematode protease complex H-gal-GP and its conservation across roundworm parasites. PLoS Pathogens, 2020, 16, e1008465.	2.1	15
638	Mechanism of ribosome shutdown by RsfS in Staphylococcus aureus revealed by integrative structural biology approach. Nature Communications, 2020, 11, 1656.	5.8	30
639	A systematic assessment of mycobacterial F ₁ â€ATPase subunit ε's role in latent ATPase hydrolysis. FEBS Journal, 2021, 288, 818-836.	2.2	11
640	Binding of a negative allosteric modulator and competitive antagonist can occur simultaneously at the ionotropic glutamate receptor GluA2. FEBS Journal, 2021, 288, 995-1007.	2.2	9
641	Mechanism of auto-inhibition and activation of Mec1ATR checkpoint kinase. Nature Structural and Molecular Biology, 2021, 28, 50-61.	3.6	17
642	The cytoplasmic domain of the AAA+ protease FtsH is tilted with respect to the membrane to facilitate substrate entry. Journal of Biological Chemistry, 2021, 296, 100029.	1.6	12
643	Mimicry of Canonical Translation Elongation Underlies Alanine Tail Synthesis in RQC. Molecular Cell, 2021, 81, 104-114.e6.	4.5	30
644	Structural Basis for Bacterial Ribosome-Associated Quality Control by RqcH and RqcP. Molecular Cell, 2021, 81, 115-126.e7.	4.5	41
645	Cryo-EM Structures Reveal Transcription Initiation Steps by Yeast Mitochondrial RNA Polymerase. Molecular Cell, 2021, 81, 268-280.e5.	4.5	15
646	ISRIB Blunts the Integrated Stress Response by Allosterically Antagonising the Inhibitory Effect of Phosphorylated eIF2 on eIF2B. Molecular Cell, 2021, 81, 88-103.e6.	4.5	93
647	Distinct Structures and Dynamics of Chromatosomes with Different Human Linker Histone Isoforms. Molecular Cell, 2021, 81, 166-182.e6.	4.5	74
648	Mechanism of spliceosome remodeling by the ATPase/helicase Prp2 and its coactivator Spp2. Science, 2021, 371, .	6.0	35
649	Structural Basis for Virulence Activation of Francisella tularensis. Molecular Cell, 2021, 81, 139-152.e10.	4.5	21
650	Pre-termination Transcription Complex: Structure and Function. Molecular Cell, 2021, 81, 281-292.e8.	4.5	62

#	Article	IF	CITATIONS
651	Structural insights into assembly and function of the RSC chromatin remodeling complex. Nature Structural and Molecular Biology, 2021, 28, 71-80.	3.6	25
652	Structures of radial spokes and associated complexes important for ciliary motility. Nature Structural and Molecular Biology, 2021, 28, 29-37.	3.6	81
653	Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates. Cell, 2021, 184, 370-383.e13.	13.5	143
654	Architecture of the Tuberous Sclerosis Protein Complex. Journal of Molecular Biology, 2021, 433, 166743.	2.0	16
655	Cryo-EM structure of CtBP2 confirms tetrameric architecture. Structure, 2021, 29, 310-319.e5.	1.6	15
656	Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM. Science Advances, 2021, 7, .	4.7	320
657	Capping pores of alphavirus nsP1 gate membranous viral replication factories. Nature, 2021, 589, 615-619.	13.7	67
658	Structural basis for inhibition of the type I-F CRISPR–Cas surveillance complex by AcrIF4, AcrIF7Âand AcrIF14. Nucleic Acids Research, 2021, 49, 584-594.	6.5	25
659	Lipid-bound ApoE3 self-assemble into elliptical disc-shaped particles. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183495.	1.4	3
660	Structure of the Maturing 90S Pre-ribosome in Association with the RNA Exosome. Molecular Cell, 2021, 81, 293-303.e4.	4.5	36
661	Cryo-EM Structure of the Prostaglandin E Receptor EP4 Coupled to G Protein. Structure, 2021, 29, 252-260.e6.	1.6	32
662	Structure of the miniature type V-F CRISPR-Cas effector enzyme. Molecular Cell, 2021, 81, 558-570.e3.	4.5	95
663	Advances in cryo-EM and ED with a cold-field emission beam and energy filtration —Refinements of the CRYO ARM 300 system in RIKEN SPring-8 center—. Microscopy (Oxford, England), 2021, 70, 232-240.	0.7	17
664	Experimental evaluation of super-resolution imaging and magnification choice in single-particle cryo-EM. Journal of Structural Biology: X, 2021, 5, 100047.	0.7	8
665	Electron microscopy as a critical tool in the determination of pore forming mechanisms in proteins. Methods in Enzymology, 2021, 649, 71-102.	0.4	7
666	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. PLoS Pathogens, 2021, 17, e1008961.	2.1	12
667	CopR, a Global Regulator of Transcription to Maintain Copper Homeostasis in Pyrococcus furiosus. Frontiers in Microbiology, 2020, 11, 613532.	1.5	10
668	Biochemical reconstitutions reveal principles of human Î ³ -TuRC assembly and function. Journal of Cell Biology, 2021, 220, .	2.3	23

#	Article	IF	CITATIONS
669	Dynamic association of human Ebp1 with the ribosome. Rna, 2021, 27, 411-419.	1.6	9
670	Cryo-EM structures of Toll-like receptors in complex with UNC93B1. Nature Structural and Molecular Biology, 2021, 28, 173-180.	3.6	45
671	Seesaw conformations of Npl4 in the human p97 complex and the inhibitory mechanism of a disulfiram derivative. Nature Communications, 2021, 12, 121.	5.8	49
672	Stabilizing the closed SARS-CoV-2 spike trimer. Nature Communications, 2021, 12, 244.	5.8	139
673	Rigid monoclonal antibodies improve detection of SARS-CoV-2 nucleocapsid protein. MAbs, 2021, 13, 1905978.	2.6	16
675	Cryo-Focused Ion Beam Lamella Preparation Protocol for in Situ Structural Biology. Methods in Molecular Biology, 2021, 2305, 301-322.	0.4	Ο
676	Setting up and operating a cryo-EM laboratory. Quarterly Reviews of Biophysics, 2021, 54, e2.	2.4	10
677	Structure of a microtubule-bound axonemal dynein. Nature Communications, 2021, 12, 477.	5.8	54
678	Centering Noisy Images with Application to Cryo-EM. SIAM Journal on Imaging Sciences, 2021, 14, 689-716.	1.3	3
679	The mycobacterial proteasomal ATPase Mpa forms a gapped ring to engage the 20S proteasome. Journal of Biological Chemistry, 2021, 296, 100713.	1.6	4
680	SAGA and SAGA-like SLIK transcriptional coactivators are structurally and biochemically equivalent. Journal of Biological Chemistry, 2021, 296, 100671.	1.6	2
681	The Arp1/11 minifilament of dynactin primes the endosomal Arp2/3 complex. Science Advances, 2021, 7, .	4.7	23
682	Structures of <i>Rhodopseudomonas palustris</i> RC-LH1 complexes with open or closed quinone channels. Science Advances, 2021, 7, .	4.7	38
683	Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding. Genome Biology, 2021, 22, 16.	3.8	63
684	Linker histone defines structure and self-association behaviour of the 177Âbp human chromatosome. Scientific Reports, 2021, 11, 380.	1.6	16
685	Current limitations to high-resolution structure determination by single-particle cryoEM. Quarterly Reviews of Biophysics, 2021, 54, e4.	2.4	21
686	Setup and Troubleshooting of Volta Phase Plate Cryo-EM Data Collection. Methods in Molecular Biology, 2021, 2305, 291-299.	0.4	3
687	Cryo-EM structure of the RNA-guided ribonuclease Cas12g. Nature Chemical Biology, 2021, 17, 387-393.	3.9	36

#	Article	IF	CITATIONS
688	Mitochondrial sorting and assembly machinery operates by β-barrel switching. Nature, 2021, 590, 163-169.	13.7	60
689	Purification and Cryo-electron Microscopy Analysis of Plant Mitochondrial Ribosomes. Bio-protocol, 2021, 11, e4111.	0.2	1
691	Electron Microscopy and Single Particle Analysis for Solving Three-Dimensional Structures of Macromolecules. , 2021, , 141-154.		0
692	Icosahedral 60-meric porous structure of designed supramolecular protein nanoparticle TIP60. Chemical Communications, 2021, 57, 10226-10229.	2.2	8
693	A conserved arginine residue is critical for stabilizing the N2 FeS cluster in mitochondrial complex I. Journal of Biological Chemistry, 2021, 296, 100474.	1.6	7
694	Polyclonal epitope mapping reveals temporal dynamics and diversity of human antibody responses to H5N1 vaccination. Cell Reports, 2021, 34, 108682.	2.9	31
695	Development and structural basis of a two-MAb cocktail for treating SARS-CoV-2 infections. Nature Communications, 2021, 12, 264.	5.8	81
696	Structural basis for a complex I mutation that blocks pathological ROS production. Nature Communications, 2021, 12, 707.	5.8	71
697	Structural basis of ribosomal RNA transcription regulation. Nature Communications, 2021, 12, 528.	5.8	46
700	A two-site flexible clamp mechanism for RET-GDNF-GFRα1 assembly reveals both conformational adaptation and strict geometric spacing. Structure, 2021, 29, 694-708.e7.	1.6	6
701	Quantitative assessment of chlorophyll types in cryo-EM maps of photosystem I acclimated to far-red light. BBA Advances, 2021, 1, 100019.	0.7	6
702	Insights into SusCD-mediated glycan import by a prominent gut symbiont. Nature Communications, 2021, 12, 44.	5.8	42
703	Cryoelectron-microscopy structure of the enteropathogenic <i>Escherichia coli</i> type III secretion system EspA filament. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
704	Mechanism of filament formation in UPA-promoted CARD8 and NLRP1 inflammasomes. Nature Communications, 2021, 12, 189.	5.8	48
705	Structural basis of chromatin regulation by histone variant H2A.Z. Nucleic Acids Research, 2021, 49, 11379-11391.	6.5	20
707	Regulation of the Dot1 histone H3K79 methyltransferase by histone H4K16 acetylation. Science, 2021, 371, .	6.0	70
708	Structures of monomeric and dimeric PRC2:EZH1 reveal flexible modules involved in chromatin compaction. Nature Communications, 2021, 12, 714.	5.8	54
709	Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. Npj Vaccines, 2021, 6, 24.	2.9	33

#	Article	IF	CITATIONS
712	Structural basis of nucleosomal histone H4 lysine 20 methylation by SET8 methyltransferase. Life Science Alliance, 2021, 4, e202000919.	1.3	17
713	Modular Imaging Scaffold for Single-Particle Electron Microscopy. ACS Nano, 2021, 15, 4186-4196.	7.3	7
714	The structural basis of function and regulation of neuronal cotransporters NKCC1 and KCC2. Communications Biology, 2021, 4, 226.	2.0	48
715	The 2.4 Ã cryo-EM structure of a heptameric light-harvesting 2 complex reveals two carotenoid energy transfer pathways. Science Advances, 2021, 7, .	4.7	26
716	Cryo-EM structural analysis of FADD:Caspase-8 complexes defines the catalytic dimer architecture for co-ordinated control of cell fate. Nature Communications, 2021, 12, 819.	5.8	38
717	Cryo-EM structure of the Hippo signaling integrator human STRIPAK. Nature Structural and Molecular Biology, 2021, 28, 290-299.	3.6	36
719	Molecular determinants of the factor VIII/von Willebrand factor complex revealed by BIVV001 cryo-electron microscopy. Blood, 2021, 137, 2970-2980.	0.6	19
720	The C3/465 glycan hole cluster in BG505 HIV-1 envelope is the major neutralizing target involved in preventing mucosal SHIV infection. PLoS Pathogens, 2021, 17, e1009257.	2.1	23
721	Cryo-EM of mammalian PA28Î \pm Î ² -iCP immunoproteasome reveals a distinct mechanism of proteasome activation by PA28Î \pm Î ² . Nature Communications, 2021, 12, 739.	5.8	19
722	DRPnet: automated particle picking in cryo-electron micrographs using deep regression. BMC Bioinformatics, 2021, 22, 55.	1.2	13
723	Reconstitution of the recombinant human \hat{I}^3 -tubulin ring complex. Open Biology, 2021, 11, 200325.	1.5	11
724	Structural Basis of SARS-CoV-2 Polymerase Inhibition by Favipiravir. Innovation(China), 2021, 2, 100080.	5.2	51
726	Seeded assembly <i>inÂvitro</i> does not replicate the structures of αâ€synuclein filaments from multiple system atrophy. FEBS Open Bio, 2021, 11, 999-1013.	1.0	95
727	Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes. Cell, 2021, 184, 943-956.e18.	13.5	94
729	Conserved strategies of RNA polymerase I hibernation and activation. Nature Communications, 2021, 12, 758.	5.8	26
730	Interconnected assembly factors regulate the biogenesis of mitoribosomal large subunit. EMBO Journal, 2021, 40, e106292.	3.5	36
731	Integrative structure of a 10-megadalton eukaryotic pyruvate dehydrogenase complex from native cell extracts. Cell Reports, 2021, 34, 108727.	2.9	36
732	Flagellar Structures from the Bacterium Caulobacter crescentus and Implications for Phage <i>I•</i> CbK Predation of Multiflagellin Bacteria. Journal of Bacteriology, 2021, 203, .	1.0	21

		CITATION R	EPORT	
#	Article		IF	CITATIONS
733	Mechanism of membrane-tethered mitochondrial protein synthesis. Science, 2021, 371, 846	5-849.	6.0	76
735	Pathological conformations of disease mutant Ryanodine Receptors revealed by cryo-EM. Na Communications, 2021, 12, 807.	ature	5.8	38
736	Structural insights into transcriptional regulation of human RNA polymerase III. Nature Struct and Molecular Biology, 2021, 28, 220-227.	ctural	3.6	35
737	Cryo-EM structures of engineered active bc1-cbb3 type CIII2CIV super-complexes and electr communication between the complexes. Nature Communications, 2021, 12, 929.	onic	5.8	17
738	Structural mechanism of cooperative activation of the human calcium-sensing receptor by C and L-tryptophan. Cell Research, 2021, 31, 383-394.	Ca2+ ions	5.7	47
739	Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Nature Methods, 2021, 18, 186-193.	à in cells.	9.0	265
740	2.5ÂÃresolution structure of human CDK-activating kinase bound to the clinical inhibitor Biophysical Journal, 2021, 120, 677-686.	ICEC0942.	0.2	22
745	Influenza hemagglutinin-specific IgA Fc-effector functionality is restricted to stalk epitopes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 11	.8, .	3.3	8
746	Visualization of the mechanosensitive ion channel MscS under membrane tension. Nature, 2 509-514.	2021, 590,	13.7	77
747	Yeast translation elongation factor eEF3 promotes late stages of tRNA translocation. EMBO 2021, 40, e106449.	Journal,	3.5	19
749	Cryo-EM structure of a proton-activated chloride channel TMEM206. Science Advances, 202	21, 7, .	4.7	27
750	Structural basis for the biosynthesis of lovastatin. Nature Communications, 2021, 12, 867.		5.8	40
751	Flavivirus maturation leads to the formation of an occupied lipid pocket in the surface glyco Nature Communications, 2021, 12, 1238.	proteins.	5.8	37
752	Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diver helicases and TRIM ubiquitin ligases. Molecular Cell, 2021, 81, 599-613.e8.	se RNA	4.5	48
754	Structural insights into the regulation of human serine palmitoyltransferase complexes. Nat Structural and Molecular Biology, 2021, 28, 240-248.	ure	3.6	65
755	Molecular structures of the eukaryotic retinal importer ABCA4. ELife, 2021, 10, .		2.8	29
756	Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutation Science, 2021, 371, .	nal escape.	6.0	304
763	Identification of a conserved virion-stabilizing network inside the interprotomer pocket of enteroviruses. Communications Biology, 2021, 4, 250.		2.0	11

#	Article	IF	CITATIONS
764	Gating the pore of the calcium-activated chloride channel TMEM16A. Nature Communications, 2021, 12, 785.	5.8	33
765	Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell, 2021, 184, 983-999.e24.	13.5	78
766	BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature, 2021, 592, 283-289.	13.7	494
767	Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states. Nature Structural and Molecular Biology, 2021, 28, 210-219.	3.6	59
768	SAP domain forms a flexible part of DNA aperture in Ku70/80. FEBS Journal, 2021, 288, 4382-4393.	2.2	13
769	Structural insights into the assembly and substrate selectivity of human SPT–ORMDL3 complex. Nature Structural and Molecular Biology, 2021, 28, 249-257.	3.6	55
771	Asymmetric opening of the homopentameric 5-HT3A serotonin receptor in lipid bilayers. Nature Communications, 2021, 12, 1074.	5.8	41
772	Mechanism of gating and partial agonist action in the glycine receptor. Cell, 2021, 184, 957-968.e21.	13.5	77
773	AA amyloid fibrils from diseased tissue are structurally different from in vitro formed SAA fibrils. Nature Communications, 2021, 12, 1013.	5.8	60
774	Ubiquitin ligation to F-box protein targets by SCF–RBR E3–E3 super-assembly. Nature, 2021, 590, 671-676.	13.7	97
775	Cryo-EM structure of an activated GPCR–G protein complex in lipid nanodiscs. Nature Structural and Molecular Biology, 2021, 28, 258-267.	3.6	71
776	Cryo-Electron Microscopy Structures of Yeast Alcohol Dehydrogenase. Biochemistry, 2021, 60, 663-677.	1.2	12
777	Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	144
779	Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell, 2021, 184, 931-942.e18.	13.5	140
780	Cryo-EM of kinesin-binding protein: challenges and opportunities from protein-surface interactions. Acta Crystallographica Section D: Structural Biology, 2021, 77, 411-423.	1.1	0
781	Structural and dynamic mechanisms of CBF3-guided centromeric nucleosome formation. Nature Communications, 2021, 12, 1763.	5.8	15
782	Structural analysis of the <i>Sulfolobus solfataricus</i> TF55β chaperonin by cryo-electron microscopy. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 79-84.	0.4	1
784	Architecture and structural dynamics of the heteromeric GluK2/K5 kainate receptor. ELife, 2021, 10, .	2.8	20

#	Article	IF	CITATIONS
785	Cryo-EM structures of HIV-1 trimer bound to CD4-mimetics BNM-III-170 and M48U1 adopt a CD4-bound open conformation. Nature Communications, 2021, 12, 1950.	5.8	22
786	Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR–Cas12f nuclease. Nucleic Acids Research, 2021, 49, 4120-4128.	6.5	58
787	Broad neutralization of H1 and H3 viruses by adjuvanted influenza HA stem vaccines in nonhuman primates. Science Translational Medicine, 2021, 13, .	5.8	49
788	Structure of the catalytic core of the Integrator complex. Molecular Cell, 2021, 81, 1246-1259.e8.	4.5	44
791	DPP9 sequesters the CÂterminus of NLRP1 to repress inflammasome activation. Nature, 2021, 592, 778-783.	13.7	114
792	The actomyosin interface contains an evolutionary conserved core and an ancillary interface involved in specificity. Nature Communications, 2021, 12, 1892.	5.8	23
793	Cryo‣M reveals the complex architecture of dynactin's shoulder region and pointed end. EMBO Journal, 2021, 40, e106164.	3.5	22
794	Fluorescence-detection size-exclusion chromatography utilizing nanobody technology for expression screening of membrane proteins. Communications Biology, 2021, 4, 366.	2.0	10
795	Cryo-EM structures of tau filaments from Alzheimer's disease with PET ligand APN-1607. Acta Neuropathologica, 2021, 141, 697-708.	3.9	99
796	Structural basis for VPS34 kinase activation by Rab1 and Rab5 on membranes. Nature Communications, 2021, 12, 1564.	5.8	50
797	A cross-neutralizing antibody between HIV-1 and influenza virus. PLoS Pathogens, 2021, 17, e1009407.	2.1	23
798	Consequences of Phosphorylation in a <i>Mononegavirales</i> Polymerase-Cofactor System. Journal of Virology, 2021, 95, .	1.5	3
799	Cryo-Electron Microscopy and Mass Analysis of Oligolysine-Coated DNA Nanostructures. ACS Nano, 2021, 15, 9391-9403.	7.3	18
800	Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin. Nature Structural and Molecular Biology, 2021, 28, 319-325.	3.6	104
801	Cryo-EM structure of the yeast TREX complex and coordination with the SR-like protein Gbp2. ELife, 2021, 10, .	2.8	20
802	Cryo-EM reveals a previously unrecognized structural protein of a dsRNA virus implicated in its extracellular transmission. PLoS Pathogens, 2021, 17, e1009396.	2.1	10
803	Anti-EGFR antibody 528 binds to domain III of EGFR at a site shifted from the cetuximab epitope. Scientific Reports, 2021, 11, 5790.	1.6	7
805	Structural insights into membrane remodeling by SNX1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11

#	Article	IF	CITATIONS
807	Devitrification reduces beam-induced movement in cryo-EM. IUCrJ, 2021, 8, 186-194.	1.0	20
808	Structural basis for human TRPC5 channel inhibition by two distinct inhibitors. ELife, 2021, 10, .	2.8	39
811	Multi-Scale Flexible Fitting of Proteins to Cryo-EM Density Maps at Medium Resolution. Frontiers in Molecular Biosciences, 2021, 8, 631854.	1.6	13
812	Molecular basis of V-ATPase inhibition by bafilomycin A1. Nature Communications, 2021, 12, 1782.	5.8	70
813	In situ structure and organization of the influenza C virus surface glycoprotein. Nature Communications, 2021, 12, 1694.	5.8	12
814	Cryo-EM structure of the Rous sarcoma virus octameric cleaved synaptic complex intasome. Communications Biology, 2021, 4, 330.	2.0	12
816	Archaeal chromatin â€~slinkies' are inherently dynamic complexes with deflected DNA wrapping pathways. ELife, 2021, 10, .	2.8	36
818	Reprint of "Amorphous nickel titanium alloy film: A new choice for cryo electron microscopy sample preparation― Progress in Biophysics and Molecular Biology, 2021, 160, 5-15.	1.4	3
819	An optimized protocol for acquiring and processing cryo-EM data of human 26S proteasome with M1-Ub6. STAR Protocols, 2021, 2, 100278.	0.5	0
820	Molecular mechanisms of APC/C release from spindle assembly checkpoint inhibition by APC/C SUMOylation. Cell Reports, 2021, 34, 108929.	2.9	12
821	A lamin A/C variant causing striated muscle disease provides insights into filament organization. Journal of Cell Science, 2021, 134, .	1.2	17
822	Structure of the FA core ubiquitin ligase closing the ID clamp on DNA. Nature Structural and Molecular Biology, 2021, 28, 300-309.	3.6	27
823	Cryo-EM structure of a functional monomeric Photosystem I from Thermosynechococcus elongatus reveals red chlorophyll cluster. Communications Biology, 2021, 4, 304.	2.0	25
824	Structure of the activated human minor spliceosome. Science, 2021, 371, .	6.0	43
825	The cryo-EM structure of an ERAD protein channel formed by tetrameric human Derlin-1. Science Advances, 2021, 7, .	4.7	21
827	Electron microscopy shows that binding of monoclonal antibody PT25-2 primes integrin αIIbβ3 for ligand binding. Blood Advances, 2021, 5, 1781-1790.	2.5	2
830	Structure of the p53/RNA polymerase II assembly. Communications Biology, 2021, 4, 397.	2.0	6
831	Architecture and mechanism of metazoan retromer:SNX3 tubular coat assembly. Science Advances, 2021, 7, .	4.7	44

#	Article	IF	CITATIONS
834	The structure of a minimum amyloid fibril core formed by necroptosis-mediating RHIM of human RIPK3. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
836	Mouse long-chain acyl-CoA synthetase 1 is active as a monomer. Archives of Biochemistry and Biophysics, 2021, 700, 108773.	1.4	2
837	Substrate-engaged type III secretion system structures reveal gating mechanism for unfolded protein translocation. Nature Communications, 2021, 12, 1546.	5.8	37
838	Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature, 2021, 592, 623-628.	13.7	180
839	Structural basis for bivalent binding and inhibition of SARS-CoV-2 infection by human potent neutralizing antibodies. Cell Research, 2021, 31, 517-525.	5.7	54
840	Direct Visualization of a 26 kDa Protein by Cryo-Electron Microscopy Aided by a Small Scaffold Protein. Biochemistry, 2021, 60, 1075-1079.	1.2	8
841	Structure of Gcn1 bound to stalled and colliding 80S ribosomes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	79
842	Cryo-EM Structure of K+-Bound hERG Channel Complexed with the Blocker Astemizole. Structure, 2021, 29, 203-212.e4.	1.6	45
844	Moving toward generalizable NZ-1 labeling for 3D structure determination with optimized epitope-tag insertion. Acta Crystallographica Section D: Structural Biology, 2021, 77, 645-662.	1.1	18
846	Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	109
847	Optimized cryo-EM data-acquisition workflow by sample-thickness determination. Acta Crystallographica Section D: Structural Biology, 2021, 77, 565-571.	1.1	22
848	Seeing Atoms by Single-Particle Cryo-EM. Trends in Biochemical Sciences, 2021, 46, 253-254.	3.7	16
849	Simultaneous binding of Guidance Cues NET1 and RGM blocks extracellular NEO1 signaling. Cell, 2021, 184, 2103-2120.e31.	13.5	20
851	Structural mechanisms of gating and selectivity of human rod CNGA1 channel. Neuron, 2021, 109, 1302-1313.e4.	3.8	41
852	Enhancing the Prefusion Conformational Stability of SARS-CoV-2 Spike Protein Through Structure-Guided Design. Frontiers in Immunology, 2021, 12, 660198.	2.2	28
853	Cryo-EM structure of the human histamine H1 receptor/Gq complex. Nature Communications, 2021, 12, 2086.	5.8	66
854	The final step of 40S ribosomal subunit maturation is controlled by a dual key lock. ELife, 2021, 10, .	2.8	23
857	Molecular landscape of etioplast inner membranes in higher plants. Nature Plants, 2021, 7, 514-523.	4.7	27

#	Article	IF	CITATIONS
858	Structural basis of FANCD2 deubiquitination by USP1â^'UAF1. Nature Structural and Molecular Biology, 2021, 28, 356-364.	3.6	21
859	Below 3ÂÃ structure of apoferritin using a multipurpose TEM with a side entry cryoholder. Scientific Reports, 2021, 11, 8395.	1.6	9
860	Vaccination with prefusion-stabilized respiratory syncytial virus fusion protein induces genetically and antigenically diverse antibody responses. Immunity, 2021, 54, 769-780.e6.	6.6	37
861	Structure of human telomerase holoenzyme with bound telomeric DNA. Nature, 2021, 593, 449-453.	13.7	106
862	Structure and gating mechanism of the α7 nicotinic acetylcholine receptor. Cell, 2021, 184, 2121-2134.e13.	13.5	137
863	Structure of the human Mediator–RNA polymerase II pre-initiation complex. Nature, 2021, 594, 129-133.	13.7	73
864	Structure of the human Mediator-bound transcription preinitiation complex. Science, 2021, 372, 52-56.	6.0	91
868	Elicitation of potent serum neutralizing antibody responses in rabbits by immunization with an HIV-1 clade C trimeric Env derived from an Indian elite neutralizer. PLoS Pathogens, 2021, 17, e1008977.	2.1	4
869	Two Distinct Conformations in 34 FliF Subunits Generate Three Different Symmetries within the Flagellar MS-Ring. MBio, 2021, 12, .	1.8	20
870	Molecular structure of the intact bacterial flagellar basal body. Nature Microbiology, 2021, 6, 712-721.	5.9	61
872	The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell, 2021, 184, 2183-2200.e22.	13.5	331
876	Nse5/6 is a negative regulator of the ATPase activity of the Smc5/6 complex. Nucleic Acids Research, 2021, 49, 4534-4549.	6.5	22
879	Convergence of a common solution for broad ebolavirus neutralization by glycan cap-directed human antibodies. Cell Reports, 2021, 35, 108984.	2.9	22
881	Structure and dynamics of the CGRP receptor in apo and peptide-bound forms. Science, 2021, 372, .	6.0	57
882	N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell, 2021, 184, 2332-2347.e16.	13.5	784
883	Structural insights into preinitiation complex assembly on core promoters. Science, 2021, 372, .	6.0	104
884	Structural basis of long-range to short-range synaptic transition in NHEJ. Nature, 2021, 593, 294-298.	13.7	89
885	The structure of MgtE in the absence of magnesium provides new insights into channel gating. PLoS Biology, 2021, 19, e3001231.	2.6	8

#	Article	IF	CITATIONS
887	Structure and immune recognition of the porcine epidemic diarrhea virus spike protein. Structure, 2021, 29, 385-392.e5.	1.6	37
888	Broadly neutralizing antibody cocktails targeting Nipah virus and Hendra virus fusion glycoproteins. Nature Structural and Molecular Biology, 2021, 28, 426-434.	3.6	33
889	Structure and assembly of double-headed Sendai virus nucleocapsids. Communications Biology, 2021, 4, 494.	2.0	13
890	Coma-corrected rapid single-particle cryo-EM data collection on the CRYO ARM 300. Acta Crystallographica Section D: Structural Biology, 2021, 77, 555-564.	1.1	20
892	Structure reveals the activation mechanism of the MC4 receptor to initiate satiation signaling. Science, 2021, 372, 808-814.	6.0	64
898	Affinity Capture of p97 with Small-Molecule Ligand Bait Reveals a 3.6 Ã Double-Hexamer Cryoelectron Microscopy Structure. ACS Nano, 2021, 15, 8376-8385.	7.3	14
900	Structural basis of nucleosome transcription mediated by Chd1 and FACT. Nature Structural and Molecular Biology, 2021, 28, 382-387.	3.6	72
901	Variety of size and form of GRM2 bacterial microcompartment particles. Protein Science, 2021, 30, 1035-1043.	3.1	6
902	The selection process of licensing a DNA mismatch for repair. Nature Structural and Molecular Biology, 2021, 28, 373-381.	3.6	22
907	Structural insight into Pichia pastoris fatty acid synthase. Scientific Reports, 2021, 11, 9773.	1.6	10
908	Structural coordination between active sites of a CRISPR reverse transcriptase-integrase complex. Nature Communications, 2021, 12, 2571.	5.8	12
910	Structural insights into integrin α ₅ β ₁ opening by fibronectin ligand. Science Advances, 2021, 7, .	4.7	56
911	Structural basis for aggregate dissolution and refolding by the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system. Cell Reports, 2021, 35, 109166.	2.9	13
913	Mechanosensitive channel Ynal has lipid-bound extended sensor paddles. Communications Biology, 2021, 4, 602.	2.0	5
914	Structural analysis of the SRP Alu domain from Plasmodium falciparum reveals a non-canonical open conformation. Communications Biology, 2021, 4, 600.	2.0	5
915	Current data processing strategies for cryo-electron tomography and subtomogram averaging. Biochemical Journal, 2021, 478, 1827-1845.	1.7	43
916	Cryo-EM structure of cortical microtubules from human parasite Toxoplasma gondii identifies their microtubule inner proteins. Nature Communications, 2021, 12, 3065.	5.8	48
917	Structures of the human Mediator and Mediator-bound preinitiation complex. Science, 2021, 372, .	6.0	85

#	Article	IF	CITATIONS
920	Structures of the human LONP1 protease reveal regulatory steps involved in protease activation. Nature Communications, 2021, 12, 3239.	5.8	40
921	Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Science, 2021, 373, 818-823.	6.0	309
922	Phospholipid translocation captured in a bifunctional membrane protein MprF. Nature Communications, 2021, 12, 2927.	5.8	21
924	Cryo-EM structure of the EspA filament from enteropathogenic Escherichia coli: Revealing the mechanism of effector translocation in the T3SS. Structure, 2021, 29, 479-487.e4.	1.6	7
925	Cryo–electron microscopy structure of the antidiuretic hormone arginine-vasopressin V2 receptor signaling complex. Science Advances, 2021, 7, .	4.7	25
926	CryoEM structure of the antibacterial target PBP1b at 3.3 à resolution. Nature Communications, 2021, 12, 2775.	5.8	10
928	A combination of cross-neutralizing antibodies synergizes to prevent SARS-CoV-2 and SARS-CoV pseudovirus infection. Cell Host and Microbe, 2021, 29, 806-818.e6.	5.1	49
932	Structure of the full-length human Pannexin1 channel and insights into its role in pyroptosis. Cell Discovery, 2021, 7, 30.	3.1	14
935	Cryo-EM performance testing of hardware and data acquisition strategies. Microscopy (Oxford,) Tj ETQq0 0 0 rgE	BT /Qverloo	ck 10 Tf 50 4
936	Structural basis of substrate recognition and thermal protection by a small heat shock protein. Nature Communications, 2021, 12, 3007.	5.8	22
937	Cryo-EM structure of mammalian RNA polymerase II in complex with human RPAP2. Communications Biology, 2021, 4, 606.	2.0	11
938	Structure of the mature Rous sarcoma virus lattice reveals a role for IP6 in the formation of the capsid hexamer. Nature Communications, 2021, 12, 3226.	5.8	18
939	Cryo-EM structure of SETD2/Set2 methyltransferase bound to a nucleosome containing oncohistone mutations. Cell Discovery, 2021, 7, 32.	3.1	18
940	Cryoâ€EM structure of metazoan TRAPPIII, the multiâ€subunit complex that activates the GTPase Rab1. EMBO Journal, 2021, 40, e107608.	3.5	26
941	Molecular mechanism of N-terminal acetylation by the ternary NatC complex. Structure, 2021, 29, 1094-1104.e4.	1.6	7
942	Structural characterisation of the Chaetomium thermophilum Chl1 helicase. PLoS ONE, 2021, 16, e0251261.	1.1	0
943	Cryo-electron Microscopy Structure of S-Trimer, a Subunit Vaccine Candidate for COVID-19. Journal of Virology, 2021, 95, .	1.5	27

944Structural basis of antifolate recognition and transport by PCFT. Nature, 2021, 595, 130-134.13.736

#	Article	IF	CITATIONS
945	Plant-expressed virus-like particles reveal the intricate maturation process of a eukaryotic virus. Communications Biology, 2021, 4, 619.	2.0	2
946	Improving particle quality in cryo-EM analysis using a PEGylation method. Structure, 2021, 29, 1192-1199.e4.	1.6	15
947	Synthesis, Characterization, and Simulation of Four-Armed Megamolecules. Biomacromolecules, 2021, 22, 2363-2372.	2.6	4
950	Cryo-EM structure of ABCG5/G8 in complex with modulating antibodies. Communications Biology, 2021, 4, 526.	2.0	16
952	Cryo-EM structures of human GMPPA–GMPPB complex reveal how cells maintain GDP-mannose homeostasis. Nature Structural and Molecular Biology, 2021, 28, 1-12.	3.6	26
954	Receptor compaction and GTPase rearrangement drive SRP-mediated cotranslational protein translocation into the ER. Science Advances, 2021, 7, .	4.7	14
955	High-resolution view of HIV-1 reverse transcriptase initiation complexes and inhibition by NNRTI drugs. Nature Communications, 2021, 12, 2500.	5.8	19
959	Architecture of the Sema3A/PlexinA4/Neuropilin tripartite complex. Nature Communications, 2021, 12, 3172.	5.8	24
960	Mining HIV controllers for broad and functional antibodies to recognize and eliminate HIV-infected cells. Cell Reports, 2021, 35, 109167.	2.9	8
962	Cryo-EM structure of type 1 IP3R channel in a lipid bilayer. Communications Biology, 2021, 4, 625.	2.0	64
964	Endospore Appendages: a novel pilus superfamily from the endospores of pathogenic Bacilli. EMBO Journal, 2021, 40, e106887.	3.5	10
965	Structure of the endocytic adaptor complex reveals the basis for efficient membrane anchoring during clathrin-mediated endocytosis. Nature Communications, 2021, 12, 2889.	5.8	13
966	Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines. Cell Research, 2021, 31, 732-741.	5.7	124
968	COVID-19 serological survey using micro blood sampling. Scientific Reports, 2021, 11, 9475.	1.6	12
970	Structures of telomerase at several steps of telomere repeat synthesis. Nature, 2021, 593, 454-459.	13.7	44
971	A viral genome packaging motor transitions between cyclic and helical symmetry to translocate dsDNA. Science Advances, 2021, 7, .	4.7	35
972	High-power near-concentric Fabry–Perot cavity for phase contrast electron microscopy. Review of Scientific Instruments, 2021, 92, 053005.	0.6	24
973	Artificial intelligence advances for de novo molecular structure modeling in cryoâ€electron microscopy. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1542.	6.2	15

#	Article	IF	CITATIONS
975	Molecular mechanism underlying transport and allosteric inhibition of bicarbonate transporter SbtA. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
976	Structural basis for broad coronavirus neutralization. Nature Structural and Molecular Biology, 2021, 28, 478-486.	3.6	152
978	Cryo-EM structures of an insecticidal Bt toxin reveal its mechanism of action on the membrane. Nature Communications, 2021, 12, 2791.	5.8	28
979	Structural visualization of transcription activated by a multidrug-sensing MerR family regulator. Nature Communications, 2021, 12, 2702.	5.8	25
982	Mechanism for DPY30 and ASH2L intrinsically disordered regions to modulate the MLL/SET1 activity on chromatin. Nature Communications, 2021, 12, 2953.	5.8	21
983	Structural basis of TRAPPIIIâ€mediated Rab1 activation. EMBO Journal, 2021, 40, e107607.	3.5	24
986	A Multi-GPU Design for Large Size Cryo-EM 3D Reconstruction. , 2021, , .		1
988	Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science, 2021, 372, 1306-1313.	6.0	165
989	Hippocampal AMPA receptor assemblies and mechanism of allosteric inhibition. Nature, 2021, 594, 448-453.	13.7	52
990	3D architecture and structural flexibility revealed in the subfamily of large glutamate dehydrogenases by a mycobacterial enzyme. Communications Biology, 2021, 4, 684.	2.0	3
992	Structural and functional insights into the mechanism of action of plant borate transporters. Scientific Reports, 2021, 11, 12328.	1.6	4
996	Structure and mechanism of <i>Mycobacterium smegmatis</i> polynucleotide phosphorylase. Rna, 2021, 27, 959-969.	1.6	8
997	Characterization of Photorhabdus Virulence Cassette as a causative agent in the emerging pathogen Photorhabdus asymbiotica. Science China Life Sciences, 2022, 65, 618-630.	2.3	12
998	Structural analysis of the full-length human LRRK2. Cell, 2021, 184, 3519-3527.e10.	13.5	98
999	Substrate and product complexes reveal mechanisms of Hedgehog acylation by HHAT. Science, 2021, 372, 1215-1219.	6.0	37
1000	Structure of the cytoplasmic domain of SctV (SsaV) from the Salmonella SPI-2 injectisome and implications for a pH sensing mechanism. Journal of Structural Biology, 2021, 213, 107729.	1.3	13
1001	Cryo-EM study of patched in lipid nanodisc suggests a structural basis for its clustering in caveolae. Structure, 2021, 29, 1286-1294.e6.	1.6	7
1005	Repurposing tRNAs for nonsense suppression. Nature Communications, 2021, 12, 3850.	5.8	22

#	Article	IF	CITATIONS
1007	Nonameric structures of the cytoplasmic domain of FlhA and SctV in the context of the full-length protein. PLoS ONE, 2021, 16, e0252800.	1.1	21
1009	Reconstitution of Ultrawide DNA Origami Pores in Liposomes for Transmembrane Transport of Macromolecules. ACS Nano, 2021, 15, 12768-12779.	7.3	44
1010	Molecular basis of crossâ€species ACE2 interactions with SARSâ€CoVâ€2â€like viruses of pangolin origin. EMBO Journal, 2021, 40, e107786.	3.5	46
1011	Multivalency transforms SARS-CoV-2 antibodies into ultrapotent neutralizers. Nature Communications, 2021, 12, 3661.	5.8	48
1014	Structural basis of translation termination, rescue, and recycling in mammalian mitochondria. Molecular Cell, 2021, 81, 2566-2582.e6.	4.5	32
1015	The linear ubiquitin chain assembly complex (LUBAC) generates heterotypic ubiquitin chains. ELife, 2021, 10, .	2.8	38
1016	Evolution of a virus-like architecture and packaging mechanism in a repurposed bacterial protein. Science, 2021, 372, 1220-1224.	6.0	53
1020	Structural mechanism of laminin recognition by integrin. Nature Communications, 2021, 12, 4012.	5.8	41
1022	Programmable icosahedral shell system for virus trapping. Nature Materials, 2021, 20, 1281-1289.	13.3	116
1023	An Overview of Microcrystal Electron Diffraction (MicroED). Annual Review of Biochemistry, 2021, 90, 431-450.	5.0	14
1024	Structure and mechanism of the human NHE1-CHP1 complex. Nature Communications, 2021, 12, 3474.	5.8	45
1026	Locating macromolecular assemblies in cells by 2D template matching with cisTEM. ELife, 2021, 10, .	2.8	55
1027	G-protein activation by a metabotropic glutamate receptor. Nature, 2021, 595, 450-454.	13.7	73
1028	Structural Rearrangement of Dps-DNA Complex Caused by Divalent Mg and Fe Cations. International Journal of Molecular Sciences, 2021, 22, 6056.	1.8	12
1029	Gating and modulation of a hetero-octameric AMPA glutamate receptor. Nature, 2021, 594, 454-458.	13.7	43
1030	Assembly and Cryo-EM structure determination of yeast mitochondrial RNA polymerase initiation complex intermediates. STAR Protocols, 2021, 2, 100431.	0.5	3
1031	Cryo-EM structure of the photosynthetic RC-LH1-PufX supercomplex at 2.8-Ã resolution. Science Advances, 2021, 7, .	4.7	29
1032	Nse5/6 inhibits the Smc5/6 ATPase and modulates DNA substrate binding. EMBO Journal, 2021, 40, e107807.	3.5	30

#	Article	IF	CITATIONS
1033	Molecular and structural mechanisms of ZZ domainâ€mediated cargo selection by Nbr1. EMBO Journal, 2021, 40, e107497.	3.5	14
1034	Structural basis for the ARF GAP activity and specificity of the C9orf72 complex. Nature Communications, 2021, 12, 3786.	5.8	18
1035	Structures of Gi-bound metabotropic glutamate receptors mGlu2 and mGlu4. Nature, 2021, 594, 583-588.	13.7	73
1038	Structure of the merozoite surface protein 1 from <i>Plasmodium falciparum</i> . Science Advances, 2021, 7, .	4.7	15
1039	Structural insight on assembly-line catalysis in terpene biosynthesis. Nature Communications, 2021, 12, 3487.	5.8	22
1040	Structure of plant photosystem I-plastocyanin complex reveals strong hydrophobic interactions. Biochemical Journal, 2021, 478, 2371-2384.	1.7	15
1041	Designed and biologically active protein lattices. Nature Communications, 2021, 12, 3702.	5.8	25
1042	Structural Insight into Phospholipid Transport by the MlaFEBD Complex from P. aeruginosa. Journal of Molecular Biology, 2021, 433, 166986.	2.0	24
1043	Generation of ordered protein assemblies using rigid three-body fusion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
1045	A conserved rRNA switch is central to decoding site maturation on the small ribosomal subunit. Science Advances, 2021, 7, .	4.7	23
1046	Structural insights into an atypical secretory pathway kinase crucial for Toxoplasma gondii invasion. Nature Communications, 2021, 12, 3788.	5.8	12
1047	Cryo-EM structures of Lassa and Machupo virus polymerases complexed with cognate regulatory Z proteins identify targets for antivirals. Nature Microbiology, 2021, 6, 921-931.	5.9	20
1048	Structural basis of substrate recognition and translocation by human ABCA4. Nature Communications, 2021, 12, 3853.	5.8	31
1050	Structural basis for SARS-CoV-2 envelope protein recognition of human cell junction protein PALS1. Nature Communications, 2021, 12, 3433.	5.8	69
1051	Structural Basis of Drug Recognition by the Multidrug Transporter ABCG2. Journal of Molecular Biology, 2021, 433, 166980.	2.0	52
1052	Atomic insights into ML-SI3 mediated human TRPML1 inhibition. Structure, 2021, 29, 1295-1302.e3.	1.6	14
1054	Neutralizing Antibodies Induced by First-Generation gp41-Stabilized HIV-1 Envelope Trimers and Nanoparticles. MBio, 2021, 12, e0042921.	1.8	6
1055	Cryo-EM structure of human ABCB8 transporter in nucleotide binding state. Biochemical and Biophysical Research Communications, 2021, 557, 187-191.	1.0	13

#	Article	IF	CITATIONS
1057	Sub-3 Ã Cryo-EM Structures of Necrosis Virus Particles via the Use of Multipurpose TEM with Electron Counting Camera. International Journal of Molecular Sciences, 2021, 22, 6859.	1.8	2
1058	The Cryo-EM Structure of Vesivirus 2117 Highlights Functional Variations in Entry Pathways for Viruses in Different Clades of the <i>Vesivirus</i> Genus. Journal of Virology, 2021, 95, e0028221.	1.5	1
1059	Structural basis for sterol sensing by Scap and Insig. Cell Reports, 2021, 35, 109299.	2.9	16
1061	GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme. Molecular Cell, 2021, 81, 2445-2459.e13.	4.5	44
1062	Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens. Nature Communications, 2021, 12, 3577.	5.8	40
1063	The structure of ORC–Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6. Nature Communications, 2021, 12, 3883.	5.8	28
1064	Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs. Nature Structural and Molecular Biology, 2021, 28, 573-582.	3.6	172
1065	Ctf3/CENP-I provides a docking site for the desumoylase Ulp2 at the kinetochore. Journal of Cell Biology, 2021, 220, .	2.3	4
1066	Structures and implications of TBP–nucleosome complexes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
1067	CryoEM structure of the Nipah virus nucleocapsid assembly. PLoS Pathogens, 2021, 17, e1009740.	2.1	21
1068	Structure of the mini-RNA-guided endonuclease CRISPR-Cas12j3. Nature Communications, 2021, 12, 4476.	5.8	23
1069	Gating movements and ion permeation in HCN4 pacemaker channels. Molecular Cell, 2021, 81, 2929-2943.e6.	4.5	41
1070	Structural analysis of Mycobacterium tuberculosis M13 metalloprotease Zmp1 open states. Structure, 2021, 29, 709-720.e3.	1.6	3
1074	Structural insights into the mechanism of human NPC1L1-mediated cholesterol uptake. Science Advances, 2021, 7, .	4.7	34
1075	Testing and implementing a live processing workflow at the New York Structural Biology Center. Microscopy and Microanalysis, 2021, 27, 2296-2297.	0.2	0
1077	A Close Look at Molecular Self-Assembly with the Transmission Electron Microscope. Chemical Reviews, 2021, 121, 14232-14280.	23.0	33
1078	Structure of a mammalian sperm cation channel complex. Nature, 2021, 595, 746-750.	13.7	44
1079	Dynamic closed states of a ligand-gated ion channel captured by cryo-EM and simulations. Life Science Alliance, 2021, 4, e202101011.	1.3	16

#	Article	IF	Citations
1080	SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science, 2021, 373, 648-654.	6.0	385
1081	A cooperative PNPase-Hfq-RNA carrier complex facilitates bacterial riboregulation. Molecular Cell, 2021, 81, 2901-2913.e5.	4.5	22
1082	Structural basis for recognition and regulation of arenavirus polymerase L by Z protein. Nature Communications, 2021, 12, 4134.	5.8	17
1083	Cryo-EM structure and dynamics of the green-light absorbing proteorhodopsin. Nature Communications, 2021, 12, 4107.	5.8	15
1085	Thermo Scientificâ,,¢ Tundra Cryo-TEM: 100kV Cryo-TEM dedicated for Single Particle Analysis. Microscopy and Microanalysis, 2021, 27, 1330-1332.	0.2	1
1086	Structure of the human C9orf72-SMCR8 complex reveals a multivalent protein interaction architecture. PLoS Biology, 2021, 19, e3001344.	2.6	6
1089	Structure and dynamics of semaglutide- and taspoglutide-bound GLP-1R-Gs complexes. Cell Reports, 2021, 36, 109374.	2.9	27
1090	Structure of RNA polymerase II pre-initiation complex at 2.9ÂÃ defines initial DNA opening. Cell, 2021, 184, 4064-4072.e28.	13.5	42
1091	Cryo-EM structure of the human ELMO1-DOCK5-Rac1 complex. Science Advances, 2021, 7, .	4.7	17
1092	Toxin import through the antibiotic efflux channel TolC. Nature Communications, 2021, 12, 4625.	5.8	11
1093	Structure of the molecular bushing of the bacterial flagellar motor. Nature Communications, 2021, 12, 4469.	5.8	33
1094	Structure of the TELO2-TTI1-TTI2 complex and its function in TOR recruitment to the R2TP chaperone. Cell Reports, 2021, 36, 109317.	2.9	20
1095	Structural basis for the constitutive activity and immunomodulatory properties of the Epstein-Barr virus-encoded G protein-coupled receptor BILF1. Immunity, 2021, 54, 1405-1416.e7.	6.6	18
1096	Disassembly of HIV envelope glycoprotein trimer immunogens is driven by antibodies elicited via immunization. Science Advances, 2021, 7, .	4.7	37
1097	The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding. Nature Communications, 2021, 12, 4174.	5.8	22
1098	Structural basis of LhcbM5-mediated state transitions in green algae. Nature Plants, 2021, 7, 1119-1131.	4.7	43
1099	Structure of an AMPK complex in an inactive, ATP-bound state. Science, 2021, 373, 413-419.	6.0	42
1100	Astrocytesâ€derived extracellular vesicles in motion at the neuron surface: Involvement of the prion protein. Journal of Extracellular Vesicles, 2021, 10, e12114.	5.5	19

#	Article	IF	CITATIONS
1103	Cryo-EM structure of the flight muscle thick filament from the bumble bee, Bombus ignitius, at 6 Ã Resolution. Microscopy and Microanalysis, 2021, 27, 1684-1686.	0.2	0
1104	RqcH and RqcP catalyze processive poly-alanine synthesis in a reconstituted ribosome-associated quality control system. Nucleic Acids Research, 2021, 49, 8355-8369.	6.5	11
1105	Routine sub-2.5 à cryo-EM structure determination of GPCRs. Nature Communications, 2021, 12, 4333.	5.8	37
1106	Mechanisms of BRCA1–BARD1 nucleosome recognition and ubiquitylation. Nature, 2021, 596, 438-443.	13.7	74
1107	Ribosome heterogeneity in <i>Drosophila melanogaster</i> gonads through paralog-switching. Nucleic Acids Research, 2022, 50, 2240-2257.	6.5	28
1109	Inhibition of bacterial binding through dysfunction of bacterial adhesion pili. Microscopy and Microanalysis, 2021, 27, 828-831.	0.2	0
1110	Cryo-EM structure of human Wntless in complex with Wnt3a. Nature Communications, 2021, 12, 4541.	5.8	20
1111	Structural basis for chemokine recognition and receptor activation of chemokine receptor CCR5. Nature Communications, 2021, 12, 4151.	5.8	56
1112	Structural plasticity of mumps virus nucleocapsids with cryo-EM structures. Communications Biology, 2021, 4, 833.	2.0	11
1113	Structure of Escherichia coli respiratory complex I reconstituted into lipid nanodiscs reveals an uncoupled conformation. ELife, 2021, 10, .	2.8	36
1114	Structural heterogeneity of cellular K5/K14 filaments as revealed by cryo-electron microscopy. ELife, 2021, 10, .	2.8	22
1115	Folding of cohesin's coiled coil is important for Scc2/4-induced association with chromosomes. ELife, 2021, 10, .	2.8	37
1116	Accurately measuring ice thickness quickly and quantitatively on a screening TEM. Microscopy and Microanalysis, 2021, 27, 1158-1160.	0.2	3
1117	rAMI – Rapid Alignment with Moment of Inertia for Cryo-EM Image Processing. Microscopy and Microanalysis, 2021, 27, 3216-3218.	0.2	0
1119	Mechanistic insight into substrate processing and allosteric inhibition of human p97. Nature Structural and Molecular Biology, 2021, 28, 614-625.	3.6	56
1120	Cryo-EM structures of the caspase-activated protein XKR9 involved in apoptotic lipid scrambling. ELife, 2021, 10, .	2.8	22
1121	Structural basis for genome packaging, retention, and ejection in human cytomegalovirus. Nature Communications, 2021, 12, 4538.	5.8	16
1122	<i>Mycobacterium tuberculosis</i> ferritin: a suitable workhorse protein for cryo-EM development. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1077-1083.	1.1	6

		CITATION RE	PORT	
#	Article		IF	Citations
1123	Structure of human Cav2.2 channel blocked by the painkiller ziconotide. Nature, 2021,	596, 143-147.	13.7	85
1124	Cryo-EM: A new dawn in thyroid biology. Molecular and Cellular Endocrinology, 2021, 5	31, 111309.	1.6	2
1125	Structural basis of early translocation events on the ribosome. Nature, 2021, 595, 741-	745.	13.7	60
1126	Image collection strategies for single particle cryoEM. Microscopy and Microanalysis, 20 1904-1906.	021, 27,	0.2	0
1127	Scap structures highlight key role for rotation of intertwined luminal loops in cholester Cell, 2021, 184, 3689-3701.e22.	ol sensing.	13.5	18
1128	Structural and mechanistic basis for translation inhibition by macrolide and ketolide an Nature Communications, 2021, 12, 4466.	tibiotics.	5.8	43
1129	A synthetic tubular molecular transport system. Nature Communications, 2021, 12, 43	93.	5.8	23
1131	Deep learning-based mixed-dimensional Gaussian mixture model for characterizing varia cryo-EM. Nature Methods, 2021, 18, 930-936.	ability in	9.0	102
1132	Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrins antibiotic-resistance transcription factor WhiB7. Molecular Cell, 2021, 81, 2875-2886.	ic 25.	4.5	25
1133	A distinct assembly pathway of the human 39S late pre-mitoribosome. Nature Commur 4544.	nications, 2021, 12,	5.8	27
1134	Molecular mechanism of cargo recognition and handover by the mammalian signal recorparticle. Cell Reports, 2021, 36, 109350.	ognition	2.9	23
1135	Three epitope-distinct human antibodies from RenMab mice neutralize SARS-CoV-2 and minimize the escape of mutants. Cell Discovery, 2021, 7, 53.	cooperatively	3.1	14
1136	Structural basis of intron selection by U2 snRNP in the presence of covalent inhibitors. Communications, 2021, 12, 4491.	Nature	5.8	32
1138	Dipeptidyl peptidase 9 sets a threshold for CARD8 inflammasome formation by sequest C-terminal fragment. Immunity, 2021, 54, 1392-1404.e10.	tering its active	6.6	47
1139	Native flagellar MS ring is formed by 34 subunits with 23-fold and 11-fold subsymmetri Communications, 2021, 12, 4223.	es. Nature	5.8	34
1140	HUWE1 employs a giant substrate-binding ring to feed and regulate its HECT E3 domai Chemical Biology, 2021, 17, 1084-1092.	n. Nature	3.9	24
1141	Broad sarbecovirus neutralization by a human monoclonal antibody. Nature, 2021, 597	', 103-108.	13.7	220
1142	DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commur Biology, 2021, 4, 874.	lications	2.0	561

#	Article	IF	CITATIONS
1144	Structural and functional characterization of the intracellular filament-forming nitrite oxidoreductase multiprotein complex. Nature Microbiology, 2021, 6, 1129-1139.	5.9	25
1145	A synthetic nanobody targeting RBD protects hamsters from SARS-CoV-2 infection. Nature Communications, 2021, 12, 4635.	5.8	72
1146	Structural basis of the activation of c-MET receptor. Nature Communications, 2021, 12, 4074.	5.8	64
1147	Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity. Cell, 2021, 184, 3643-3659.e23.	13.5	76
1148	PspA adopts an ESCRT-III-like fold and remodels bacterial membranes. Cell, 2021, 184, 3674-3688.e18.	13.5	51
1149	Endo-lysosomal AÎ ² concentration and pH trigger formation of AÎ ² oligomers that potently induce Tau missorting. Nature Communications, 2021, 12, 4634.	5.8	59
1151	Structural basis for target site selection in RNA-guided DNA transposition systems. Science, 2021, 373, 768-774.	6.0	45
1152	A human apolipoprotein L with detergent-like activity kills intracellular pathogens. Science, 2021, 373, .	6.0	50
1153	Heat-dependent opening of TRPV1 in the presence of capsaicin. Nature Structural and Molecular Biology, 2021, 28, 554-563.	3.6	92
1154	Structural insight into BRCA1-BARD1 complex recruitment to damaged chromatin. Molecular Cell, 2021, 81, 2765-2777.e6.	4.5	44
1155	Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1. Nature, 2021, 595, 600-605.	13.7	87
1156	SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature, 2021, 597, 97-102.	13.7	385
1157	Assisted assembly of bacteriophage T7 core components for genome translocation across the bacterial envelope. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
1158	The structure of the bacterial DNA segregation ATPase filament reveals the conformational plasticity of ParA upon DNA binding. Nature Communications, 2021, 12, 5166.	5.8	10
1161	Effect of SARS-CoV-2 B.1.1.7 mutations on spike protein structure and function. Nature Structural and Molecular Biology, 2021, 28, 731-739.	3.6	124
1162	Cryo-EM structure of the \hat{l}^23 -adrenergic receptor reveals the molecular basis of subtype selectivity. Molecular Cell, 2021, 81, 3205-3215.e5.	4.5	21
1163	Structures of Substrate Complexes of Foamy Viral Protease-Reverse Transcriptase. Journal of Virology, 2021, 95, e0084821.	1.5	2
1164	Cryo-EM structure of the periplasmic tunnel of T7 DNA-ejectosome at 2.7ÂÃ resolution. Molecular Cell, 2021, 81, 3145-3159.e7.	4.5	17

#	Article	IF	CITATIONS
1165	Cryo-EM structures of the TTYH family reveal a novel architecture for lipid interactions. Nature Communications, 2021, 12, 4893.	5.8	11
1166	Remodeling and activation mechanisms of outer arm dyneins revealed by cryoâ€EM. EMBO Reports, 2021, 22, e52911.	2.0	39
1167	Allosteric transcription stimulation by RNA polymerase II super elongation complex. Molecular Cell, 2021, 81, 3386-3399.e10.	4.5	17
1168	Step-by-step guide to efficient subtomogram averaging of virus-like particles with Dynamo. PLoS Biology, 2021, 19, e3001318.	2.6	24
1169	Structures of dimeric human NPC1L1 provide insight into mechanisms for cholesterol absorption. Science Advances, 2021, 7, .	4.7	18
1171	Validation, analysis and annotation of cryo-EM structures. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1142-1152.	1.1	14
1172	N-terminal Transmembrane-Helix Epitope Tag for X-ray Crystallography and Electron Microscopy of Small Membrane Proteins. Journal of Molecular Biology, 2021, 433, 166909.	2.0	13
1173	TMEM120A is a coenzyme A-binding membrane protein with structural similarities to ELOVL fatty acid elongase. ELife, 2021, 10, .	2.8	20
1174	Analysis of the mechanosensor channel functionality of TACAN. ELife, 2021, 10, .	2.8	24
1175	Neutralization of the anthrax toxin by antibody-mediated stapling of its membrane-penetrating loop. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1197-1205.	1.1	2
1177	The large bat Helitron DNA transposase forms a compact monomeric assembly that buries and protects its covalently bound 5′-transposon end. Molecular Cell, 2021, 81, 4271-4286.e4.	4.5	15
1178	Agonists and allosteric modulators promote signaling from different metabotropic glutamate receptor 5 conformations. Cell Reports, 2021, 36, 109648.	2.9	32
1179	Structural insights into Cullin4-RING ubiquitin ligase remodelling by Vpr from simian immunodeficiency viruses. PLoS Pathogens, 2021, 17, e1009775.	2.1	11
1181	Towards Visual Proteomics at High Resolution. Journal of Molecular Biology, 2021, 433, 167187.	2.0	49
1182	Potent neutralizing nanobodies resist convergent circulating variants of SARS-CoV-2 by targeting diverse and conserved epitopes. Nature Communications, 2021, 12, 4676.	5.8	74
1184	Challenges in sample preparation and structure determination of amyloids by cryo-EM. Journal of Biological Chemistry, 2021, 297, 100938.	1.6	20
1185	Structure of the Arabidopsis thaliana glutamate receptor-like channel GLR3.4. Molecular Cell, 2021, 81, 3216-3226.e8.	4.5	39
1188	En route to dynamic life processes by SNARE-mediated fusion of polymer and hybrid membranes. Nature Communications, 2021, 12, 4972.	5.8	21

#	Article	IF	CITATIONS
1189	Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nature Structural and Molecular Biology, 2021, 28, 740-746.	3.6	450
1191	Structures and function of the amino acid polymerase cyanophycin synthetase. Nature Chemical Biology, 2021, 17, 1101-1110.	3.9	24
1192	Structural and mechanistic basis for protein glutamylation by the kinase fold. Molecular Cell, 2021, 81, 4527-4539.e8.	4.5	18
1193	Structure of the ancient TRPY1 channel from Saccharomyces cerevisiae reveals mechanisms of modulation by lipids and calcium. Structure, 2022, 30, 139-155.e5.	1.6	12
1195	Cryo-EM to visualize the structural organization of viruses. Current Opinion in Virology, 2021, 49, 86-91.	2.6	2
1196	Structures of tmRNA and SmpB as they transit through the ribosome. Nature Communications, 2021, 12, 4909.	5.8	16
1197	The <i>Uppsala APP</i> deletion causes early onset autosomal dominant Alzheimer's disease by altering APP processing and increasing amyloid β fibril formation. Science Translational Medicine, 2021, 13, .	5.8	23
1198	Structural basis of <scp>l</scp> -tryptophan-dependent inhibition of release factor 2 by the TnaC arrest peptide. Nucleic Acids Research, 2021, 49, 9539-9547.	6.5	12
1199	Cryoâ€EM analysis provides new mechanistic insight into ATP binding to Ca ²⁺ â€ATPase SERCA2b. EMBO Journal, 2021, 40, e108482.	3.5	8
1200	Cryo-EM structures of full-length Tetrahymena ribozyme at 3.1ÂÃ resolution. Nature, 2021, 596, 603-607.	13.7	59
1201	Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies. Nature, 2021, 598, 342-347.	13.7	230
1202	Neutralization of SARSâ€CoVâ€2 by highly potent, hyperthermostable, and mutationâ€ŧolerant nanobodies. EMBO Journal, 2021, 40, e107985.	3.5	69
1203	Antibody responses induced by SHIV infection are more focused than those induced by soluble native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2021, 17, e1009736.	2.1	18
1205	Deciphering ion transport and ATPase coupling in the intersubunit tunnel of KdpFABC. Nature Communications, 2021, 12, 5098.	5.8	10
1206	Cryo-EM structure of the human MT1–Gi signaling complex. Nature Structural and Molecular Biology, 2021, 28, 694-701.	3.6	31
1207	Exploring the Effect of Structure-Based Scaffold Hopping on the Inhibition of Coxsackievirus A24v Transduction by Pentavalent N-Acetylneuraminic Acid Conjugates. International Journal of Molecular Sciences, 2021, 22, 8418.	1.8	2
1208	Maturation of the matrix and viral membrane of HIV-1. Science, 2021, 373, 700-704.	6.0	60
1209	Structural insights into GIRK2 channel modulation by cholesterol and PIP2. Cell Reports, 2021, 36, 109619.	2.9	17

#	Article	IF	CITATIONS
1211	Murine Monoclonal Antibodies against the Receptor Binding Domain of SARS-CoV-2 Neutralize Authentic Wild-Type SARS-CoV-2 as Well as B.1.1.7 and B.1.351 Viruses and Protect <i>In Vivo</i> in a Mouse Model in a Neutralization-Dependent Manner. MBio, 2021, 12, e0100221.	1.8	7
1212	Structures of ABCB4 provide insight into phosphatidylcholine translocation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
1213	The structural basis of odorant recognition in insect olfactory receptors. Nature, 2021, 597, 126-131.	13.7	141
1214	Cryo-EM photosystem I structure reveals adaptation mechanisms to extreme high light in Chlorella ohadii. Nature Plants, 2021, 7, 1314-1322.	4.7	18
1216	Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nature Communications, 2021, 12, 4817.	5.8	35
1217	Cryo-EM structures of <i>Escherichia coli</i> cytochrome <i>bo</i> _{<i>3</i>} reveal bound phospholipids and ubiquinone-8 in a dynamic substrate binding site. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
1220	Insights into the bilayer-mediated toppling mechanism of a folate-specific ECF transporter by cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
1221	Molecular recognition of an acyl-peptide hormone and activation of ghrelin receptor. Nature Communications, 2021, 12, 5064.	5.8	40
1222	Chained Structure of Dimeric F ₁ -like ATPase in Mycoplasma mobile Gliding Machinery. MBio, 2021, 12, e0141421.	1.8	15
1223	A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity, 2021, 54, 2399-2416.e6.	6.6	79
1224	Cryo-EM structure of the nucleosome core particle containing <i>Giardia lamblia</i> histones. Nucleic Acids Research, 2021, 49, 8934-8946.	6.5	20
1226	Cryo-EM structures of LptB2FG and LptB2FGC from Klebsiella pneumoniae in complex with lipopolysaccharide. Biochemical and Biophysical Research Communications, 2021, 571, 20-25.	1.0	7
1227	Three-megadalton complex of methanogenic electron-bifurcating and CO ₂ -fixing enzymes. Science, 2021, 373, 1151-1156.	6.0	31
1228	TopoStats – A program for automated tracing of biomolecules from AFM images. Methods, 2021, 193, 68-79.	1.9	23
1230	Multiâ€scale ensemble properties of the <i>Escherichia coli</i> RNA degradosome. Molecular Microbiology, 2022, 117, 102-120.	1.2	7
1231	Solenoid architecture of HUWE1 contributes to ligase activity and substrate recognition. Molecular Cell, 2021, 81, 3468-3480.e7.	4.5	23
1233	Molecular structures of human ACAT2 disclose mechanism for selective inhibition. Structure, 2021, 29, 1410-1418.e4.	1.6	12
1235	Asymmetric Structures and Conformational Plasticity of the Uncleaved Full-Length Human Immunodeficiency Virus Envelope Glycoprotein Trimer. Journal of Virology, 2021, 9 <u>5, e0052921.</u>	1.5	20

#	Article	IF	CITATIONS
1236	Two-Dimensional Electronic Spectroscopy of a Minimal Photosystem I Complex Reveals the Rate of Primary Charge Separation. Journal of the American Chemical Society, 2021, 143, 14601-14612.	6.6	13
1237	Evolving cryo-EM structural approaches for GPCR drug discovery. Structure, 2021, 29, 963-974.e6.	1.6	29
1238	The structural basis of Salmonella A2B5 toxin neutralization by antibodies targeting the glycan-receptor binding subunits. Cell Reports, 2021, 36, 109654.	2.9	13
1239	High-resolution single-particle cryo-EM of samples vitrified in boiling nitrogen. IUCrJ, 2021, 8, 867-877.	1.0	18
1240	Cryoâ€EM structure of the fullâ€length Lon protease from <i>Thermus thermophilus</i> . FEBS Letters, 2021, 595, 2691-2700.	1.3	9
1241	Nucleolar maturation of the human small subunit processome. Science, 2021, 373, eabj5338.	6.0	63
1242	Structural characterization of the Plasmodium falciparum lactate transporter PfFNT alone and in complex with antimalarial compound MMV007839 reveals its inhibition mechanism. PLoS Biology, 2021, 19, e3001386.	2.6	10
1243	Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies. Cell Reports, 2021, 36, 109760.	2.9	80
1245	Tunable Heteroassembly of a Plant Pseudoenzyme–Enzyme Complex. ACS Chemical Biology, 2021, 16, 2315-2325.	1.6	13
1247	Context-Specific Function of the Engineered Peptide Domain of PHP.B. Journal of Virology, 2021, 95, e0116421.	1.5	13
1249	Structures of outer-arm dynein array on microtubule doublet reveal a motor coordination mechanism. Nature Structural and Molecular Biology, 2021, 28, 799-810.	3.6	55
1250	An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope. Protein and Cell, 2022, 13, 655-675.	4.8	25
1251	Structure and dynamics of the chromatin remodeler ALC1 bound to a PARylated nucleosome. ELife, 2021, 10, .	2.8	21
1252	Minimal protein-only RNase P structure reveals insights into tRNA precursor recognition and catalysis. Journal of Biological Chemistry, 2021, 297, 101028.	1.6	13
1253	Cyclodextrins increase membrane tension and are universal activators of mechanosensitive channels. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
1254	Cryo-EM reveals new species-specific proteins and symmetry elements in the Legionella pneumophila Dot/Icm T4SS. ELife, 2021, 10, .	2.8	22
1255	Structural insights into the targeting specificity of ubiquitin ligase for S. cerevisiae isocitrate lyase but not C. albicans isocitrate lyase. Journal of Structural Biology, 2021, 213, 107748.	1.3	1
1256	Practical considerations for using K3 cameras in CDS mode for high-resolution and high-throughput single particle cryo-EM. Journal of Structural Biology, 2021, 213, 107745.	1.3	33

#	Article	IF	CITATIONS
1258	Structure of human cytomegalovirus virion reveals host tRNA binding to capsid-associated tegument protein pp150. Nature Communications, 2021, 12, 5513.	5.8	13
1259	Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes. Nature Communications, 2021, 12, 5497.	5.8	59
1260	Structure of an inactive RNA polymerase II dimer. Nucleic Acids Research, 2021, 49, 10747-10755.	6.5	8
1261	Helical reconstruction of Salmonella and Shigella needle filaments attached to type 3 basal bodies. Biochemistry and Biophysics Reports, 2021, 27, 101039.	0.7	2
1263	Functional Analysis of the GPI Transamidase Complex by Screening for Amino Acid Mutations in Each Subunit. Molecules, 2021, 26, 5462.	1.7	5
1264	A Novel N-terminal Region to Chromodomain in CHD7 is Required for the Efficient Remodeling Activity. Journal of Molecular Biology, 2021, 433, 167114.	2.0	4
1265	Cryo-EM as a powerful tool for drug discovery: recent structural based studies of SARS-CoV-2. Applied Microscopy, 2021, 51, 13.	0.8	6
1267	Mechanistic Insights into the Capsule-Targeting Depolymerase from a Klebsiella pneumoniae Bacteriophage. Microbiology Spectrum, 2021, 9, e0102321.	1.2	28
1269	Allosteric modulation of LRRC8 channels by targeting their cytoplasmic domains. Nature Communications, 2021, 12, 5435.	5.8	15
1270	Kainate receptor modulation by NETO2. Nature, 2021, 599, 325-329.	13.7	20
1270 1271	Kainate receptor modulation by NETO2. Nature, 2021, 599, 325-329. Structural basis of RNA processing by human mitochondrial RNase P. Nature Structural and Molecular Biology, 2021, 28, 713-723.	13.7 3.6	20 48
1270 1271 1272	Kainate receptor modulation by NETO2. Nature, 2021, 599, 325-329. Structural basis of RNA processing by human mitochondrial RNase P. Nature Structural and Molecular Biology, 2021, 28, 713-723. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell, 2021, 184, 5138-5150.e12.	13.7 3.6 13.5	20 48 101
1270 1271 1272 1274	Kainate receptor modulation by NETO2. Nature, 2021, 599, 325-329. Structural basis of RNA processing by human mitochondrial RNase P. Nature Structural and Molecular Biology, 2021, 28, 713-723. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell, 2021, 184, 5138-5150.e12. Cryo-EM single-particle structure refinement and map calculation using <i>Servalcat </i> Cryotem Structural Biology, 2021, 77, 1282-1291.	13.7 3.6 13.5 1.1	20 48 101 117
1270 1271 1272 1274 1276	Kainate receptor modulation by NETO2. Nature, 2021, 599, 325-329. Structural basis of RNA processing by human mitochondrial RNase P. Nature Structural and Molecular Biology, 2021, 28, 713-723. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell, 2021, 184, 5138-5150.e12. Cryo-EM single-particle structure refinement and map calculation using <i>Servalcat </i> Structure and efflux mechanism of the yeast pleiotropic drug resistance transporter Pdr5. Nature Communications, 2021, 12, 5254.	13.7 3.6 13.5 1.1 5.8	20 48 101 117
1270 1271 1272 1274 1276	Kainate receptor modulation by NETO2. Nature, 2021, 599, 325-329. Structural basis of RNA processing by human mitochondrial RNase P. Nature Structural and Molecular Biology, 2021, 28, 713-723. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell, 2021, 184, 5138-5150.e12. Cryo-EM single-particle structure refinement and map calculation using <i>Servalcat Structure and efflux mechanism of the yeast pleiotropic drug resistance transporter Pdr5. Nature Communications, 2021, 12, 5254. Low-cooling-rate freezing in biomolecular cryo-electron microscopy for recovery of initial frames. QRB Discovery, 2021, 2, .</i>	 13.7 3.6 13.5 1.1 5.8 0.6 	20 48 101 117 51
1270 1271 1272 1274 1276 1277	Kainate receptor modulation by NETO2. Nature, 2021, 599, 325-329. Structural basis of RNA processing by human mitochondrial RNase P. Nature Structural and Molecular Biology, 2021, 28, 713-723. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell, 2021, 184, 5138-5150.e12. Cryo-EM single-particle structure refinement and map calculation using <i>Servalcat</i> Acta Crystallographica Section D: Structural Biology, 2021, 77, 1282-1291. Structure and efflux mechanism of the yeast pleiotropic drug resistance transporter Pdr5. Nature Communications, 2021, 12, 5254. Low-cooling-rate freezing in biomolecular cryo-electron microscopy for recovery of initial frames. QRB Discovery, 2021, 2, . Molecular mechanism of prestin electromotive signal amplification. Cell, 2021, 184, 4669-4679.e13.	 13.7 3.6 13.5 5.8 0.6 13.5 	20 48 101 117 51 6
 1270 1271 1272 1274 1276 1277 1278 1279 	Kainate receptor modulation by NETO2. Nature, 2021, 599, 325-329. Structural basis of RNA processing by human mitochondrial RNase P. Nature Structural and Molecular Biology, 2021, 28, 713-723. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell, 2021, 184, 5138-5150.e12. Cryo-EM single-particle structure refinement and map calculation using <i>> Servalcat Structure and efflux mechanism of the yeast pleiotropic drug resistance transporter Pdr5. Nature Communications, 2021, 12, 5254. Low-cooling-rate freezing in biomolecular cryo-electron microscopy for recovery of initial frames. QRB Discovery, 2021, 2, . Molecular mechanism of prestin electromotive signal amplification. Cell, 2021, 184, 4669-4679.e13. Linwinding of a DNA replication fork by a hexameric viral helicase. Nature Communications, 2021, 12, 535.</i>	 13.7 3.6 13.5 1.1 5.8 0.6 13.5 5.8 	20 48 101 117 51 6 3

#	Article	IF	CITATIONS
1283	Molecular basis of human ATM kinase inhibition. Nature Structural and Molecular Biology, 2021, 28, 789-798.	3.6	26
1284	Structures of the human cholecystokinin receptors bound to agonists and antagonists. Nature Chemical Biology, 2021, 17, 1230-1237.	3.9	27
1289	Structure-based classification of tauopathies. Nature, 2021, 598, 359-363.	13.7	409
1290	On-grid and in-flow mixing for time-resolved cryo-EM. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1233-1240.	1.1	14
1291	Cryo-EM structure of the monomeric <i>Rhodobacter sphaeroides</i> RC–LH1 core complex at 2.5â€Ã Biochemical Journal, 2021, 478, 3775-3790.	1.7	33
1292	D614G mutation in the SARS-CoV-2 spike protein enhances viral fitness by desensitizing it to temperature-dependent denaturation. Journal of Biological Chemistry, 2021, 297, 101238.	1.6	46
1293	Cryo-electron microscopy of the giant viruses. Microscopy (Oxford, England), 2021, 70, 477-486.	0.7	10
1294	Machine learning-based real-time object locator/evaluator for cryo-EM data collection. Communications Biology, 2021, 4, 1044.	2.0	21
1296	A streamlined workflow for automated cryo focused ion beam milling. Journal of Structural Biology, 2021, 213, 107743.	1.3	60
1299	Structural basis of RNA polymerase inhibition by viral and host factors. Nature Communications, 2021, 12, 5523.	5.8	6
1300	Structural characterization of NrnC identifies unifying features of dinucleases. ELife, 2021, 10, .	2.8	6
1302	Novel cryo-EM structure of an ADP-bound GroEL–GroES complex. Scientific Reports, 2021, 11, 18241.	1.6	9
1304	Landscape of human antibody recognition of the SARS-CoV-2 receptor binding domain. Cell Reports, 2021, 37, 109822.	2.9	35
1305	Heterogeneity in E. coli RecBCD Helicase-DNA Binding and Base Pair Melting. Journal of Molecular Biology, 2021, 433, 167147.	2.0	9
1306	Gastric proton pump with two occluded K+ engineered with sodium pump-mimetic mutations. Nature Communications, 2021, 12, 5709.	5.8	8
1308	Structural implications for a phycobilisome complex from the thermophilic cyanobacterium Thermosynechococcus vulcanus. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148458.	0.5	10
1309	Regulation of human mTOR complexes by DEPTOR. ELife, 2021, 10, .	2.8	15
1310	CryoEM structure of the super-constricted two-start dynamin 1 filament. Nature Communications, 2021, 12, 5393.	5.8	5

# 1311	ARTICLE Chimeric single α-helical domains as rigid fusion protein connections for protein nanotechnology and structural biology. Structure, 2022, 30, 95-106.e7.	IF 1.6	CITATIONS
1312	Activation mechanism of human soluble guanylate cyclase by stimulators and activators. Nature Communications, 2021, 12, 5492.	5.8	26
1315	Porin threading drives receptor disengagement and establishes active colicin transport through <i>Escherichia coli</i> OmpF. EMBO Journal, 2021, 40, e108610.	3.5	11
1316	Structure of Geobacter pili reveals secretory rather than nanowire behaviour. Nature, 2021, 597, 430-434.	13.7	99
1317	Cryo-EM structure of the <i>Rhodospirillum rubrum</i> RC–LH1 complex at 2.5â€Ã Biochemical Journal, 2021, 478, 3253-3263.	1.7	23
1319	Structure of the Human Cholesterol Transporter ABCG1. Journal of Molecular Biology, 2021, 433, 167218.	2.0	22
1320	Structural Dynamics of the Functional Nonameric Type III Translocase Export Gate. Journal of Molecular Biology, 2021, 433, 167188.	2.0	7
1321	Cryo-EM structure of the dual incretin receptor agonist, peptide-19, in complex with the glucagon-like peptide-1 receptor. Biochemical and Biophysical Research Communications, 2021, 578, 84-90.	1.0	14
1322	Determining structures in a native environment using single-particle cryoelectron microscopy images. Innovation(China), 2021, 2, 100166.	5.2	6
1323	A structural framework for DNA replication and transcription through chromatin. Current Opinion in Structural Biology, 2021, 71, 51-58.	2.6	6
1324	TXNIP interaction with GLUT1 depends on PI(4,5)P2. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183757.	1.4	12
1325	Direct IgG epitope mapping on bacterial AB toxins by cryo-EM. STAR Protocols, 2021, 2, 100852.	0.5	4
1326	Solubilization of artificial mitochondrial membranes by amphiphilic copolymers of different charge. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183725.	1.4	10
1327	Purification and cryo-EM structure determination of Arabidopsis thaliana GLR3.4. STAR Protocols, 2021, 2, 100855.	0.5	0
1330	From Tube to Structure: SPA Cryo-EM Workflow Using Apoferritin as an Example. Methods in Molecular Biology, 2021, 2305, 229-256.	0.4	2
1331	Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM. Nature Methods, 2021, 18, 60-68.	9.0	79
1332	Structures of human dual oxidase 1 complex in low-calcium and high-calcium states. Nature Communications, 2021, 12, 155.	5.8	36
1333	ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nature Communications, 2021, 12, 120.	5.8	64

#	Article	IF	CITATIONS
1334	The cryo-EM structure of the endocytic receptor DEC-205. Journal of Biological Chemistry, 2021, 296, 100127.	1.6	11
1335	Single-Particle Cryo-EM of Membrane Proteins. Methods in Molecular Biology, 2021, 2302, 153-178.	0.4	14
1336	Hemocyanins of Muricidae: New â€~Insights' Unravel an Additional Highly Hydrophilic 800ÂkDa Mass Within the Molecule. Journal of Molecular Evolution, 2021, 89, 62-72.	0.8	2
1338	Mammalian expression of virus-like particles as a proof of principle for next generation polio vaccines. Npj Vaccines, 2021, 6, 5.	2.9	23
1340	Mechanism of membrane-curvature generation by ER-tubule shaping proteins. Nature Communications, 2021, 12, 568.	5.8	55
1342	Priming mycobacterial ESX-secreted protein B to form a channel-like structure. Current Research in Structural Biology, 2021, 3, 153-164.	1.1	15
1343	Cryoâ€EM structure of the CENPâ€A nucleosome in complex with phosphorylated CENP . EMBO Journal, 2021, 40, e105671.	3.5	35
1344	High-resolution mapping of the neutralizing and binding specificities of polyclonal sera post-HIV Env trimer vaccination. ELife, 2021, 10, .	2.8	15
1345	The structure of enteric human adenovirus 41—A leading cause of diarrhea in children. Science Advances, 2021, 7, .	4.7	40
1346	Atomic structures of respiratory complex III2, complex IV, and supercomplex III2-IV from vascular plants. ELife, 2021, 10, .	2.8	559
1347	Single-Particle Cryo-EM of Membrane Proteins in Lipid Nanodiscs. Methods in Molecular Biology, 2020, 2127, 245-273.	0.4	7
1348	Setting Up Parallel Illumination on the Talos Arctica for High-Resolution Data Collection. Methods in Molecular Biology, 2021, 2215, 125-144.	0.4	19
1349	Multi-body Refinement of Cryo-EM Images in RELION. Methods in Molecular Biology, 2021, 2215, 145-160.	0.4	39
1350	Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Cell, 2020, 182, 417-428.e13.	13.5	672
1351	Mechanistic Insights into Regulation of the ALC1 Remodeler by the Nucleosome Acidic Patch. Cell Reports, 2020, 33, 108529.	2.9	20
1352	Structural Differences in Translation Initiation between Pathogenic Trypanosomatids and Their Mammalian Hosts. Cell Reports, 2020, 33, 108534.	2.9	14
1353	Current limits of structural biology: The transient interaction between cytochrome c and photosystem I. Current Research in Structural Biology, 2020, 2, 171-179.	1.1	13
1354	Human Condensin I and II Drive Extensive ATP-Dependent Compaction of Nucleosome-Bound DNA. Molecular Cell, 2020, 79, 99-114.e9.	4.5	129

ARTICLE IF CITATIONS Prolyl isomerization controls activation kinetics of a cyclic nucleotide-gated ion channel. Nature 1355 5.8 12 Communications, 2020, 11, 6401. Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nature Communications, 5.8 2020, 11, 6419. 1357 The structure of human thyroglobulin. Nature, 2020, 578, 627-630. 13.7 81 Structural basis of ligand recognition and self-activation of orphan GPR52. Nature, 2020, 579, 152-157. 1358 Structural basis of energy transfer in Porphyridium purpureum phycobilisome. Nature, 2020, 579, 1359 13.7 113 146-151. STING cyclic dinucleotide sensing originated in bacteria. Nature, 2020, 586, 429-433. 13.7 246 Structural insights into ATP hydrolysis by the MoxR ATPase RavA and the Ldcl-RavA cage-like complex. 1361 2.0 26 Communications Biology, 2020, 3, 46. Supramolecular assembly of the <i>Escherichia coli</i> Ldcl upon acid stress. Proceedings of the 3.3 9 National Academy of Sciences of the United States of America, 2021, 118, . ULK complex organization in autophagy by a C-shaped FIP200 N-terminal domain dimer. Journal of Cell 1363 2.3 59 Biology, 2020, 219, . Cryo-EM reconstruction of a VPS13 fragment reveals a long groove to channel lipids between 1364 2.3 mémbranes. Journal of Cell Biology, 2020, 219, Structural basis of the fanconi anemia-associated mutations within the FANCA and FANCG complex. 1365 6.5 9 Nucleic Acids Research, 2020, 48, 3328-3342. Structural basis of sequestration of the anti-Shine-Dalgarno sequence in the Bacteroidetes ribosome. 1366 6.5 24 Nucleic Acids Research, 2021, 49, 547-567. Structures of the βâ€barrel assembly machine recognizing outer membrane protein substrates. FASEB 1367 0.2 28 Journal, 2021, 35, e21207. Cryo-EM structure of <i>Neurospora crassa </i> respiratory complex IV. IUCrJ, 2019, 6, 773-780. 1.0 1526 A cryo-EM grid preparation device for time-resolved structural studies. IUCrJ, 2019, 6, 1024-1031. 77 1.0 A comparative study of single-particle cryo-EM with liquid-nitrogen and liquid-helium cooling. IUCrJ, 2019, 6, 1099-1105. CryoEM at 100â€...keV: a demonstration and prospects. IUCrJ, 2019, 6, 1086-1098. 1528 1.0 89 1529 Throughput and resolution with a next-generation direct electron detector. IUCrJ, 2019, 6, 1007-1013. 28

CITATION REPORT

#

#	Article	IF	CITATIONS
1530	The resolution revolution in cryoEM requires high-quality sample preparation: a rapid pipeline to a high-resolution map of yeast fatty acid synthase. IUCrJ, 2020, 7, 220-227.	1.0	16
1531	Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in <i>RELION</i> -3.1. IUCrJ, 2020, 7, 253-267.	1.0	574
1532	High-resolution cryo-EM reconstructions in the presence of substantial aberrations. IUCrJ, 2020, 7, 445-452.	1.0	11
1533	<i>Plasmodium vivax</i> and human hexokinases share similar active sites but display distinct quaternary architectures. IUCrJ, 2020, 7, 453-461.	1.0	6
1534	The active form of quinol-dependent nitric oxide reductase from <i>Neisseria meningitidis</i> is a dimer. IUCrJ, 2020, 7, 404-415.	1.0	10
1535	Fast and accurate defocus modulation for improved tunability of cryo-EM experiments. IUCrJ, 2020, 7, 566-574.	1.0	6
1536	Assessing the JEOL CRYO ARM 300 for high-throughput automated single-particle cryo-EM in a multiuser environment. IUCrJ, 2020, 7, 707-718.	1.0	13
1537	1.8 à resolution structure of β-galactosidase with a 200â€kV CRYO ARM electron microscope. IUCrJ, 2020, 7, 639-643.	1.0	26
1538	A self-supervised workflow for particle picking in cryo-EM. IUCrJ, 2020, 7, 719-727.	1.0	18
1539	Continuous flexibility analysis of SARS-CoV-2 spike prefusion structures. IUCrJ, 2020, 7, 1059-1069.	1.0	39
1540	Enhancing the signal-to-noise ratio and generating contrast for cryo-EM images with convolutional neural networks. IUCrJ, 2020, 7, 1142-1150.	1.0	24
1541	High-resolution cryo-EM using beam-image shift at 200â€keV. IUCrJ, 2020, 7, 1179-1187.	1.0	14
1542	Structural basis for oligomerization of the prokaryotic peptide transporter PepT _{So2} . Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 348-358.	0.4	10
1543	LAT1 (SLC7A5) and CD98hc (SLC3A2) complex dynamics revealed by single-particle cryo-EM. Acta Crystallographica Section D: Structural Biology, 2019, 75, 660-669.	1.1	16
1544	Methods for merging data sets in electron cryo-microscopy. Acta Crystallographica Section D: Structural Biology, 2019, 75, 782-791.	1.1	29
1545	Flexible workflows for on-the-fly electron-microscopy single-particle image processing using <i>Scipion</i> . Acta Crystallographica Section D: Structural Biology, 2019, 75, 882-894.	1.1	14
1546	Industrial cryo-EM facility setup and management. Acta Crystallographica Section D: Structural Biology, 2020, 76, 313-325.	1.1	22
1547	Sample deposition onto cryo-EM grids: from sprays to jets and back. Acta Crystallographica Section D: Structural Biology, 2020, 76, 340-349.	1.1	23

#	Article	IF	CITATIONS
1548	Combining high throughput and high quality for cryo-electron microscopy data collection. Acta Crystallographica Section D: Structural Biology, 2020, 76, 724-728.	1.1	42
1549	Auto3DCryoMap: an automated particle alignment approach for 3D cryo-EM density map reconstruction. BMC Bioinformatics, 2020, 21, 534.	1.2	5
1550	The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis. BMC Biology, 2020, 18, 10.	1.7	56
1551	Alternative conformations and motions adopted by 30S ribosomal subunits visualized by cryo-electron microscopy. Rna, 2020, 26, 2017-2030.	1.6	21
1552	An open interface in the pre-80S ribosome coordinated by ribosome assembly factors Tsr1 and Dim1 enables temporal regulation of Fap7. Rna, 2021, 27, 221-233.	1.6	20
1553	Advances in methods for atomic resolution macromolecular structure determination. F1000Research, 2020, 9, 667.	0.8	22
1554	Structure of the Lifeact–F-actin complex. PLoS Biology, 2020, 18, e3000925.	2.6	40
1555	Differences in structure and hibernation mechanism highlight diversification of the microsporidian ribosome. PLoS Biology, 2020, 18, e3000958.	2.6	18
1556	Structure of the host cell recognition and penetration machinery of a Staphylococcus aureus bacteriophage. PLoS Pathogens, 2020, 16, e1008314.	2.1	55
1557	A natural mutation between SARS-CoV-2 and SARS-CoV determines neutralization by a cross-reactive antibody. PLoS Pathogens, 2020, 16, e1009089.	2.1	55
1558	Assembly of infectious enteroviruses depends on multiple, conserved genomic RNA-coat protein contacts. PLoS Pathogens, 2020, 16, e1009146.	2.1	31
1559	The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs. EMBO Journal, 2019, 38, e102226.	3.5	16
1560	Structural insights into actin filament recognition by commonly used cellular actin markers. EMBO Journal, 2020, 39, e104006.	3.5	53
1561	Structural insights into mammalian mitochondrial translation elongation catalyzed by mt <scp>EFG</scp> 1. EMBO Journal, 2020, 39, e104820.	3.5	33
1562	A structural inventory of native ribosomal ABCE1â€43S preâ€initiation complexes. EMBO Journal, 2021, 40, e105179.	3.5	35
1563	Architecture of the active postâ€ŧranslational Sec translocon. EMBO Journal, 2021, 40, e105643.	3.5	33
1564	Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase. EMBO Journal, 2020, 39, e105857.	3.5	8
1565	Structure and elevator mechanism of the mammalian sodium/proton exchanger NHE9. EMBO Journal, 2020, 39, 4541-4559.	3.5	31

#	Article	IF	CITATIONS
1566	Cryoâ€EM structure of native human uromodulin, a zona pellucida module polymer. EMBO Journal, 2020, 39, e106807.	3.5	31
1567	Differential functions of FANCI and FANCD2 ubiquitination stabilize ID2 complex on DNA. EMBO Reports, 2020, 21, e50133.	2.0	29
1568	Respiratory supercomplexes enhance electron transport by decreasing cytochrome <i>c</i> diffusion distance. EMBO Reports, 2020, 21, e51015.	2.0	71
1571	Structure of human Dispatched-1 provides insights into Hedgehog ligand biogenesis. Life Science Alliance, 2020, 3, e202000776.	1.3	23
1572	CryoEM structures of open dimers of gyrase A in complex with DNA illuminate mechanism of strand passage. ELife, 2018, 7, .	2.8	26
1573	Cryo-EM structures of the DCPIB-inhibited volume-regulated anion channel LRRC8A in lipid nanodiscs. ELife, 2019, 8, .	2.8	85
1574	High resolution cryo-EM structure of the helical RNA-bound Hantaan virus nucleocapsid reveals its assembly mechanisms. ELife, 2019, 8, .	2.8	28
1575	Architectural principles for Hfq/Crc-mediated regulation of gene expression. ELife, 2019, 8, .	2.8	46
1576	Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM. ELife, 2019, 8, .	2.8	82
1577	Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F. ELife, 2019, 8, .	2.8	105
1578	Structure of the gene therapy vector, adeno-associated virus with its cell receptor, AAVR. ELife, 2019, 8, .	2.8	60
1579	The complete structure of the human TFIIH core complex. ELife, 2019, 8, .	2.8	91
1580	Conformational switches control early maturation of the eukaryotic small ribosomal subunit. ELife, 2019, 8, .	2.8	32
1581	The autophagic membrane tether ATG2A transfers lipids between membranes. ELife, 2019, 8, .	2.8	219
1582	Symmetry transitions during gating of the TRPV2 ion channel in lipid membranes. ELife, 2019, 8, .	2.8	39
1583	Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the gβ subunit. ELife, 2019, 8, .	2.8	52
1584	Cryo-EM structures of remodeler-nucleosome intermediates suggest allosteric control through the nucleosome. ELife, 2019, 8, .	2.8	70
1585	Mechanism of pharmacochaperoning in a mammalian KATP channel revealed by cryo-EM. ELife, 2019, 8, .	2.8	68

		15	0
#	ARTICLE	IF	CITATIONS
1586	uncoupled chloride transport. ELife, 2019, 8, .	2.8	94
1587	Cryo-EM of dynein microtubule-binding domains shows how an axonemal dynein distorts the microtubule. ELife, 2019, 8, .	2.8	56
1588	Regulatory switch at the cytoplasmic interface controls TRPV channel gating. ELife, 2019, 8, .	2.8	53
1589	The structure of the yeast Ctf3 complex. ELife, 2019, 8, .	2.8	15
1590	Molecular mechanism of TRPV2 channel modulation by cannabidiol. ELife, 2019, 8, .	2.8	106
1591	Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy. ELife, 2019, 8, .	2.8	220
1592	E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation. ELife, 2019, 8, .	2.8	55
1593	Crl activates transcription by stabilizing active conformation of the master stress transcription initiation factor. ELife, 2019, 8, .	2.8	26
1594	Structure of a mitochondrial ATP synthase with bound native cardiolipin. ELife, 2019, 8, .	2.8	69
1595	Structural basis of substrate recognition by a polypeptide processing and secretion transporter. ELife, 2020, 9, .	2.8	25
1596	Cryo-EM structure of the potassium-chloride cotransporter KCC4 in lipid nanodiscs. ELife, 2020, 9, .	2.8	36
1597	The inner junction complex of the cilia is an interaction hub that involves tubulin post-translational modifications. ELife, 2020, 9, .	2.8	1,191
1598	The structure of the endogenous ESX-3 secretion system. ELife, 2019, 8, .	2.8	61
1599	Structural basis for COMPASS recognition of an H2B-ubiquitinated nucleosome. ELife, 2020, 9, .	2.8	79
1600	Cryo-EM structures demonstrate human IMPDH2 filament assembly tunes allosteric regulation. ELife, 2020, 9, .	2.8	56
1601	Structural basis for pharmacological modulation of the TRPC6 channel. ELife, 2020, 9, .	2.8	74
1602	Structure and activation mechanism of the BBSome membrane protein trafficking complex. ELife, 2020, 9, .	2.8	62
1603	New approach for membrane protein reconstitution into peptidiscs and basis for their adaptability to different proteins. ELife, 2020, 9, .	2.8	57

ARTICLE IF CITATIONS # An asymmetric sheath controls flagellar supercoiling and motility in the leptospira spirochete. ELife, 1604 2.8 26 2020, 9, Architecture of the chromatin remodeler RSC and insights into its nucleosome engagement. ELife, 2.8 68 2019, 8, . A complex IRES at the 5'-UTR of a viral mRNA assembles a functional 48S complex via an uAUG 1606 2.8 19 intermediate. ELife, 2020, 9, . Limited dishevelled/Axin oligomerization determines efficiency of Wnt/l2-catenin signal transduction. ELife, 2020, 9, . Cryo-EM structures and functional properties of CALHM channels of the human placenta. ELife, 2020, 1608 2.8 26 9,. Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR 1609 2.8 38 cargoes. ELife, 2020, 9, . The structures of secretory and dimeric immunoglobulin A. ELife, 2020, 9, . 1610 2.8 37 Nucleosome-CHD4 chromatin remodeler structure maps human disease mutations. ELife, 2020, 9, . 1611 2.8 Moyamoya disease factor RNF213 is a giant E3 ligase with a dynein-like core and a distinct 1612 2.8 74 ubiquitin-transfer mechanism. ELife, 2020, 9, . Characterization of the kinetic cycle of an ABC transporter by single-molecule and cryo-EM analyses. 2.8 ELife, 2020, 9, . Atomic structure of a mitochondrial complex I intermediate from vascular plants. ELife, 2020, 9, . 1614 2.8 42 Mechanical inhibition of isolated Vo from V/A-ATPase for proton conductance. ELife, 2020, 9, . 2.8 An ER translocon for multi-pass membrane protein biogenesis. ELife, 2020, 9, . 1616 2.8 85 Structural insights into human acid-sensing ion channel 1a inhibition by snake toxin mambalgin1. ELife, 2.8 29 2020, 9, . Structure of substrate-bound SMG1-8-9 kinase complex reveals molecular basis for phosphorylation 1618 2.8 25 specificity. ELife, 2020, 9, . Slowly folding surface extension in the prototypic avian hepatitis B virus capsid governs stability. ELife, 2020, 9, . Molecular basis for N-terminal alpha-synuclein acetylation by human NatB. ELife, 2020, 9, . 1620 2.8 25 Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein 2.8 antigens. ELife, 2020, 9, .
#	Article	IF	CITATIONS
1622	Cryo-EM structure of VASH1-SVBP bound to microtubules. ELife, 2020, 9, .	2.8	23
1623	Large domain movements through the lipid bilayer mediate substrate release and inhibition of glutamate transporters. ELife, 2020, 9, .	2.8	43
1624	The dynamic nature of the human origin recognition complex revealed through five cryoEM structures. ELife, 2020, 9, .	2.8	20
1625	Cryo-EM structures of human ZnT8 in both outward- and inward-facing conformations. ELife, 2020, 9,	2.8	46
1626	EDF1 coordinates cellular responses to ribosome collisions. ELife, 2020, 9, .	2.8	96
1627	Ciliate mitoribosome illuminates evolutionary steps of mitochondrial translation. ELife, 2020, 9, .	2.8	35
1628	Cryo-EM reveals species-specific components within the Helicobacter pylori Cag type IV secretion system core complex. ELife, 2020, 9, .	2.8	36
1629	Structural analysis of the Legionella pneumophila Dot/Icm type IV secretion system core complex. ELife, 2020, 9, .	2.8	43
1630	Structures reveal gatekeeping of the mitochondrial Ca2+ uniporter by MICU1-MICU2. ELife, 2020, 9, .	2.8	42
1631	The cryo-EM structure of the human uromodulin filament core reveals a unique assembly mechanism. ELife, 2020, 9, .	2.8	26
1632	Structure of the bacterial ribosome at 2 $ ilde{A}$ resolution. ELife, 2020, 9, .	2.8	151
1633	Structural insights into the Ca2+-dependent gating of the human mitochondrial calcium uniporter. ELife, 2020, 9, .	2.8	34
1634	Cryo-EM analysis of PIP2 regulation in mammalian GIRK channels. ELife, 2020, 9, .	2.8	52
1635	Structural basis of TRPC4 regulation by calmodulin and pharmacological agents. ELife, 2020, 9, .	2.8	38
1636	Structural basis of αE-catenin–F-actin catch bond behavior. ELife, 2020, 9, .	2.8	49
1637	Antibody escape by polyomavirus capsid mutation facilitates neurovirulence. ELife, 2020, 9, .	2.8	9
1638	The mechanism of kinesin inhibition by kinesin-binding protein. ELife, 2020, 9, .	2.8	15
1639	Structural basis of ClpXP recognition and unfolding of ssrA-tagged substrates. ELife, 2020, 9, .	2.8	48

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1640	Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3.	ELife, 2020, 9, .	2.8	73
1641	A broadly neutralizing macaque monoclonal antibody against the HIV-1 V3-Glycan pate	h. ELife, 2020, 9, .	2.8	10
1642	Transport mechanism of P4 ATPase phosphatidylcholine flippases. ELife, 2020, 9, .		2.8	40
1643	Molecular mechanism for direct actin force-sensing by $\hat{I}\pm$ -catenin. ELife, 2020, 9, .		2.8	62
1644	Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transme ELife, 2020, 9, .	mbrane clients.	2.8	66
1645	Cryo-EM structure of the calcium release-activated calcium channel Orai in an open con ELife, 2020, 9, .	nformation.	2.8	36
1646	Determination of the Near-Atomic Structure of Non-Purified Oligomeric E. coli Proteins Crystallography Reports, 2021, 66, 854-860.		0.1	2
1649	Nasal delivery of single-domain antibody improves symptoms of SARS-CoV-2 infection model. PLoS Pathogens, 2021, 17, e1009542.	in an animal	2.1	27
1650	A Fast Image Alignment Approach for 2D Classification of Cryo-EM Images Using Spect Current Issues in Molecular Biology, 2021, 43, 1652-1668.	ral Clustering.	1.0	8
1651	Mechanism of siRNA production by a plant Dicer-RNA complex in dicing-competent con Science, 2021, 374, 1152-1157.	nformation.	6.0	58
1652	Cryo-Electron Microscopy Structure and Interactions of the Human Cytomegalovirus g with Platelet-Derived Growth Factor Receptor Alpha. MBio, 2021, 12, e0262521.	HgLgO Trimer	1.8	2
1653	Multiple nanocages of a cyanophage small heat shock protein with icosahedral and oct symmetries. Scientific Reports, 2021, 11, 21023.	cahedral	1.6	0
1655	Structure of Machupo virus polymerase in complex with matrix protein Z. Nature Comi 2021, 12, 6163.	nunications,	5.8	11
1656	Exceptionally potent human monoclonal antibodies are effective for prophylaxis and tr tetanus in mice. Journal of Clinical Investigation, 2021, 131, .	eatment of	3.9	8
1657	Visualization of Sparsely-populated Lower-order Oligomeric States of Human Mitochor Cryo-electron Microscopy. Journal of Molecular Biology, 2021, 433, 167322.	ıdrial Hsp60 by	2.0	5
1660	Structure of Venezuelan equine encephalitis virus with its receptor LDLRAD3. Nature, 2 677-681.	2021, 598,	13.7	25
1661	Structural insights into RNA polymerase III-mediated transcription termination through poly-deoxythymidine. Nature Communications, 2021, 12, 6135.	trapping	5.8	19
1663	Binding of a Pocket Factor to Hepatitis B Virus Capsids Changes the Rotamer Conform Phenylalanine 97. Viruses, 2021, 13, 2115.	ation of	1.5	4

#	Article	IF	CITATIONS
1664	Conserved heterodimeric GTPase Rbg1/Tma46 promotes efficient translation in eukaryotic cells. Cell Reports, 2021, 37, 109877.	2.9	10
1665	Cryo-EM reconstructions of inhibitor-bound SMG1 kinase reveal an autoinhibitory state dependent on SMG8. ELife, 2021, 10, .	2.8	18
1669	Structure of a human replisome shows the organisation and interactions of a DNA replication machine. EMBO Journal, 2021, 40, e108819.	3.5	60
1670	Structural biology of human telomerase: progress and prospects. Biochemical Society Transactions, 2021, 49, 1927-1939.	1.6	8
1671	Visualizing formation of the active site in the mitochondrial ribosome. ELife, 2021, 10, .	2.8	22
1672	Mechanism of lipid droplet formation by the yeast Sei1/Ldb16 Seipin complex. Nature Communications, 2021, 12, 5892.	5.8	40
1673	Cryo-EM structure of the dimeric <i>Rhodobacter sphaeroides</i> RC-LH1 core complex at 2.9â€Ã: the structural basis for dimerisation. Biochemical Journal, 2021, 478, 3923-3937.	1.7	26
1676	Remdesivir overcomes the S861 roadblock in SARS-CoV-2 polymerase elongation complex. Cell Reports, 2021, 37, 109882.	2.9	12
1677	Structure of Venezuelan equine encephalitis virus in complex with the LDLRAD3 receptor. Nature, 2021, 598, 672-676.	13.7	27
1678	Structural mechanism of GTPase-powered ribosome-tRNA movement. Nature Communications, 2021, 12, 5933.	5.8	33
1679	Antibody elicited by HIV-1 immunogen vaccination in macaques displaces Env fusion peptide and destroys a neutralizing epitope. Npj Vaccines, 2021, 6, 126.	2.9	2
1681	Structural mechanisms of assembly, permeation, gating, and pharmacology of native human rod CNG channel. Neuron, 2022, 110, 86-95.e5.	3.8	22
1682	Cryo-EM structure of human Pol κ bound to DNA and mono-ubiquitylated PCNA. Nature Communications, 2021, 12, 6095.	5.8	20
1683	Cryo-EM structure determination of small proteins by nanobody-binding scaffolds (Legobodies). Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
1684	Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nature Methods, 2021, 18, 1386-1394.	9.0	84
1686	High Resolution Structure of the Mature Capsid of Ralstonia solanacearum Bacteriophage ϕRSA1 by Cryo-Electron Microscopy. International Journal of Molecular Sciences, 2021, 22, 11053.	1.8	3
1687	SMARCAD1 is an ATP-dependent histone octamer exchange factor with de novo nucleosome assembly activity. Science Advances, 2021, 7, eabk2380.	4.7	13
1688	Structure and desensitization of AMPA receptor complexes with type II TARP \hat{I}^35 and GSG1L. Molecular Cell, 2021, 81, 4771-4783.e7.	4.5	17

	CITATION	Report	
#	Article	IF	CITATIONS
1690	Structural and compositional diversity in the kainate receptor family. Cell Reports, 2021, 37, 109891.	2.9	17
1691	Structural mechanism of SARS-CoV-2 neutralization by two murine antibodies targeting the RBD. Cell Reports, 2021, 37, 109881.	2.9	14
1692	Parakeet: a digital twin software pipeline to assess the impact of experimental parameters on tomographic reconstructions for cryo-electron tomography. Open Biology, 2021, 11, 210160.	1.5	5
1701	Introduction: Protein Oligomerization and the Formation of Macromolecular Assemblies. Sub-Cellular Biochemistry, 2019, 93, 1-22.	1.0	0
1765	A potential difference for single-particle cryo-EM. IUCrJ, 2019, 6, 988-989.	1.0	1
1811	De novo identification of mammalian ciliary motility proteins using cryo-EM. Cell, 2021, 184, 5791-5806.e19.	13.5	73
1812	The structure of neurofibromin isoform 2 reveals different functional states. Nature, 2021, 599, 315-319.	13.7	22
1813	Cryo-EM Structure of Mechanosensitive Channel Ynal Using SMA2000: Challenges and Opportunities. Membranes, 2021, 11, 849.	1.4	10
1818	Cryo-EM structure of the needle filament tip complex of the <i>Salmonella</i> type III secretion injectisome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
1819	Non-conventional octameric structure of C-phycocyanin. Communications Biology, 2021, 4, 1238.	2.0	15
1821	Classifying Liganded States in Heterogeneous Single-Particle Cryo-EM Datasets. Microscopy (Oxford,) Tj ETQq(0 0 0 ₀ gBT /(Overlock 10 T
1822	The hereditary mutation G51D unlocks a distinct fibril strain transmissible to wild-type α-synuclein. Nature Communications, 2021, 12, 6252.	5.8	33
1823	The structure of natively iodinated bovine thyroglobulin. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1451-1459.	1.1	13
1824	Structural mechanisms for gating and ion selectivity of the human polyamine transporter ATP13A2. Molecular Cell, 2021, 81, 4650-4662.e4.	4.5	18
1825	AKIRIN2 controls the nuclear import of proteasomes in vertebrates. Nature, 2021, 599, 491-496.	13.7	55
1826	Dispatched uses Na+ flux to power release of lipid-modified Hedgehog. Nature, 2021, 599, 320-324.	13.7	16
1827	Structural basis of the P4B ATPase lipid flippase activity. Nature Communications, 2021, 12, 5963.	5.8	14
1828	Pan-ebolavirus protective therapy by two multifunctional human antibodies. Cell, 2021, 184, 5593-5607.e18.	13.5	21

#	Article	IF	CITATIONS
1831	Quantitative phase imaging of single particles from a cryoEM micrograph. Optics Communications, 2021, , 127588.	1.0	1
1834	How Structures of Complement Complexes Guide Therapeutic Design. Sub-Cellular Biochemistry, 2021, 96, 273-295.	1.0	0
1838	for High-Resolution. Methods in Molecular Biology, 2021, 2215, 267-284.	0.4	0
1842	Cryo-EM structure of the full-length WzmWzt ABC transporter required for lipid-linked O antigen transport. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
1845	Unusual nucleosome formation and transcriptome influence by the histone H3mm18 variant. Nucleic Acids Research, 2022, 50, 72-91.	6.5	7
1849	Fast Small-Scale Membrane Protein Purification and Grid Preparation for Single-Particle Electron Microscopy. Methods in Molecular Biology, 2020, 2127, 275-282.	0.4	0
1855	Structure of the TELO2-TTI1-TTI2 Complex and its Function in TOR Recruitment to the R2TP Chaperone. SSRN Electronic Journal, 0, , .	0.4	0
1856	Cryo-EM Structure of the $\hat{1}^23$ Adrenergic Receptor Reveals the Molecular Basis of Subtype Selectivity. SSRN Electronic Journal, 0, , .	0.4	0
1870	Development of basic building blocks for cryo-EM: the <i>emcore</i> and <i>emvis</i> software libraries. Acta Crystallographica Section D: Structural Biology, 2020, 76, 350-356.	1.1	0
1886	Accelerating the cryo-EM structure determination in RELION on GPU cluster. Frontiers of Computer Science, 2022, 16, 1.	1.6	2
1887	Closed-state inactivation and pore-blocker modulation mechanisms of human CaV2.2. Cell Reports, 2021, 37, 109931.	2.9	35
1890	Assembly of infectious Kaposi's sarcoma-associated herpesvirus progeny requires formation of a pORF19 pentamer. PLoS Biology, 2021, 19, e3001423.	2.6	8
1892	Modular polyketide synthase contains two reaction chambers that operate asynchronously. Science, 2021, 374, 723-729.	6.0	31
1893	A previously unrecognized membrane protein in the Rhodobacter sphaeroides LH1-RC photocomplex. Nature Communications, 2021, 12, 6300.	5.8	21
1894	Structure and activation mechanism of the hexameric plasma membrane H+-ATPase. Nature Communications, 2021, 12, 6439.	5.8	41
1900	Shape shifter: redirection of prolate phage capsid assembly by staphylococcal pathogenicity islands. Nature Communications, 2021, 12, 6408.	5.8	12
1901	C-Glycoside metabolism in the gut and in nature: Identification, characterization, structural analyses and distribution of C-C bond-cleaving enzymes. Nature Communications, 2021, 12, 6294.	5.8	25
1902	Mapping the catalytic conformations of an assembly-line polyketide synthase module. Science, 2021, 374, 729-734.	6.0	41

#	Article	IF	CITATIONS
1903	CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous bacteriophage. Nature Communications, 2021, 12, 6316.	5.8	17
1932	Application of Cryo-EM for Visualization of Mitoribosomes. Methods in Molecular Biology, 2021, 2192, 197-210.	0.4	1
1933	Preliminary Structural Study of Inactivated Yellow Fever Virus. Crystallography Reports, 2020, 65, 915-921.	0.1	1
1934	Regulation of RUVBL1-RUVBL2 AAA-ATPases by the nonsense-mediated mRNA decay factor DHX34, as evidenced by Cryo-EM. ELife, 2020, 9, .	2.8	9
1935	Structure of the Human TELO2-TTI1-TTI2 Complex. Journal of Molecular Biology, 2022, 434, 167370.	2.0	8
1938	Structures of Class I and Class II Transcription Complexes Reveal the Molecular Basis of RamAâ€Đependent Transcription Activation. Advanced Science, 2022, 9, e2103669.	5.6	13
1939	Sequential immunization of macaques elicits heterologous neutralizing antibodies targeting the V3-glycan patch of HIV-1 Env. Science Translational Medicine, 2021, 13, eabk1533.	5.8	27
1942	Structural basis of Integrator-mediated transcription regulation. Science, 2021, 374, 883-887.	6.0	78
1943	A molecular mechanism for the generation of ligand-dependent differential outputs by the epidermal growth factor receptor. ELife, 2021, 10, .	2.8	44
1945	Structural basis of the regulation of the normal and oncogenic methylation of nucleosomal histone H3 Lys36 by NSD2. Nature Communications, 2021, 12, 6605.	5.8	23
1946	HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications. Nature Communications, 2021, 12, 6675.	5.8	34
1950	Structure of the human SAGA coactivator complex. Nature Structural and Molecular Biology, 2021, 28, 989-996.	3.6	27
1951	Structural insights into proteolytic activation of the human Dispatched1 transporter for Hedgehog morphogen release. Nature Communications, 2021, 12, 6966.	5.8	9
1952	Proteins DotY and DotZ modulate the dynamics and localization of the type IVB coupling complex of <i>Legionella pneumophila</i> . Molecular Microbiology, 2022, 117, 307-319.	1.2	8
1953	The structural basis for the phospholipid remodeling by lysophosphatidylcholine acyltransferase 3. Nature Communications, 2021, 12, 6869.	5.8	35
1954	Molecular structure of an open human K _{ATP} channel. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
1955	High-resolution structure and dynamics of mitochondrial complex l—Insights into the proton pumping mechanism. Science Advances, 2021, 7, eabj3221.	4.7	65
1956	Structure of the hexameric fungal plasma membrane proton pump in its autoinhibited state. Science Advances, 2021, 7, eabj5255.	4.7	20

#	Article	IF	CITATIONS
1957	MDA5 disease variant M854K prevents ATP-dependent structural discrimination of viral and cellular RNA. Nature Communications, 2021, 12, 6668.	5.8	7
1958	Evolution of Archaellum Rotation Involved Invention of a Stator Complex by Duplicating and Modifying a Core Component. Frontiers in Microbiology, 2021, 12, 773386.	1.5	3
1960	Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. Journal of Biological Chemistry, 2022, 298, 101424.	1.6	32
1961	Structural basis for substrate specificity of heteromeric transporters of neutral amino acids. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
1963	Cryo-EM structures and biochemical insights into heterotrimeric PCNA regulation of DNA ligase. Structure, 2022, 30, 371-385.e5.	1.6	5
1965	Cryo-EM structure provides insights into the dimer arrangement of the O-linked Î ² -N-acetylglucosamine transferase OGT. Nature Communications, 2021, 12, 6508.	5.8	24
1966	High-resolution mapping of metal ions reveals principles of surface layer assembly in Caulobacter crescentus cells. Structure, 2022, 30, 215-228.e5.	1.6	12
1967	Architecture of the outer-membrane core complex from a conjugative type IV secretion system. Nature Communications, 2021, 12, 6834.	5.8	15
1968	Broadening access to cryoEM through centralized facilities. Trends in Biochemical Sciences, 2022, 47, 106-116.	3.7	9
1969	Kinesin-binding protein remodels the kinesin motor to prevent microtubule binding. Science Advances, 2021, 7, eabj9812.	4.7	10
1971	Cryo-EM structures of intermediates suggest an alternative catalytic reaction cycle for cytochrome c oxidase. Nature Communications, 2021, 12, 6903.	5.8	25
1972	Structure of the ATP synthase from <i>Mycobacterium smegmatis</i> provides targets for treating tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
1973	New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochemical Journal, 2021, 478, 4169-4185.	1.7	396
1974	Complete atomic structure of a native archaeal cell surface. Cell Reports, 2021, 37, 110052.	2.9	22
1975	Cryo-EM snapshots of a native lysate provide structural insights into a metabolon-embedded transacetylase reaction. Nature Communications, 2021, 12, 6933.	5.8	26
1977	Structural insights into Ubr1-mediated N-degron polyubiquitination. Nature, 2021, 600, 334-338.	13.7	54
1978	Mechanism of actin-dependent activation of nucleotidyl cyclase toxins from bacterial human pathogens. Nature Communications, 2021, 12, 6628.	5.8	13
1980	Molecular architecture of black widow spider neurotoxins. Nature Communications, 2021, 12, 6956.	5.8	4

#	Article	IF	CITATIONS
1981	Structure of the class C orphan GPCR GPR158 in complex with RGS7-GÎ ² 5. Nature Communications, 2021, 12, 6805.	5.8	19
1982	The encapsulin from Thermotoga maritima is a flavoprotein with a symmetry matched ferritin-like cargo protein. Scientific Reports, 2021, 11, 22810.	1.6	16
1984	Structure of Escherichia coli cytochrome bd-II type oxidase with bound aurachin D. Nature Communications, 2021, 12, 6498.	5.8	25
1987	Stabilization of Ribosomal RNA of the Small Subunit by Spermidine in Staphylococcus aureus. Frontiers in Molecular Biosciences, 2021, 8, 738752.	1.6	7
1988	Structural basis of RNA polymerase recycling by the Swi2/Snf2 family of ATPase RapA in Escherichia coli. Journal of Biological Chemistry, 2021, 297, 101404.	1.6	14
1989	Structures of tweety homolog proteins TTYH2 and TTYH3 reveal a Ca2+-dependent switch from intra- to intermembrane dimerization. Nature Communications, 2021, 12, 6913.	5.8	10
1991	The antibody response to SARS-CoV-2 Beta underscores the antigenic distance to other variants. Cell Host and Microbe, 2022, 30, 53-68.e12.	5.1	52
1992	Mechanism for the activation of the anaplastic lymphoma kinase receptor. Nature, 2021, 600, 153-157.	13.7	28
1993	Structure of a photosystem l-ferredoxin complex from a marine cyanobacterium provides insights into far-red light photoacclimation. Journal of Biological Chemistry, 2022, 298, 101408.	1.6	16
1994	Structural and functional analysis of the promiscuous AcrB and AdeB efflux pumps suggests different drug binding mechanisms. Nature Communications, 2021, 12, 6919.	5.8	25
1999	Structure of the translating <i>Neurospora</i> ribosome arrested by cycloheximide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
2000	Analysis of subunit folding contribution of three yeast large ribosomal subunit proteins required for stabilisation and processing of intermediate nuclear rRNA precursors. PLoS ONE, 2021, 16, e0252497.	1.1	5
2001	High-resolution structures of the actomyosin-V complex in three nucleotide states provide insights into the force generation mechanism. ELife, 2021, 10, .	2.8	27
2003	Structural Basis of Pore Formation in the Mannose Phosphotransferase System by Pediocin PA-1. Applied and Environmental Microbiology, 2022, 88, AEM0199221.	1.4	18
2004	Structure of CRL2Lrr1, the E3 ubiquitin ligase that promotes DNA replication termination in vertebrates. Nucleic Acids Research, 2021, 49, 13194-13206.	6.5	4
2006	Expression and purification of phage T7 ejection proteins for cryo-EM analysis. STAR Protocols, 2021, 2, 100960.	0.5	4
2007	Cryo-EM reveals mechanistic insights into lipid-facilitated polyamine export by human ATP13A2. Molecular Cell, 2021, 81, 4799-4809.e5.	4.5	22
2008	Mounting, structure and autocleavage of a type VI secretion-associated Rhs polymorphic toxin. Nature Communications, 2021, 12, 6998.	5.8	27

#	Article	IF	CITATIONS
2009	ChAdOx1 interacts with CAR and PF4 with implications for thrombosis with thrombocytopenia syndrome. Science Advances, 2021, 7, eabl8213.	4.7	112
2010	De novo macrocyclic peptides for inhibiting, stabilizing, and probing the function of the retromer endosomal trafficking complex. Science Advances, 2021, 7, eabg4007.	4.7	11
2012	Machine Learning for Structure Determination in Single-Particle Cryo-Electron Microscopy: A Systematic Review. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 452-472.	7.2	5
2013	Forty years in cryoEM of membrane proteins. Microscopy (Oxford, England), 2022, 71, i30-i50.	0.7	20

2014 Cryogenic electron microscopy approaches that combine images and tilt series. Microscopy (Oxford,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

2015	Recent progress and future perspective of electron cryomicroscopy for structural life sciences. Microscopy (Oxford, England), 2022, 71, i3-i14.	0.7	8
2016	Cryo-EM structure of native human thyroglobulin. Nature Communications, 2022, 13, 61.	5.8	9
2018	Structural and functional properties of a magnesium transporter of the SLC11/NRAMP family. ELife, 2022, 11, .	2.8	8
2019	UVC inactivation of pathogenic samples suitable for cryo-EM analysis. Communications Biology, 2022, 5, 29.	2.0	7
2020	8 Ã structure of the outer rings of the Xenopus laevis nuclear pore complex obtained by cryo-EM and Al. Protein and Cell, 2022, 13, 760-777.	4.8	23
2021	Cryo-EM of the ATP11C flippase reconstituted in Nanodiscs shows a distended phospholipid bilayer inner membrane around transmembrane helix 2. Journal of Biological Chemistry, 2022, 298, 101498.	1.6	7
2022	Cryogenic electron microscopy structures reveal how ATP and DNA binding in MutS coordinates sequential steps of DNA mismatch repair. Nature Structural and Molecular Biology, 2022, 29, 59-66.	3.6	12
2026	The landscape of translational stall sites in bacteria revealed by monosome and disome profiling. Rna, 2022, 28, 290-302.	1.6	8
2027	Structural insights into metazoan pretargeting GET complexes. Nature Structural and Molecular Biology, 2021, 28, 1029-1037.	3.6	8
2028	From structure to sequence: Antibody discovery using cryoEM. Science Advances, 2022, 8, eabk2039.	4.7	18
2029	Structural basis of prokaryotic ubiquitin-like protein engagement and translocation by the mycobacterial Mpa-proteasome complex. Nature Communications, 2022, 13, 276.	5.8	9
2031	Mutations at the Alphavirus E1'-E2 Interdimer Interface Have Host-Specific Phenotypes. Journal of Virology, 2022, 96, jvi0214921.	1.5	2
2032	Cryo-electron microscopy reveals how acetogenins inhibit mitochondrial respiratory complex I. Journal of Biological Chemistry, 2022, 298, 101602.	1.6	19

	Charlow K		
#	Article	IF	Citations
2033	Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers, 2022, 14, 706.	1.7	8
2035	Interplay between an ATP-binding cassette F protein and the ribosome from Mycobacterium tuberculosis. Nature Communications, 2022, 13, 432.	5.8	16
2038	Cryo-EM structures of amyloid-Î ² 42 filaments from human brains. Science, 2022, 375, 167-172.	6.0	228
2039	Mapping cross-variant neutralizing sites on the SARS-CoV-2 spike protein. Emerging Microbes and Infections, 2022, 11, 351-367.	3.0	19
2040	Structural basis of bacteriophage lambda capsid maturation. Structure, 2022, 30, 637-645.e3.	1.6	12
2042	Fluoxetine targets an allosteric site in the enterovirus 2C AAA+ ATPase and stabilizes a ring-shaped hexameric complex. Science Advances, 2022, 8, eabj7615.	4.7	11
2044	Cryo-EM structures of GroEL:ES2 with RuBisCO visualize molecular contacts of encapsulated substrates in a double-cage chaperonin. IScience, 2022, 25, 103704.	1.9	5
2045	The structure of NLRP9 reveals a unique Câ€ŧerminal region with putative regulatory function. FEBS Letters, 2022, 596, 876-885.	1.3	4
2047	Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants. Nature, 2022, 603, 919-925.	13.7	146
2048	A Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infection. Cell Reports, 2022, 38, 110368.	2.9	82
2049	Structural mechanism of human TRPC3 and TRPC6 channel regulation by their intracellular calcium-binding sites. Neuron, 2022, 110, 1023-1035.e5.	3.8	28
2050	Structural visualization of de novo transcription initiation by Saccharomyces cerevisiae RNA polymerase II. Molecular Cell, 2022, 82, 660-676.e9.	4.5	9
2052	High-speed high-resolution data collection on a 200 keV cryo-TEM. IUCrJ, 2022, 9, 243-252.	1.0	21
2054	Rearrangement of a unique Kv1.3 selectivity filter conformation upon binding of a drug. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	20
2056	Structural basis for assembly of TRAPPII complex and specific activation of GTPase Ypt31/32. Science Advances, 2022, 8, eabi5603.	4.7	10
2057	Pore dynamics and asymmetric cargo loading in an encapsulin nanocompartment. Science Advances, 2022, 8, eabj4461.	4.7	22
2058	APC7 mediates ubiquitin signaling in constitutive heterochromatin in the developing mammalian brain. Molecular Cell, 2022, 82, 90-105.e13.	4.5	4
2061	Cryo-EM demonstrates the in vitro proliferation of an ex vivo amyloid fibril morphology by seeding. Nature Communications, 2022, 13, 85.	5.8	15

ARTICLE IF CITATIONS Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science, 2022, 2062 6.0 108 375, 449-454. Structure of a bacterial Rhs effector exported by the type VI secretion system. PLoS Pathogens, 2022, 2064 2.1 24 18, e1010182. Atypical structural snapshots of human cytomegalovirus GPCR interactions with host G proteins. 2065 4.7 11 Science Advances, 2022, 8, eabl5442. Structural insights into the BRAF monomer-to-dimer transition mediated by RAS binding. Nature 2066 5.8 Communications, 2022, 13, 486. Role of Ring6 in the Function of the E. coli MCE Protein LetB. Journal of Molecular Biology, 2022, 434, 2067 2.0 3 167463. Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from 2069 3.3 infection. Cell Reports Medicine, 2022, 3, 100528. Structural and functional insight into regulation of kinesin-1 by microtubule-associated protein 2070 6.0 53 MAP7. Science, 2022, 375, 326-331. Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science, 2071 6.0 68 2022, 375, . Biochemical and Structural Characterization of Human Core Elongator and Its Subassemblies. ACS 2072 1.6 3 Omega, 2022, 7, 3424-3433. Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation. 5.8 Nature Communications, 2022, 13, 92. Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules. Proceedings of the National Academy of Sciences of the United States of America, 2022, 2074 3.3 28 119, . A switch from αâ€helical to βâ€strand conformation during coâ€translational protein folding. EMBO Journal, 3.5 2022, 41, e109175. Single particle cryo-EM structure of the outer hair cell motor protein prestin. Nature 2077 5.8 34 Communications, 2022, 13, 290. Cryo-EM structure of the ancient eukaryotic ribosome from the human parasite <i>Giardia lamblia</i>. 6.5 Núcleic Acids Research, 2022, 50, 1770-1782. A case for glycerol as an acceptable additive for single-particle cryoEM samples. Acta 2079 1.1 3 Crystallographica Section D: Structural Biology, 2022, 78, 124-135. RbgA ensures the correct timing in the maturation of the 50S subunits functional sites. Nucleic Acids Research, 2022, , . Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta 2082 13.5 358 SARS-CoV-2. Cell, 2022, 185, 630-640.e10. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 2083 Omicron. Cell, 2022, 185, 860-871.e13.

#	Article	IF	CITATIONS
2084	Rapid identification of neutralizing antibodies against SARS-CoV-2 variants by mRNA display. Cell Reports, 2022, 38, 110348.	2.9	14
2086	Structural insights into the membrane microdomain organization by SPFH family proteins. Cell Research, 2022, 32, 176-189.	5.7	24
2087	Chimeric mutants of staphylococcal hemolysin, which act as both oneâ€component and twoâ€component hemolysin, created by grafting the stem domain. FEBS Journal, 2022, 289, 3505-3520.	2.2	1
2088	Structures of the peptidase-containing ABC transporter PCAT1 under equilibrium and nonequilibrium conditions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
2089	Structural mechanism for tyrosine hydroxylase inhibition by dopamine and reactivation by Ser40 phosphorylation. Nature Communications, 2022, 13, 74.	5.8	23
2091	Structural basis for cytoplasmic dynein-1 regulation by Lis1. ELife, 2022, 11, .	2.8	29
2093	IMPDH1 retinal variants control filament architecture to tune allosteric regulation. Nature Structural and Molecular Biology, 2022, 29, 47-58.	3.6	29
2094	Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nature Communications, 2022, 13, 405.	5.8	92
2095	Heterogeneous cryo-EM projection image classification using a two-stage spectral clustering based on novel distance measures. Briefings in Bioinformatics, 2022, 23, .	3.2	2
2099	Modular assembly of the principal microtubule nucleator Î ³ -TuRC. Nature Communications, 2022, 13, 473.	5.8	18
2099 2100	Modular assembly of the principal microtubule nucleator Î ³ -TuRC. Nature Communications, 2022, 13, 473. Nanofluidic chips for cryo-EM structure determination from picoliter sample volumes. ELife, 2022, 11, .	5.8 2.8	18
2099 2100 2101	Modular assembly of the principal microtubule nucleator Î ³ -TuRC. Nature Communications, 2022, 13, 473. Nanofluidic chips for cryo-EM structure determination from picoliter sample volumes. ELife, 2022, 11, . Structural basis for safe and efficient energy conversion in a respiratory supercomplex. Nature Communications, 2022, 13, 545.	5.8 2.8 5.8	18 12 10
2099 2100 2101 2102	Modular assembly of the principal microtubule nucleator γ-TuRC. Nature Communications, 2022, 13, 473. Nanofluidic chips for cryo-EM structure determination from picoliter sample volumes. ELife, 2022, 11, . Structural basis for safe and efficient energy conversion in a respiratory supercomplex. Nature Communications, 2022, 13, 545. Cryo-EM and artificial intelligence visualize endogenous protein community members. Structure, 2022, 30, 575-589.e6.	5.8 2.8 5.8 1.6	18 12 10 31
2099 2100 2101 2102 2103	Modular assembly of the principal microtubule nucleator γ-TuRC. Nature Communications, 2022, 13, 473.Nanofluidic chips for cryo-EM structure determination from picoliter sample volumes. ELife, 2022, 11, .Structural basis for safe and efficient energy conversion in a respiratory supercomplex. Nature Communications, 2022, 13, 545.Cryo-EM and artificial intelligence visualize endogenous protein community members. Structure, 2022, 30, 575-589.e6.Sal-type ABC-F proteins: intrinsic and common mediators of pleuromutilin resistance by target protection in staphylococci. Nucleic Acids Research, 2022, 50, 2128-2142.	 5.8 2.8 5.8 1.6 6.5 	18 12 10 31 16
2099 2100 2101 2102 2103 2105	Modular assembly of the principal microtubule nucleator γ-TuRC. Nature Communications, 2022, 13, 473.Nanofluidic chips for cryo-EM structure determination from picoliter sample volumes. ELife, 2022, 11, .Structural basis for safe and efficient energy conversion in a respiratory supercomplex. Nature Communications, 2022, 13, 545.Cryo-EM and artificial intelligence visualize endogenous protein community members. Structure, 2022, 30, 575-589.e6.Sal-type ABC-F proteins: intrinsic and common mediators of pleuromutilin resistance by target protection in staphylococci. Nucleic Acids Research, 2022, 50, 2128-2142.Structure of the Mon1-Cc21 complex reveals molecular basis of membrane binding for Rab7 activation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	 5.8 2.8 5.8 1.6 6.5 3.3 	 18 12 10 31 16 12
2099 2100 2101 2102 2103 2105	Modular assembly of the principal microtubule nucleator γ-TuRC. Nature Communications, 2022, 13, 473. Nanofluidic chips for cryo-EM structure determination from picoliter sample volumes. ELife, 2022, 11, . Structural basis for safe and efficient energy conversion in a respiratory supercomplex. Nature Communications, 2022, 13, 545. Cryo-EM and artificial intelligence visualize endogenous protein community members. Structure, 2022, 30, 575-589.e6. Sal-type ABC-F proteins: intrinsic and common mediators of pleuromutilin resistance by target protection in staphylococci. Nucleic Acids Research, 2022, 50, 2128-2142. Structure of the Mon1-Cc21 complex reveals molecular basis of membrane binding for Rab7 activation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, . Adaptation to genome decay in the structure of the smallest eukaryotic ribosome. Nature Communications, 2022, 13, 591.	 5.8 2.8 5.8 1.6 6.5 3.3 5.8 	18 12 10 31 16 12 22
2099 2100 2101 2102 2103 2105 2107	Modular assembly of the principal microtubule nucleator γ-TuRC. Nature Communications, 2022, 13, 473.Nanofluidic chips for cryo-EM structure determination from picoliter sample volumes. ELife, 2022, 11, .Structural basis for safe and efficient energy conversion in a respiratory supercomplex. Nature Communications, 2022, 13, 545.Cryo-EM and artificial intelligence visualize endogenous protein community members. Structure, 2022, 30, 575-589.e6.Sal-type ABC-F proteins: intrinsic and common mediators of pleuromutilin resistance by target protection in staphylococci. Nucleic Acids Research, 2022, 50, 2128-2142.Structure of the Mon1-Cc21 complex reveals molecular basis of membrane binding for Rab7 activation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .Adaptation to genome decay in the structure of the smallest eukaryotic ribosome. Nature Communications, 2022, 13, 591.Molecular mechanism of Arp2/3 complex inhibition by Arpin. Nature Communications, 2022, 13, 628.	 5.8 2.8 5.8 1.6 6.5 3.3 5.8 5.8 	 18 12 10 31 16 12 22 14

#	Article	IF	CITATIONS
2111	Cryo-electron Tomography Reveals the Roles of FliY in Helicobacter pylori Flagellar Motor Assembly. MSphere, 2022, , e0094421.	1.3	2
2112	Frozen motion: how cryo-EM changes the way we look at ABC transporters. Trends in Biochemical Sciences, 2022, 47, 136-148.	3.7	9
2113	Cryo-EM structure of mouse TRPML2 in lipid nanodiscs. Journal of Biological Chemistry, 2022, 298, 101487.	1.6	3
2115	Gating choreography and mechanism of the human proton-activated chloride channel ASOR. Science Advances, 2022, 8, eabm3942.	4.7	18
2116	Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell, 2022, 185, 672-689.e23.	13.5	72
2117	Cryo-EM structure of AMP-PNP-bound human mitochondrial ATP-binding cassette transporter ABCB7. Journal of Structural Biology, 2022, 214, 107832.	1.3	8
2118	Reconstitution of the full transmembrane cadherin-catenin complex. Protein Expression and Purification, 2022, 193, 106056.	0.6	5
2120	Structural insights into how ClcNAc-1-phosphotransferase directs lysosomal protein transport. Journal of Biological Chemistry, 2022, 298, 101702.	1.6	3
2121	IceBreaker: Software for high-resolution single-particle cryo-EM with non-uniform ice. Structure, 2022, 30, 522-531.e4.	1.6	4
2123	Structural basis for the allosteric inhibition of UMP kinase from Gramâ€positive bacteria, a promising antibacterial target. FEBS Journal, 2022, 289, 4869-4887.	2.2	2
2125	Structures of human pannexin-1 in nanodiscs reveal gating mediated by dynamic movement of the N terminus and phospholipids. Science Signaling, 2022, 15, eabg6941.	1.6	34
2127	Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio cholerae. ELife, 2022, 11, .	2.8	5
2128	Differential activation mechanisms of lipid GPCRs by lysophosphatidic acid and sphingosine 1-phosphate. Nature Communications, 2022, 13, 731.	5.8	43
2130	The pore conformation of lymphocyte perforin. Science Advances, 2022, 8, eabk3147.	4.7	10
2131	Cryo-EM structure of transcription termination factor Rho from Mycobacterium tuberculosis reveals bicyclomycin resistance mechanism. Communications Biology, 2022, 5, 120.	2.0	7
2132	Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody. Science, 2022, 375, 1048-1053.	6.0	216
2134	Neutralizing antibodies induced in immunized macaques recognize the CD4-binding site on an occluded-open HIV-1 envelope trimer. Nature Communications, 2022, 13, 732.	5.8	19
2135	Conformational transitions and ligand-binding to a muscle-type nicotinic acetylcholine receptor. Neuron, 2022, 110, 1358-1370.e5.	3.8	39

#	Article	IF	CITATIONS
2137	The human SKI complex regulates channeling of ribosome-bound RNA to the exosome via an intrinsic gatekeeping mechanism. Molecular Cell, 2022, 82, 756-769.e8.	4.5	23
2138	Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature, 2022, 604, 184-189.	13.7	109
2139	Filament assembly of the C. elegans lamin in the absence of helix 1A. Nucleus, 2022, 13, 49-57.	0.6	1
2140	DNA-Dependent Binding of Nargenicin to DnaE1 Inhibits Replication in <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2022, 8, 612-625.	1.8	11
2141	The coupling mechanism of mammalian mitochondrial complex I. Nature Structural and Molecular Biology, 2022, 29, 172-182.	3.6	45
2142	Structural basis of von Willebrand factor multimerization and tubular storage. Blood, 2022, 139, 3314-3324.	0.6	15
2143	Structure of infective Getah virus at 2.8 AÌŠ resolution determined by cryo-electron microscopy. Cell Discovery, 2022, 8, 12.	3.1	7
2144	Hierarchical autoclassification of cryo-EM samples and macromolecular energy landscape determination. Computer Methods and Programs in Biomedicine, 2022, 216, 106673.	2.6	8
2145	The BRCT domain of PARP1 binds intact DNA and mediates intrastrand transfer. Molecular Cell, 2021, 81, 4994-5006.e5.	4.5	44
2146	Structural and molecular basis for Cardiovirus 2A protein as a viral gene expression switch. Nature Communications, 2021, 12, 7166.	5.8	18
2147	Molecular basis for redox control by the human cystine/glutamate antiporter system xcâ^'. Nature Communications, 2021, 12, 7147.	5.8	65
2148	Structure of pathological TDP-43 filaments from ALS with FTLD. Nature, 2022, 601, 139-143.	13.7	129
2149	Structure and mechanism of the SGLT family of glucose transporters. Nature, 2022, 601, 274-279.	13.7	51
2150	Structural basis of inhibition of the human SGLT2–MAP17 glucose transporter. Nature, 2022, 601, 280-284.	13.7	58
2151	Structure of Hsp90–Hsp70–Hop–GR reveals the Hsp90 client-loading mechanism. Nature, 2022, 601, 460-464.	13.7	90
2152	Structural basis of sphingosine-1-phosphate receptor 1 activation and biased agonism. Nature Chemical Biology, 2022, 18, 281-288.	3.9	43
2153	The cryo-EM structure of the human neurofibromin dimer reveals the molecular basis for neurofibromatosis type 1. Nature Structural and Molecular Biology, 2021, 28, 982-988.	3.6	21
2154	Cryo-EM structures of human RNA polymerase I. Nature Structural and Molecular Biology, 2021, 28, 997-1008.	3.6	28

#	Article	IF	CITATIONS
2155	Structure of the human cone photoreceptor cyclic nucleotide-gated channel. Nature Structural and Molecular Biology, 2022, 29, 40-46.	3.6	20
2156	Structure and RNA template requirements of <i>Arabidopsis</i> RNA-DEPENDENT RNA POLYMERASE 2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
2157	High-resolution cryo-electron microscopy structure of photosystem II from the mesophilic cyanobacterium, <i>Synechocystis</i> sp. PCC 6803. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	58
2162	Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants. Science, 2021, 374, 1621-1626.	6.0	232
2163	Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science, 2022, 375, 864-868.	6.0	394
2164	Collective residue interactions in trimer complexes of SARS-CoV-2 spike proteins analyzed by fragment molecular orbital method. Applied Physics Express, 2022, 15, 017001.	1.1	7
2165	A modular platform for automated cryo-FIB workflows. ELife, 2021, 10, .	2.8	65
2166	Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science, 2021, , eabl6251.	6.0	12
2168	Cryo-EM Structure of a Kinetically Trapped Dodecameric Portal Protein from the <i>Pseudomonas</i> -Phage PaP3. SSRN Electronic Journal, 0, , .	0.4	1
2169	High-throughput cryo-EM structure determination of amyloids. Faraday Discussions, 0, 240, 243-260.	1.6	19
2170	Cryo-EM advances in RNA structure determination. Signal Transduction and Targeted Therapy, 2022, 7, 58.	7.1	54
2171	Plasticity in ligand recognition at somatostatin receptors. Nature Structural and Molecular Biology, 2022, 29, 210-217.	3.6	24
2172	Structure and electron transfer pathways of an electron-bifurcating NiFe-hydrogenase. Science Advances, 2022, 8, eabm7546.	4.7	15
2174	Molecular recognition of formylpeptides and diverse agonists by the formylpeptide receptors FPR1 and FPR2. Nature Communications, 2022, 13, 1054.	5.8	35
2175	Colicin E1 opens its hinge to plug TolC. ELife, 2022, 11, .	2.8	11
2177	Cryo-EM Structural Analysis of Binary Toxin:. Nihon Kessho Gakkaishi, 2022, 64, 69-76.	0.0	0
2179	Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader. ELife, 2022, 11, .	2.8	27
2180	Therapeutic antibody activation of the glucocorticoid-induced TNF receptor by a clustering mechanism. Science Advances, 2022, 8, eabm4552.	4.7	5

#	Article	IF	CITATIONS
2181	Structure of a thylakoid-anchored contractile injection system in multicellular cyanobacteria. Nature Microbiology, 2022, 7, 386-396.	5.9	23
2183	A late-stage assembly checkpoint of the human mitochondrial ribosome large subunit. Nature Communications, 2022, 13, 929.	5.8	13
2185	Cryo-EM structure of the nuclear ring from Xenopus laevis nuclear pore complex. Cell Research, 2022, 32, 349-358.	5.7	19
2186	Nucleosome recognition and DNA distortion by the Chd1 remodeler in a nucleotide-free state. Nature Structural and Molecular Biology, 2022, 29, 121-129.	3.6	21
2189	Synthetic virions reveal fatty acid-coupled adaptive immunogenicity of SARS-CoV-2 spike glycoprotein. Nature Communications, 2022, 13, 868.	5.8	20
2190	Exploring cryo-electron microscopy with molecular dynamics. Biochemical Society Transactions, 2022, 50, 569-581.	1.6	10
2192	The structure of the Physcomitrium patens photosystem I reveals a unique Lhca2 paralogue replacing Lhca4. Nature Plants, 2022, 8, 307-316.	4.7	12
2193	Molecular and cellular insight into Escherichia coli SslE and its role during biofilm maturation. Npj Biofilms and Microbiomes, 2022, 8, 9.	2.9	8
2194	Structural basis for DNA targeting by the Tn7 transposon. Nature Structural and Molecular Biology, 2022, 29, 143-151.	3.6	29
2195	Cryo-EM structures of human p97 double hexamer capture potentiated ATPase-competent state. Cell Discovery, 2022, 8, 19.	3.1	10
2196	Broad ultra-potent neutralization of SARS-CoV-2 variants by monoclonal antibodies specific to the tip of RBD. Cell Discovery, 2022, 8, 16.	3.1	18
2197	Annealing synchronizes the 70 <i>S</i> ribosome into a minimum-energy conformation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
2198	A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC·DNA·Cdc6. Nature Communications, 2022, 13, 1059.	5.8	7
2199	Structural snapshots of La Crosse virus polymerase reveal the mechanisms underlying Peribunyaviridae replication and transcription. Nature Communications, 2022, 13, 902.	5.8	23
2200	Mechanism of signal sequence handover from NAC to SRP on ribosomes during ER-protein targeting. Science, 2022, 375, 839-844.	6.0	43
2201	Reconstitution of 3′ end processing of mammalian pre-mRNA reveals a central role of RBBP6. Genes and Development, 2022, 36, 195-209.	2.7	26
2204	Structure, mechanism and lipid-mediated remodeling of the mammalian Na+/H+ exchanger NHA2. Nature Structural and Molecular Biology, 2022, 29, 108-120.	3.6	27
2205	Identification and structure of an extracellular contractile injection system from the marine bacterium Algoriphagus machipongonensis. Nature Microbiology, 2022, 7, 397-410.	5.9	24

#	Article	IF	CITATIONS
2206	2.4-Ã structure of the double-ring <i>Gemmatimonas phototrophica</i> photosystem. Science Advances, 2022, 8, eabk3139.	4.7	16
2207	Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication–transcription complex. Nature Structural and Molecular Biology, 2022, 29, 250-260.	3.6	35
2208	Conformational changes and CO2-induced channel gating in connexin26. Structure, 2022, 30, 697-706.e4.	1.6	7
2209	Transcription factors modulate RNA polymerase conformational equilibrium. Nature Communications, 2022, 13, 1546.	5.8	20
2210	Cryo-EM structure of transmembrane AAA+ protease FtsH in the ADP state. Communications Biology, 2022, 5, 257.	2.0	4
2211	The structural basis for regulation of the glutathione transporter Ycf1 by regulatory domain phosphorylation. Nature Communications, 2022, 13, 1278.	5.8	18
2212	Cryo-EM structures of the human GATOR1-Rag-Ragulator complex reveal a spatial-constraint regulated GAP mechanism. Molecular Cell, 2022, 82, 1836-1849.e5.	4.5	19
2213	Structural basis for the oligomerization-mediated regulation of NLRP3 inflammasome activation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121353119.	3.3	50
2214	Structural diversity of the SARS-CoV-2 Omicron spike. Molecular Cell, 2022, 82, 2050-2068.e6.	4.5	125
2215	Structural Studies Reveal the Role of Helix 68 in the Elongation Step of Protein Biosynthesis. MBio, 2022, 13, e0030622.	1.8	6
2217	Structural mechanism of muscle nicotinic receptor desensitization and block by curare. Nature Structural and Molecular Biology, 2022, 29, 386-394.	3.6	33
2218	Structure of a tetrameric photosystem I from a glaucophyte alga Cyanophora paradoxa. Nature Communications, 2022, 13, 1679.	5.8	11
2219	A structural basis for amylin receptor phenotype. Science, 2022, 375, eabm9609.	6.0	28
2220	Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature, 2022, 605, 310-314.	13.7	88
2221	Structural Insight into the MCM double hexamer activation by Dbf4-Cdc7 kinase. Nature Communications, 2022, 13, 1396.	5.8	15
2222	The oxytocin signaling complex reveals a molecular switch for cation dependence. Nature Structural and Molecular Biology, 2022, 29, 274-281.	3.6	29
2223	Cryo-EM structures reveal multiple stages of bacterial outer membrane protein folding. Cell, 2022, 185, 1143-1156.e13.	13.5	45
2224	Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases. Cell, 2022, 185, 1346-1355.e15.	13.5	70

	CITATION	Report	
#	Article	IF	CITATIONS
2225	Structural determinants of dual incretin receptor agonism by tirzepatide. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116506119.	3.3	31
2226	On bias, variance, overfitting, gold standard and consensus in single-particle analysis by cryo-electron microscopy. Acta Crystallographica Section D: Structural Biology, 2022, 78, 410-423.	1.1	16
2227	Structural basis of dynamic P5CS filaments. ELife, 2022, 11, .	2.8	10
2228	TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C.Âdifficile. Cell, 2022, 185, 980-994.e15.	13.5	30
2230	Structure-guided unlocking of NaX reveals a non-selective tetrodotoxin-sensitive cation channel. Nature Communications, 2022, 13, 1416.	5.8	9
2232	Structure of the human GlcNAc-1-phosphotransferase αβ subunits reveals regulatory mechanism for lysosomal enzyme glycan phosphorylation. Nature Structural and Molecular Biology, 2022, 29, 348-356.	3.6	6
2235	Structural basis for modulation of human NaV1.3 by clinical drug and selective antagonist. Nature Communications, 2022, 13, 1286.	5.8	36
2236	Structural insight into Marburg virus nucleoprotein–RNA complex formation. Nature Communications, 2022, 13, 1191.	5.8	11
2237	Structures of <i>Tetrahymena</i> 's respiratory chain reveal the diversity of eukaryotic core metabolism. Science, 2022, 376, 831-839.	6.0	45
2238	Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution. Science Advances, 2022, 8, eabm2225.	4.7	13
2239	Assembly mechanism of the pleomorphic immature poxvirus scaffold. Nature Communications, 2022, 13, 1704.	5.8	6
2241	Structural basis for catalyzed assembly of the Sonic hedgehog–Patched1 signaling complex. Developmental Cell, 2022, 57, 670-685.e8.	3.1	13
2242	Biparatopic sybodies neutralize SARS oVâ€2 variants of concern and mitigate drug resistance. EMBO Reports, 2022, 23, e54199.	2.0	30
2243	Cryo-EM structure and electrophysiological characterization of ALMT from <i>Glycine max</i> reveal a previously uncharacterized class of anion channels. Science Advances, 2022, 8, eabm3238.	4.7	13
2244	The DNA polymerase of bacteriophage YerA41 replicates its T-modified DNA in a primer-independent manner. Nucleic Acids Research, 2022, , .	6.5	2
2245	Asymmetric and non-stoichiometric glycoprotein recognition by two distinct antibodies results in broad protection against ebolaviruses. Cell, 2022, 185, 995-1007.e18.	13.5	26
2247	Differential assembly diversifies GABAA receptor structures and signalling. Nature, 2022, 604, 190-194.	13.7	36
2250	Protein dynamics developments for the large scale and cryoEM: case study of <i>ProDy</i> 2.0. Acta Crystallographica Section D: Structural Biology, 2022, 78, 399-409.	1.1	7

#	Article	IF	CITATIONS
2251	Oxygen-Sensitive Metalloprotein Structure Determination by Cryo-Electron Microscopy. Biomolecules, 2022, 12, 441.	1.8	2
2252	Structural basis of human telomerase recruitment by TPP1-POT1. Science, 2022, 375, 1173-1176.	6.0	48
2254	Synergistic activation of the insulin receptor via two distinct sites. Nature Structural and Molecular Biology, 2022, 29, 357-368.	3.6	36
2255	Structural basis of the strict specificity of a bacterial GH31 α-1,3-glucosidase for nigerooligosaccharides. Journal of Biological Chemistry, 2022, 298, 101827.	1.6	10
2257	Structural and biochemical characterization of in vivo assembled Lactococcus lactis CRISPR-Csm complex. Communications Biology, 2022, 5, 279.	2.0	9
2258	Particle Morphology of Medusavirus Inside and Outside the Cells Reveals a New Maturation Process of Giant Viruses. Journal of Virology, 2022, 96, e0185321.	1.5	7
2261	Structural insights into DNMT5-mediated ATP-dependent high-fidelity epigenome maintenance. Molecular Cell, 2022, 82, 1186-1198.e6.	4.5	11
2262	Flagellin outer domain dimerization modulates motility in pathogenic and soil bacteria from viscous environments. Nature Communications, 2022, 13, 1422.	5.8	10
2263	Cholesterol efflux mechanism revealed by structural analysis of human ABCA1 conformational states. , 2022, 1, 238-245.		14
2264	Better, Faster, Cheaper: Recent Advances in Cryo–Electron Microscopy. Annual Review of Biochemistry, 2022, 91, 1-32.	5.0	45
2265	Architecture and antigenicity of the Nipah virus attachment glycoprotein. Science, 2022, 375, 1373-1378.	6.0	33
2267	Emerging enterococcus pore-forming toxins with MHC/HLA-I as receptors. Cell, 2022, 185, 1157-1171.e22.	13.5	22
2269	Symmetric and asymmetric receptor conformation continuum induced by a new insulin. Nature Chemical Biology, 2022, 18, 511-519.	3.9	20
2274	Structural basis of leukotriene B4 receptor 1 activation. Nature Communications, 2022, 13, 1156.	5.8	19
2274 2277	Structural basis of leukotriene B4 receptor 1 activation. Nature Communications, 2022, 13, 1156. Structural basis of RNA conformational switching in the transcriptional regulator 7SK RNP. Molecular Cell, 2022, 82, 1724-1736.e7.	5.8 4.5	19 18
2274 2277 2278	Structural basis of leukotriene B4 receptor 1 activation. Nature Communications, 2022, 13, 1156. Structural basis of RNA conformational switching in the transcriptional regulator 7SK RNP. Molecular Cell, 2022, 82, 1724-1736.e7. Cryo-EM structure of the human TACAN in a closed state. Cell Reports, 2022, 38, 110445.	5.8 4.5 2.9	19 18 9
2274 2277 2277 2278 2279	Structural basis of leukotriene B4 receptor 1 activation. Nature Communications, 2022, 13, 1156. Structural basis of RNA conformational switching in the transcriptional regulator 7SK RNP. Molecular Cell, 2022, 82, 1724-1736.e7. Cryo-EM structure of the human TACAN in a closed state. Cell Reports, 2022, 38, 110445. Recovery of particulate methane monooxygenase structure and activity in a lipid bilayer. Science, 2022, 375, 1287-1291.	5.84.52.96.0	19 18 9 45

#	Article	IF	Citations
2281	Structural and functional characterization of an achromatopsia-associated mutation in a phototransduction channel. Communications Biology, 2022, 5, 190.	2.0	8
2282	Structural basis for different types of hetero-tetrameric light-harvesting complexes in a diatom PSII-FCPII supercomplex. Nature Communications, 2022, 13, 1764.	5.8	17
2283	Structure-based design of stabilized recombinant influenza neuraminidase tetramers. Nature Communications, 2022, 13, 1825.	5.8	21
2285	Structure deformation and curvature sensing of PIEZO1 in lipid membranes. Nature, 2022, 604, 377-383.	13.7	92
2286	Pretransition state and apo structures of the filament-forming enzyme SgrAI elucidate mechanisms of activation and substrate specificity. Journal of Biological Chemistry, 2022, 298, 101760.	1.6	3
2288	Structure of the type V-C CRISPR-Cas effector enzyme. Molecular Cell, 2022, 82, 1865-1877.e4.	4.5	12
2289	Cholesterol inhibits TCR signaling by directly restricting TCR-CD3 core tunnel motility. Molecular Cell, 2022, 82, 1278-1287.e5.	4.5	43
2290	Structural basis for PoxtA-mediated resistance to phenicol and oxazolidinone antibiotics. Nature Communications, 2022, 13, 1860.	5.8	25
2292	Emergence of the primordial pre-60S from the 90S pre-ribosome. Cell Reports, 2022, 39, 110640.	2.9	17
2293	Asymmetric structure of the native Rhodobacter sphaeroides dimeric LH1–RC complex. Nature Communications, 2022, 13, 1904.	5.8	15
2294	Activation of STING by targeting a pocket in the transmembrane domain. Nature, 2022, 604, 557-562.	13.7	71
2296	An electron counting algorithm improves imaging of proteins with low-acceleration-voltage cryo-electron microscope. Communications Biology, 2022, 5, 321.	2.0	2
2297	Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile. Nature, 2022, 604, 541-545.	13.7	24
2300	Development of an atmospheric plasma jet device for versatile treatment of electron microscope sample grids. Journal of Biological Chemistry, 2022, 298, 101793.	1.6	0
2301	Structural basis for the mechanisms of human presequence protease conformational switch and substrate recognition. Nature Communications, 2022, 13, 1833.	5.8	4
2303	Structural basis of FPR2 in recognition of $A\hat{I}^2$ 42 and neuroprotection by humanin. Nature Communications, 2022, 13, 1775.	5.8	24
2304	Continuum dynamics and statistical correction of compositional heterogeneity in multivalent IDP oligomers resolved by single-particle EM. Journal of Molecular Biology, 2022, 434, 167520.	2.0	5
2305	Cryo-EM Structure of a Kinetically Trapped Dodecameric Portal Protein from the Pseudomonas-phage PaP3. Journal of Molecular Biology, 2022, 434, 167537.	2.0	6

#	Article	IF	CITATIONS
2306	CryoDRGN2: Ab initio neural reconstruction of 3D protein structures from real cryo-EM images. , 2021, , .		21
2309	A nanoscale reciprocating rotary mechanism with coordinated mobility control. Nature Communications, 2021, 12, 7138.	5.8	14
2312	In vitro functional analysis of gRNA sites regulating assembly of hepatitis B virus. Communications Biology, 2021, 4, 1407.	2.0	6
2313	Activation mechanism of PINK1. Nature, 2022, 602, 328-335.	13.7	59
2314	How to build a ribosome from RNA fragments in Chlamydomonas mitochondria. Nature Communications, 2021, 12, 7176.	5.8	27
2316	Cryoâ€EM structure of MsbA in saposinâ€lipid nanoparticles (Salipro) provides insights into nucleotide coordination. FEBS Journal, 2022, 289, 2959-2970.	2.2	12
2318	Conserved and divergent features of neuronal CaMKII holoenzyme structure, function, and high-order assembly. Cell Reports, 2021, 37, 110168.	2.9	17
2319	Structural basis of malaria transmission blockade by a monoclonal antibody to gamete fusogen HAP2. ELife, 2021, 10, .	2.8	7
2320	Regulation of MLL1 Methyltransferase Activity in Two Distinct Nucleosome Binding Modes. Biochemistry, 2022, 61, 1-9.	1.2	7
2322	A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI. Nature Communications, 2021, 12, 7257.	5.8	23
2323	Tools for Decoding Ubiquitin Signaling in DNA Repair. Frontiers in Cell and Developmental Biology, 2021, 9, 760226.	1.8	4
2324	Mechanisms of distinctive mismatch tolerance between Rad51 and Dmc1 in homologous recombination. Nucleic Acids Research, 2021, 49, 13135-13149.	6.5	17
2325	Structural mechanism for the selective phosphorylation of DNA-loaded MCM double hexamers by the Dbf4-dependent kinase. Nature Structural and Molecular Biology, 2022, 29, 10-20.	3.6	21
2326	Asymmetric drug binding in an ATP-loaded inward-facing state of an ABC transporter. Nature Chemical Biology, 2022, 18, 226-235.	3.9	15
2329	Antigen-Triggered Logic-Gating of DNA Nanodevices. Journal of the American Chemical Society, 2021, 143, 21630-21636.	6.6	26
2330	Mechanistic and structural diversity between cytochrome <i>bd</i> isoforms of <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
2331	Cryo-EM Structures of Two Bacteriophage Portal Proteins Provide Insights for Antimicrobial Phage Engineering. Viruses, 2021, 13, 2532.	1.5	1
2333	CryoEM of RUVBL1–RUVBL2–ZNHIT2, a complex that interacts with pre-mRNA-processing-splicing factor 8. Nucleic Acids Research, 2022, 50, 1128-1146.	6.5	6

#	Article	IF	CITATIONS
2334	Heterogeneous Cryo-EM Projection Image Classification Based on Common Lines. , 2021, , .		3
2336	Conformational heterogeneity coupled with β-fibril formation of a scaffold protein involved in chronic mental illnesses. Translational Psychiatry, 2021, 11, 639.	2.4	9
2337	Discovery and Characterization of Potent Dual P-Glycoprotein and CYP3A4 Inhibitors: Design, Synthesis, Cryo-EM Analysis, and Biological Evaluations. Journal of Medicinal Chemistry, 2022, 65, 191-216.	2.9	25
2338	Pol IV and RDR2: A two-RNA-polymerase machine that produces double-stranded RNA. Science, 2021, 374, 1579-1586.	6.0	30
2339	Structure, mechanism, and inhibition of Hedgehog acyltransferase. Molecular Cell, 2021, 81, 5025-5038.e10.	4.5	28
2341	Structural and functional diversity among agonist-bound states of the GLP-1 receptor. Nature Chemical Biology, 2022, 18, 256-263.	3.9	24
2342	Oxidative stress protein Oxr1 promotes Vâ€ATPase holoenzyme disassembly in catalytic activityâ€independent manner. EMBO Journal, 2022, 41, e109360.	3.5	15
2343	Conformational changes in the yeast mitochondrial ABC transporter Atm1 during the transport cycle. Science Advances, 2021, 7, eabk2392.	4.7	4
2346	Structure–activity relationships at a nucleobase-stacking tryptophan required for chemomechanical coupling in the DNA resecting motor-nuclease AdnAB. Nucleic Acids Research, 2022, 50, 952-961.	6.5	2
2347	Dimeric and high-resolution structures of Chlamydomonas Photosystem I from a temperature-sensitive Photosystem II mutant. Communications Biology, 2021, 4, 1380.	2.0	6
2348	A cryo-ET survey of microtubules and intracellular compartments in mammalian axons. Journal of Cell Biology, 2022, 221, .	2.3	33
2349	NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell, 2021, 184, 6299-6312.e22.	13.5	120
2351	Conformational rearrangements upon start codon recognition in human 48S translation initiation complex. Nucleic Acids Research, 2022, 50, 5282-5298.	6.5	15
2352	Structure of active human telomerase with telomere shelterin protein TPP1. Nature, 2022, 604, 578-583.	13.7	43
2354	Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1. Nature, 2022, 604, 779-785.	13.7	60
2356	Structures of the Type IX Secretion/Gliding Motility Motor from across the Phylum <i>Bacteroidetes</i> . MBio, 2022, 13, e0026722.	1.8	8
2358	Cryo-ET detects bundled triple helices but not ladders in meiotic budding yeast. PLoS ONE, 2022, 17, e0266035.	1.1	2
2359	Structure of the human inner kinetochore bound to a centromeric CENP-A nucleosome. Science, 2022, 376, 844-852.	6.0	40

#	Article	IF	CITATIONS
2360	Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. Science Translational Medicine, 2022, 14, eabn1252.	5.8	68
2361	Molecular Organisation of Tick-Borne Encephalitis Virus. Viruses, 2022, 14, 792.	1.5	19
2362	Cryo-EM structures of the β3 adrenergic receptor bound to solabegron and isoproterenol. Biochemical and Biophysical Research Communications, 2022, 611, 158-164.	1.0	9
2363	The tethered peptide activation mechanism of adhesion GPCRs. Nature, 2022, 604, 757-762.	13.7	59
2364	A Ca2+-binding motif underlies the unusual properties of certain photosynthetic bacterial core light-harvesting complexes. Journal of Biological Chemistry, 2022, 298, 101967.	1.6	9
2365	Novel sarbecovirus bispecific neutralizing antibodies with exceptional breadth and potency against currently circulating SARS-CoV-2 variants and sarbecoviruses. Cell Discovery, 2022, 8, 36.	3.1	22
2366	Allosteric interactions prime androgen receptor dimerization and activation. Molecular Cell, 2022, 82, 2021-2031.e5.	4.5	21
2367	Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Communications Biology, 2022, 5, 342.	2.0	41
2368	Opening of glutamate receptor channel to subconductance levels. Nature, 2022, 605, 172-178.	13.7	30
2369	Structure, gating, and pharmacology of human CaV3.3 channel. Nature Communications, 2022, 13, 2084.	5.8	22
2370	Structural basis for the assembly and quinone transport mechanisms of the dimeric photosynthetic RC–LH1 supercomplex. Nature Communications, 2022, 13, 1977.	5.8	22
2371	Assessing the Mobility of Severe Acute Respiratory Syndrome Coronavirus-2 Spike Protein Glycans by Structural and Computational Methods. Frontiers in Microbiology, 2022, 13, 870938.	1.5	1
2373	Structural and molecular determinants for the interaction of ExbB from Serratia marcescens and HasB, a TonB paralog. Communications Biology, 2022, 5, 355.	2.0	5
2379	Snapshots of actin and tubulin folding inside the TRiC chaperonin. Nature Structural and Molecular Biology, 2022, 29, 420-429.	3.6	29
2380	The archaeal glutamate transporter homologue GltPh shows heterogeneous substrate binding. Journal of General Physiology, 2022, 154, .	0.9	7
2381	Symmetry disruption commits vault particles to disassembly. Science Advances, 2022, 8, eabj7795.	4.7	9
2382	Structure of the Shaker Kv channel and mechanism of slow C-type inactivation. Science Advances, 2022, 8, eabm7814.	4.7	49
2383	Cryo-EM structures of the human surfactant lipid transporter ABCA3. Science Advances, 2022, 8, eabn3727.	4.7	10

#	Article	IF	CITATIONS
2384	An ACE2-blocking antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants of concern. Science Immunology, 2022, 7, eabp9312.	5.6	35
2385	Cryo-EM structure of the human somatostatin receptor 2 complex with its agonist somatostatin delineates the ligand-binding specificity. ELife, 2022, 11, .	2.8	10
2386	MutL binds to 3′ resected DNA ends and blocks DNA polymerase access. Nucleic Acids Research, 2022, 50, 6224-6234.	6.5	4
2387	ReconSil: An electron microscopy toolbox to study helicase function at an origin of replication. Methods in Enzymology, 2022, , 203-231.	0.4	0
2388	Recovery of Conformational Continuum From Single-Particle Cryo-EM Images: Optimization of ManifoldEM Informed by Ground Truth. IEEE Transactions on Computational Imaging, 2022, 8, 462-478.	2.6	11
2392	FCHO controls AP2's initiating role in endocytosis through a PtdIns(4,5)P ₂ -dependent switch. Science Advances, 2022, 8, eabn2018.	4.7	14
2393	A Method for High-Resolution Three-Dimensional Reconstruction with Ewald Sphere Curvature Correction from Transmission Electron Images. Microscopy and Microanalysis, 2022, , 1-17.	0.2	0
2395	CryoEM structures of pseudouridine-free ribosome suggest impacts of chemical modifications on ribosome conformations. Structure, 2022, 30, 983-992.e5.	1.6	14
2396	Crystal structures and insights into precursor tRNA 5'-end processing by prokaryotic minimal protein-only RNase P. Nature Communications, 2022, 13, 2290.	5.8	6
2400	RPAP2 regulates a transcription initiation checkpoint by inhibiting assembly of pre-initiation complex. Cell Reports, 2022, 39, 110732.	2.9	5
2401	High-resolution structures of human Nav1.7 reveal gating modulation through α-π helical transition of S6IV. Cell Reports, 2022, 39, 110735.	2.9	35
2402	Structural insights into TRPV2 activation by small molecules. Nature Communications, 2022, 13, 2334.	5.8	25
2403	N-terminal signal peptides facilitate the engineering of PVC complex as a potent protein delivery system. Science Advances, 2022, 8, eabm2343.	4.7	16
2404	Protective prototype-Beta and Delta-Omicron chimeric RBD-dimer vaccines against SARS-CoV-2. Cell, 2022, 185, 2265-2278.e14.	13.5	77
2405	USP14-regulated allostery of the human proteasome by time-resolved cryo-EM. Nature, 2022, 605, 567-574.	13.7	38
2406	Structural and biochemical analyses of the nucleosome containing <i>Komagataella pastoris</i> histones. Journal of Biochemistry, 2022, 172, 79-88.	0.9	11
2407	Formation of thyroid hormone revealed by a cryo-EM structure of native bovine thyroglobulin. Nature Communications, 2022, 13, 2380.	5.8	7
2408	Structure and mechanism of NALCN-FAM155A-UNC79-UNC80 channel complex. Nature Communications, 2022, 13, 2639.	5.8	10

#	Article	IF	CITATIONS
2409	Structure of the Arabidopsis guard cell anion channel SLAC1 suggests activation mechanism by phosphorylation. Nature Communications, 2022, 13, 2511.	5.8	10
2412	Novel super-neutralizing antibody UT28K is capable of protecting against infection from a wide variety of SARS-CoV-2 variants. MAbs, 2022, 14, 2072455.	2.6	9
2414	Substrate recognition and cryo-EM structure of the ribosome-bound TAC toxin of Mycobacterium tuberculosis. Nature Communications, 2022, 13, 2641.	5.8	5
2417	Structural mapping of antibody landscapes to human betacoronavirus spike proteins. Science Advances, 2022, 8, eabn2911.	4.7	28
2418	Receptor-specific recognition of NPY peptides revealed by structures of NPY receptors. Science Advances, 2022, 8, eabm1232.	4.7	22
2419	Molecular insights into biogenesis of glycosylphosphatidylinositol anchor proteins. Nature Communications, 2022, 13, 2617.	5.8	9
2420	Structure Insights Into Photosystem I Octamer From Cyanobacteria. Frontiers in Microbiology, 2022, 13, .	1.5	0
2422	Cryo-EM structures of thylakoid-located voltage-dependent chloride channel VCCN1. Nature Communications, 2022, 13, 2505.	5.8	5
2424	Structure of a TRAPPII-Rab11 activation intermediate reveals GTPase substrate selection mechanisms. Science Advances, 2022, 8, eabn7446.	4.7	12
2425	TMEM16 scramblases thin the membrane to enable lipid scrambling. Nature Communications, 2022, 13, 2604.	5.8	22
2426	The cyclic octapeptide antibiotic argyrin B inhibits translation by trapping EF-G on the ribosome during translocation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114214119.	3.3	8
2427	Realistic biomarkers from plasma extracellular vesicles for detection of beryllium exposure. International Archives of Occupational and Environmental Health, 2022, 95, 1785-1796.	1.1	2
2429	Structures of oxysterol sensor EBI2/GPR183, a key regulator of the immune response. Structure, 2022, 30, 1016-1024.e5.	1.6	15
2431	Cryo-electron tomography of the onion cell wall shows bimodally oriented cellulose fibers and reticulated homogalacturonan networks. Current Biology, 2022, 32, 2375-2389.e6.	1.8	29
2432	Antibodies induced by an ancestral SARS-CoV-2 strain that cross-neutralize variants from Alpha to Omicron BA.1. Science Immunology, 2022, 7, eabo3425.	5.6	28
2433	Sub-3-Ã cryo-EM structure of RNA enabled by engineered homomeric self-assembly. Nature Methods, 2022, 19, 576-585.	9.0	21
2434	Recent advances on the inhibition of human solute carriers: Therapeutic implications and mechanistic insights. Current Opinion in Structural Biology, 2022, 74, 102378.	2.6	5
2435	Purification and cryo-EM structure determination of VCP/p97 dodecamers from mammalian and bacterial cells. STAR Protocols, 2022, 3, 101339.	0.5	1

#	Article	IF	CITATIONS
2442	Structural identification of vasodilator binding sites on the SUR2 subunit. Nature Communications, 2022, 13, 2675.	5.8	10
2444	Cryo-electron Microscopy of Adeno-associated Virus. Chemical Reviews, 2022, 122, 14018-14054.	23.0	15
2445	Accounting Conformational Dynamics into Structural Modeling Reflected by Cryo-EM with Deep Learning. Combinatorial Chemistry and High Throughput Screening, 2022, 25, .	0.6	0
2446	Mpe1 senses the binding of pre-mRNA and controls 3′ end processing by CPF. Molecular Cell, 2022, 82, 2490-2504.e12.	4.5	9
2447	Cryo-EM structure of the human CST–Polα/primase complex in a recruitment state. Nature Structural and Molecular Biology, 2022, 29, 813-819.	3.6	40
2448	Citrus sudden death-associated virus as a new expression vector for rapid in planta production of heterologous proteins, chimeric virions, and virus-like particles. Biotechnology Reports (Amsterdam,) Tj ETQq1 1	0. 28 4314	rg&T /Overlo
2449	Histone H1 binding to nucleosome arrays depends on linker DNA length and trajectory. Nature Structural and Molecular Biology, 2022, 29, 493-501.	3.6	32
2450	Data-driven determination of number of discrete conformations in single-particle cryo-EM. Computer Methods and Programs in Biomedicine, 2022, 221, 106892.	2.6	8
2451	Ca2+-mediated higher-order assembly of heterodimers in amino acid transport system b0,+ biogenesis and cystinuria. Nature Communications, 2022, 13, 2708.	5.8	3
2452	N-type fast inactivation of a eukaryotic voltage-gated sodium channel. Nature Communications, 2022, 13, 2713.	5.8	8
2453	Structural insights into the HBV receptor and bile acid transporter NTCP. Nature, 2022, 606, 1027-1031.	13.7	44
2454	Cryo-EM structure of an active central apparatus. Nature Structural and Molecular Biology, 2022, 29, 472-482.	3.6	31
2455	Ciliary central apparatus structure reveals mechanisms of microtubule patterning. Nature Structural and Molecular Biology, 2022, 29, 483-492.	3.6	33
2456	Structural insights into the mechanism of pancreatic KATP channel regulation by nucleotides. Nature Communications, 2022, 13, 2770.	5.8	18
2457	Inhibition mechanism of the chloride channel TMEM16A by the pore blocker 1PBC. Nature Communications, 2022, 13, 2798.	5.8	10
2458	Structure of theÂbile acid transporterÂand HBV receptor NTCP. Nature, 2022, 606, 1021-1026.	13.7	45
2459	Helical Indexing in Real Space. Scientific Reports, 2022, 12, 8162.	1.6	3
2460	A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila. PLoS Genetics, 2022, 18, e1010194.	1.5	6

#	Article	IF	CITATIONS
2461	Structural insights into ClpP protease side exit poreâ€opening by a pH drop coupled with substrate hydrolysis. EMBO Journal, 2022, 41, e109755.	3.5	8
2462	Seipin transmembrane segments critically function in triglyceride nucleation and lipid droplet budding from the membrane. ELife, 2022, 11, .	2.8	22
2467	Structural basis of autoinhibition of the human NHE3-CHP1 complex. Science Advances, 2022, 8, .	4.7	11
2468	Structural basis for broad anti-phage immunity by DISARM. Nature Communications, 2022, 13, .	5.8	10
2469	Structural Basis for Binding of Potassium-Competitive Acid Blockers to the Gastric Proton Pump. Journal of Medicinal Chemistry, 2022, 65, 7843-7853.	2.9	8
2472	Redox-sensitive E2 Rad6 controls cellular response to oxidative stress via K63-linked ubiquitination of ribosomes. Cell Reports, 2022, 39, 110860.	2.9	15
2473	Differential ion dehydration energetics explains selectivity in the non-canonical lysosomal K+ channel TMEM175. ELife, 0, 11, .	2.8	9
2474	High-resolution structures of the SAMHD1 dGTPase homolog from Leeuwenhoekiella blandensis reveal a novel mechanism of allosteric activation by dATP. Journal of Biological Chemistry, 2022, , 102073.	1.6	3
2476	Vanilloid-dependent TRPV1 opening trajectory from cryoEM ensemble analysis. Nature Communications, 2022, 13, .	5.8	24
2482	Engineering purple bacterial carotenoid biosynthesis to study the roles of carotenoids in light-harvesting complexes. Methods in Enzymology, 2022, , .	0.4	1
2483	Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein. Cell, 2022, 185, 2279-2291.e17.	13.5	25
2484	Antigenic structure of the human coronavirus OC43 spike reveals exposed and occluded neutralizing epitopes. Nature Communications, 2022, 13, .	5.8	12
2487	Molecular basis for gating of cardiac ryanodine receptor explains the mechanisms for gain- and loss-of function mutations. Nature Communications, 2022, 13, .	5.8	10
2488	Structural rearrangements allow nucleic acid discrimination by type I-D Cascade. Nature Communications, 2022, 13, .	5.8	17
2489	Cryo-EM structure and rRNA modification sites of a plant ribosome. Plant Communications, 2022, 3, 100342.	3.6	15
2490	Influenza chimeric hemagglutinin structures in complex with broadly protective antibodies to the stem and trimer interface. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
2491	Structural and functional analysis of an inter-Spike bivalent neutralizing antibody against SARS-CoV-2 variants. IScience, 2022, 25, 104431.	1.9	3
2492	Cooperation between intrinsically disordered and ordered regions of Spt6 regulates nucleosome and Pol II CTD binding, and nucleosome assembly. Nucleic Acids Research, 2022, 50, 5961-5973.	6.5	2

	CITATION R	EPORT	
#	Article	IF	CITATIONS
2493	Molecular mechanism of the wake-promoting agent TAK-925. Nature Communications, 2022, 13, .	5.8	12
2497	Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex. Cell, 2022, 185, 2324-2337.e16.	13.5	51
2498	Artificial intelligence-assisted cryoEM structure of Bfr2-Lcp5 complex observed in the yeast small subunit processome. Communications Biology, 2022, 5, .	2.0	1
2499	Structural basis of transposon end recognition explains central features of Tn7 transposition systems. Molecular Cell, 2022, 82, 2618-2632.e7.	4.5	18
2500	BacPROTACs mediate targeted protein degradation in bacteria. Cell, 2022, 185, 2338-2353.e18.	13.5	57
2501	A hold-and-feed mechanism drives directional DNA loop extrusion by condensin. Science, 2022, 376, 1087-1094.	6.0	51
2502	Discovery of non-squalene triterpenes. Nature, 2022, 606, 414-419.	13.7	71
2505	Virucidal Activity of the Pyridobenzothiazolone Derivative HeE1-17Y against Enveloped RNA Viruses. Viruses, 2022, 14, 1157.	1.5	4
2507	Activation and closed-state inactivation mechanisms of the human voltage-gated KV4 channel complexes. Molecular Cell, 2022, 82, 2427-2442.e4.	4.5	18
2509	StructuralÂBasis for pH-gating of the K+ channel TWIK1 at the selectivity filter. Nature Communications, 2022, 13, .	5.8	6
2510	Rhodopsin-bestrophin fusion proteins from unicellular algae form gigantic pentameric ion channels. Nature Structural and Molecular Biology, 2022, 29, 592-603.	3.6	23
2512	Structural mechanism of protein recognition by the FW domain of autophagy receptor Nbr1. Nature Communications, 2022, 13, .	5.8	4
2513	SNARE assembly enlightened by cryo-EM structures of a synaptobrevin–Munc18-1–syntaxin-1 complex. Science Advances, 2022, 8, .	4.7	40
2514	Molecular basis of mEAK7-mediated human V-ATPase regulation. Nature Communications, 2022, 13, .	5.8	5
2515	pH- and concentration-dependent supramolecular assembly of a fungal defensin plectasin variant into helical non-amyloid fibrils. Nature Communications, 2022, 13, .	5.8	9
2517	Structure of the rabies virus glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science Advances, 2022, 8, .	4.7	16
2518	Structural basis of template strand deoxyuridine promoter recognition by a viral RNA polymerase. Nature Communications, 2022, 13, .	5.8	3
2519	Mechanism of mitoribosomal small subunit biogenesis and preinitiation. Nature, 2022, 606, 603-608.	13.7	32

		CITATION REPORT		
# 2520	ARTICLE A second DNA binding site on RFC facilitates clamp loading at gapped or nicked DNA.	ELife, 0, 11, .	IF 2.8	CITATIONS
2521	Structural basis for RNA surveillance by the human nuclear exosome targeting (NEXT) 2022, 185, 2132-2147.e26.	complex. Cell,	13.5	16
2522	Rational exploration of fold atlas for human solute carrier proteins. Structure, 2022, 30	D, 1321-1330.e5.	1.6	13
2523	Cryo-EM data statistics and theoretical analysis of KaiC hexamer. Chinese Physics Lette	ers, 0, , .	1.3	0
2524	Cryo-EM structures of the <i>Synechocystis</i> sp. PCC 6803 cytochrome <i>b</i> 6< with and without the regulatory PetP subunit. Biochemical Journal, 2022, 479, 1487-1	i>f complex 503.	1.7	7
2526	A Structurally Characterized <i>Staphylococcus aureus</i> Evolutionary Escape Route Treatment with the Antibiotic Linezolid. Microbiology Spectrum, 2022, 10, .	from	1.2	4
2527	BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature, 202	2, 608, 593-602.	13.7	889
2529	Filamentation modulates allosteric regulation of PRPS. ELife, 0, 11, .		2.8	12
2531	Mechanism of replication origin melting nucleated by CMG helicase assembly. Nature, 1007-1014.	2022, 606,	13.7	34
2532	Biophysical Screening Pipeline for Cryo-EM Grid Preparation of Membrane Proteins. Fro Molecular Biosciences, 0, 9, .	ontiers in	1.6	16
2533	Structure of the cytoplasmic ring of the <i>Xenopus laevis</i> nuclear pore complex. S 376, .	Science, 2022,	6.0	44
2534	Structure and regulation of the nuclear exosome targeting complex guides RNA substrexosome. Molecular Cell, 2022, 82, 2505-2518.e7.	rates to the	4.5	15
2535	Cryoâ€EM structures of pentameric autoinducerâ€2 exporter from <i>Escherichia colitransport mechanism. EMBO Journal, 2022, 41, .</i>	reveal its	3.5	8
2536	Structural Basis of the Immunity Mechanisms of Pediocin-like Bacteriocins. Applied and Microbiology, 2022, 88, .	d Environmental	1.4	5
2537	Potent human broadly SARS-CoV-2–neutralizing IgA and IgG antibodies effective aga and BA.2. Journal of Experimental Medicine, 2022, 219, .	ainst Omicron BA.1	4.2	34
2538	Structural basis of Tom20 and Tom22 cytosolic domains as the human TOM complex Proceedings of the National Academy of Sciences of the United States of America, 202	receptors. 22, 119, .	3.3	25
2539	Structural insights into ligand recognition and selectivity of somatostatin receptors. C 2022, 32, 761-772.	ell Research,	5.7	16
2541	Mechanism of exon ligation by human spliceosome. Molecular Cell, 2022, 82, 2769-27	78.e4.	4.5	14

ARTICLE IF CITATIONS # GPCRs steer Gi and Gs selectivity via TM5-TM6 switches as revealed by structures of serotonin 2542 4.5 43 receptors. Molecular Cell, 2022, 82, 2681-2695.e6. Architecture of the linker-scaffold in the nuclear pore. Science, 2022, 376, . 2543 6.0 The molybdenum storage protein forms and deposits distinct polynuclear tungsten oxygen 2544 1.5 1 aggregates. Journal of Inorganic Biochemistry, 2022, 234, 111904. Structural biology of exÂvivo mammalian prions. Journal of Biological Chemistry, 2022, 298, 102181. 2545 Structure-based electron-confurcation mechanism of the Ldh-EtfAB complex. ELife, 0, 11, . 2547 2.8 9 2548 Role of aIF5B in archaeal translation initiation. Nucleic Acids Research, 2022, 50, 6532-6548. 6.5 Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. 2549 4.5 42 Molecular Cell, 2022, 82, 2797-2814.e11. Structural basis of rapid actin dynamics in the evolutionarily divergent Leishmania parasite. Nature 5.8 Communications, 2022, 13, . 2551 Pathogen-sugar interactions revealed by universal saturation transfer analysis. Science, 2022, 377, . 6.0 24 Superimmunity by pan-sarbecovirus nanobodies. Cell Reports, 2022, 39, 111004. 40S hnRNP particles are a novel class of nuclear biomolecular condensates. Nucleic Acids Research, 2554 6.5 8 2022, 50, 6300-6312. A broadly neutralizing antibody protects Syrian hamsters against SARS-CoV-2 Omicron challenge. 5.8 Nature Ćommunications, 2022, 13, . Structural basis of ligand binding modes of human EAAT2. Nature Communications, 2022, 13, . 2556 5.8 12 Structural basis for binding diversity of acetyltransferase p300 to the nucleosome. IScience, 2022, 25, 1.9 104563. Preparation of RNA Polymerase Complexes for Their Analysis by Single-Particle Cryo-Electron 2558 0.4 3 Microscopy. Methods in Molecular Biology, 2022, , 81-96. Terminase Subunits from the Pseudomonas-Phage E217. SSRN Electronic Journal, 0, , . 2559 0.4 Maintaining the momentum in cryoEM for biological discovery. Faraday Discussions, 0, , . 2560 1.6 0 Structural Studies of Eukaryotic RNA Polymerase I Using Cryo-Electron Microscopy. Methods in 0.4 Molecular Biology, 2022, , 71-80.

#	Article	IF	CITATIONS
2562	B cells expressing IgM B cell receptors of HIV-1 neutralizing antibodies discriminate antigen affinities by sensing binding association rates. Cell Reports, 2022, 39, 111021.	2.9	6
2563	Antibacterial peptide CyclomarinA creates toxicity by deregulating the Mycobacterium tuberculosis ClpC1–ClpP1P2 protease. Journal of Biological Chemistry, 2022, 298, 102202.	1.6	18
2565	The structure of EXTL3 helps to explain the different roles of bi-domain exostosins in heparan sulfate synthesis. Nature Communications, 2022, 13, .	5.8	14
2567	Structural insights into dsRNA processing by Drosophila Dicer-2–Loqs-PD. Nature, 2022, 607, 399-406.	13.7	19
2568	Molecular insights into intra-complex signal transmission during stressosome activation. Communications Biology, 2022, 5, .	2.0	1
2569	Structural/functional studies of Trio provide insights into its configuration and show that conserved linker elements enhance its activity for Rac1. Journal of Biological Chemistry, 2022, 298, 102209.	1.6	1
2571	A natural fusion of flavodiiron, rubredoxin, and rubredoxin oxidoreductase domains is a self-sufficient water-forming oxidase of Trichomonas vaginalis. Journal of Biological Chemistry, 2022, 298, 102210.	1.6	1
2572	Mechanism of glycogen synthase inactivation and interaction with glycogenin. Nature Communications, 2022, 13, .	5.8	15
2573	A peroxisomal ubiquitin ligase complex forms a retrotranslocation channel. Nature, 2022, 607, 374-380.	13.7	36
2574	The Pre-Existing Human Antibody Repertoire to Computationally Optimized Influenza H1 Hemagglutinin Vaccines. Journal of Immunology, 2022, 209, 5-15.	0.4	5
2575	The Native Orthobunyavirus Ribonucleoprotein Possesses a Helical Architecture. MBio, 2022, 13, .	1.8	10
2577	Structural Insights Into the High Selectivity of the Anti-Diabetic Drug Mitiglinide. Frontiers in Pharmacology, 0, 13, .	1.6	6
2580	Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold. Science, 2022, 376, .	6.0	89
2581	Phosphorylation of SAMHD1 Thr592 increases C-terminal domain dynamics, tetramer dissociationÂand ssDNA binding kinetics. Nucleic Acids Research, 2022, 50, 7545-7559.	6.5	7
2582	Structures and gating mechanisms of human bestrophin anion channels. Nature Communications, 2022, 13, .	5.8	8
2583	Structures of the human CST-Polα–primase complex bound to telomere templates. Nature, 2022, 608, 826-832.	13.7	43
2584	Sequential rescue and repair of stalled and damaged ribosome by bacterial PrfH and RtcB. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
2585	Cryo-EM Structure of an Atypical Proton-Coupled Peptide Transporter: Di- and Tripeptide Permease C. Frontiers in Molecular Biosciences, 0, 9, .	1.6	6

#	Article	IF	CITATIONS
2587	Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Chemical Reviews, 2022, 122, 13989-14017.	23.0	17
2588	In vitro evolution predicts emerging SARS-CoV-2 mutations with high affinity for ACE2 and cross-species binding. PLoS Pathogens, 2022, 18, e1010733.	2.1	28
2589	Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators. Nature Communications, 2022, 13, .	5.8	28
2591	2.7 à cryo-EM structure of ex vivo RML prion fibrils. Nature Communications, 2022, 13, .	5.8	66
2592	Structural basis for inhibition and regulation of a chitin synthase from Candida albicans. Nature Structural and Molecular Biology, 2022, 29, 653-664.	3.6	34
2594	Mechanisms of helicase activated DNA end resection in bacteria. Structure, 2022, 30, 1298-1306.e3.	1.6	7
2596	Cryo-electron Tomography Remote Data Collection and Subtomogram Averaging. Journal of Visualized Experiments, 2022, , .	0.2	0
2597	Structure of the nutrient-sensing hub GATOR2. Nature, 2022, 607, 610-616.	13.7	32
2600	<scp>Cryoâ€EM</scp> reveals mechanisms of angiotensin l onverting enzyme allostery and dimerization. EMBO Journal, 2022, 41, .	3.5	4
2601	Structures of atypical chemokine receptor 3 reveal the basis for its promiscuity and signaling bias. Science Advances, 2022, 8, .	4.7	31
2602	Structurally derived universal mechanism for the catalytic cycle of the tail-anchored targeting factor Get3. Nature Structural and Molecular Biology, 2022, 29, 820-830.	3.6	7
2603	Structures of VWF tubules before and after concatemerization reveal a mechanism of disulfide bond exchange. Blood, 2022, 140, 1419-1430.	0.6	10
2604	Model building of protein complexes from intermediate-resolution cryo-EM maps with deep learning-guided automatic assembly. Nature Communications, 2022, 13, .	5.8	32
2605	Molecular architecture of <scp>40S</scp> translation initiation complexes on the hepatitis C virus <scp>IRES</scp> . EMBO Journal, 2022, 41, .	3.5	10
2607	Molecular basis for the regulation of human glycogen synthase by phosphorylation and glucose-6-phosphate. Nature Structural and Molecular Biology, 2022, 29, 628-638.	3.6	8
2608	Structural mechanisms of GABAA receptor autoimmune encephalitis. Cell, 2022, 185, 2469-2477.e13.	13.5	23
2610	Adeno-Associated Virus Receptor-Binding: Flexible Domains and Alternative Conformations through Cryo-Electron Tomography of Adeno-Associated Virus 2 (AAV2) and AAV5 Complexes. Journal of Virology, 2022, 96, .	1.5	7
2611	Structure of Tetrahymena telomerase-bound CST with polymerase α-primase. Nature, 2022, 608, 813-818.	13.7	29

#	Article	IF	CITATIONS
2612	Structure of Arabidopsis SOQ1 lumenal region unveils C-terminal domain essential for negative regulation of photoprotective qH. Nature Plants, 2022, 8, 840-855.	4.7	5
2613	A cryptic third active site in cyanophycin synthetase creates primers for polymerization. Nature Communications, 2022, 13, .	5.8	12
2614	Emerging Themes in CryoEM─Single Particle Analysis Image Processing. Chemical Reviews, 2022, 122, 13915-13951.	23.0	12
2615	Monomeric prefusion structure of an extremophile gamete fusogen and stepwise formation of the postfusion trimeric state. Nature Communications, 2022, 13, .	5.8	2
2616	Activation of the human chemokine receptor CX3CR1 regulated by cholesterol. Science Advances, 2022, 8, .	4.7	14
2618	Architecture of the human erythrocyte ankyrin-1 complex. Nature Structural and Molecular Biology, 2022, 29, 706-718.	3.6	33
2619	Structures of \hat{I}^21 -adrenergic receptor in complex with Gs and ligands of different efficacies. Nature Communications, 2022, 13, .	5.8	13
2620	Mechanisms and inhibition of Porcupine-mediated Wnt acylation. Nature, 2022, 607, 816-822.	13.7	31
2622	Shelterin is a dimeric complex with extensive structural heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
2623	Kinesin-8-specific loop-2 controls the dual activities of the motor domain according to tubulin protofilament shape. Nature Communications, 2022, 13, .	5.8	11
2624	The trispecific DARPin ensovibep inhibits diverse SARS-CoV-2 variants. Nature Biotechnology, 2022, 40, 1845-1854.	9.4	25
2625	A DNA origami rotary ratchet motor. Nature, 2022, 607, 492-498.	13.7	99
2629	Regulated degradation of HMG CoA reductase requires conformational changes in sterol-sensing domain. Nature Communications, 2022, 13, .	5.8	14
2630	Deciphering cellular and molecular determinants of human DPCD protein in complex with RUVBL1/RUVBL2 AAA-ATPases. Journal of Molecular Biology, 2022, 434, 167760.	2.0	3
2631	Modulating co-translational protein folding by rational design and ribosome engineering. Nature Communications, 2022, 13, .	5.8	12
2632	Structure of a backtracked hexasomal intermediate of nucleosome transcription. Molecular Cell, 2022, 82, 3126-3134.e7.	4.5	28
2633	Cryo-EM structures of wild-type and E138K/M184I mutant HIV-1 RT/DNA complexed with inhibitors doravirine and rilpivirine. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
2634	Catalytic cycling of human mitochondrial Lon protease. Structure, 2022, 30, 1254-1268.e7.	1.6	3

#	Article	IF	CITATIONS
2635	Staphylococcal self-loading helicases couple the staircase mechanism with inter domain high flexibility. Nucleic Acids Research, 2022, 50, 8349-8362.	6.5	4
2636	Structures of multisubunit membrane complexes with the CRYO ARM 200. Microscopy (Oxford,) Tj ETQq1 1 0.78	4314 rgBT 0.7	- Overlock
2637	Mechanism of threonine ADP-ribosylation of F-actin by a Tc toxin. Nature Communications, 2022, 13, .	5.8	12
2638	Structure and assembly of cargo Rubisco in two native α-carboxysomes. Nature Communications, 2022, 13, .	5.8	26
2639	Communication network within the essential AAA-ATPase Rix7 drives ribosome assembly. , 0, , .		0
2640	Towards sub-millisecond cryo-EM grid preparation. Faraday Discussions, 0, , .	1.6	3
2642	Molecular interplay of an assembly machinery for nitrous oxide reductase. Nature, 2022, 608, 626-631.	13.7	14
2645	Primordial Capsid and Spooled ssDNA Genome Structures Unravel Ancestral Events of Eukaryotic Viruses. MBio, 2022, 13, .	1.8	4
2646	The protein organization of a red blood cell. Cell Reports, 2022, 40, 111103.	2.9	20
2649	Cryo-EM structure of an active bacterial TIR–STING filament complex. Nature, 2022, 608, 803-807.	13.7	51
2650	Structural basis for tunable control of actin dynamics by myosin-15 in mechanosensory stereocilia. Science Advances, 2022, 8, .	4.7	25
2651	Structure of the metastatic factor P-Rex1 reveals a two-layered autoinhibitory mechanism. Nature Structural and Molecular Biology, 2022, 29, 767-773.	3.6	4
2652	Cryo-EM structures of human fucosidase FucA1 reveal insight into substrate recognition and catalysis. Structure, 2022, 30, 1443-1451.e5.	1.6	6
2654	An antibody from single human V _H -rearranging mouse neutralizes all SARS-CoV-2 variants through BA.5 by inhibiting membrane fusion. Science Immunology, 2022, 7, .	5.6	34
2655	Structure and engineering of the minimal type VI CRISPR-Cas13bt3. Molecular Cell, 2022, 82, 3178-3192.e5.	4.5	12
2657	Mechanistic insights into intramembrane proteolysis by <i>E. coli</i> site-2 protease homolog RseP. Science Advances, 2022, 8, .	4.7	11
2658	Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape. Nature Communications, 2022, 13, .	5.8	66
2659	Conformational flexibility in neutralization of SARS-CoV-2 by naturally elicited anti-SARS-CoV-2 antibodies. Communications Biology, 2022, 5, .	2.0	5

#	Article	IF	CITATIONS
2662	Visualization of conformational changes and membrane remodeling leading to genome delivery by viral class-II fusion machinery. Nature Communications, 2022, 13, .	5.8	14
2664	Interactions between mTORC2 core subunits Rictor and mSin1 dictate selective and context-dependent phosphorylation of substrate kinases SGK1 and Akt. Journal of Biological Chemistry, 2022, 298, 102288.	1.6	12
2665	Nonlytic cellular release of hepatitis A virus requires dual capsid recruitment of the ESCRT-associated Bro1 domain proteins HD-PTP and ALIX. PLoS Pathogens, 2022, 18, e1010543.	2.1	8
2666	Structural and dynamic mechanisms of GABAA receptor modulators with opposing activities. Nature Communications, 2022, 13, .	5.8	31
2669	A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike. Nature Communications, 2022, 13, .	5.8	34
2670	Reversible structural changes in the influenza hemagglutinin precursor at membrane fusion pH. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
2672	Mechanism of client selection by the protein quality-control factor UBE2O. Nature Structural and Molecular Biology, 2022, 29, 774-780.	3.6	2
2675	Mass-selective and ice-free electron cryomicroscopy protein sample preparation via native electrospray ion-beam deposition. , 2022, 1, .		27
2676	Molecular Basis of Mink ACE2 Binding to SARS-CoV-2 and Its Mink-Derived Variants. Journal of Virology, 2022, 96, .	1.5	13
2677	Autologous K63 deubiquitylation within the BRCA1-A complex licenses DNA damage recognition. Journal of Cell Biology, 2022, 221, .	2.3	3
2678	A multidomain connector links the outer membrane and cell wall in phylogenetically deep-branching bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
2679	Structure of CRL7FBXW8 reveals coupling with CUL1–RBX1/ROC1 for multi-cullin-RING E3-catalyzed ubiquitin ligation. Nature Structural and Molecular Biology, 2022, 29, 854-862.	3.6	3
2680	Cryo-EM structures of two human B cell receptor isotypes. Science, 2022, 377, 880-885.	6.0	33
2682	Prion strains viewed through the lens of cryo-EM. Cell and Tissue Research, 2023, 392, 167-178.	1.5	14
2683	Aminomethanesulfonic acid illuminates the boundary between full and partial agonists of the pentameric glycine receptor. ELife, 0, 11, .	2.8	3
2684	Cryo-EM structures of the channelrhodopsin ChRmine in lipid nanodiscs. Nature Communications, 2022, 13, .	5.8	16
2686	Structure of SARS-CoV-2 membrane protein essential for virus assembly. Nature Communications, 2022, 13, .	5.8	70
2687	Endogenous ligand recognition and structural transition of a human PTH receptor. Molecular Cell, 2022, 82, 3468-3483.e5.	4.5	28

#	Article	IF	CITATIONS	
2689	Structures of L-BC virus and its open particle provide insight into Totivirus capsid assembly. Communications Biology, 2022, 5, .	2.0	2	
2691	Structural insight on the mechanism of an electron-bifurcating [FeFe] hydrogenase. ELife, 0, 11, .	2.8	16	
2692	Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature, 2022, 609, 611-615.	13.7	36	
2693	Structural insights into inhibitory mechanism of human excitatory amino acid transporter EAAT2. Nature Communications, 2022, 13, .	5.8	13	
2694	Mechanistic details of CRISPR-associated transposon recruitment and integration revealed by cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	20	
2695	Structure of Mycobacterium tuberculosis Cya, an evolutionary ancestor of the mammalian membrane adenylyl cyclases. ELife, 0, 11, .	2.8	5	
2698	Structure of Human Enterovirus 70 and Its Inhibition by Capsid-Binding Compounds. Journal of Virology, 2022, 96, .	1.5	1	
2699	Microtubule lattice spacing governs cohesive envelope formation of tau family proteins. Nature Chemical Biology, 2022, 18, 1224-1235.	3.9	29	
2701	Structures of the ADGRG2–Gs complex in apo and ligand-bound forms. Nature Chemical Biology, 2022, 18, 1196-1203.	3.9	14	
2702	Visualizing Conformational Space of Functional Biomolecular Complexes by Deep Manifold Learning. International Journal of Molecular Sciences, 2022, 23, 8872.	1.8	7	
2704	Ligand-mediated Structural Dynamics of a Mammalian Pancreatic KATP Channel. Journal of Molecular Biology, 2022, 434, 167789.	2.0	8	
2706	Selective TnsC recruitment enhances the fidelity of RNA-guided transposition. Nature, 2022, 609, 384-393.	13.7	34	
2707	Cryo-EM structure of human hexameric MCM2-7 complex. IScience, 2022, 25, 104976.	1.9	3	
2708	Untwisted α-Synuclein Filaments Formed in the Presence of Lipid Vesicles. Biochemistry, 2022, 61, 1766-1773.	1.2	2	
2709	Structural basis for cannabinoid-induced potentiation of alpha1-glycine receptors in lipid nanodiscs. Nature Communications, 2022, 13, .	5.8	3	
2710	Regulation of multiple dimeric states of E-cadherin by adhesion activating antibodies revealed through Cryo-EM and X-ray crystallography. , 2022, 1, .		7	
2712	Structural Study of SARS-CoV-2 Antibodies Identifies a Broad-Spectrum Antibody That Neutralizes the Omicron Variant by Disassembling the Spike Trimer. Journal of Virology, 2022, 96, .	1.5	17	
2713	Core fucoseâ€specific <i>Pholiota squarrosa</i> lectin (<scp>PhoSL</scp>) as a potent broadâ€spectrum inhibitor of <scp>SARS oV</scp> â€2 infection. FEBS Journal, 2023, 290, 412-427.	2.2	4	
		CITATION R	EPORT	
------	--	-----------------------	-------	-----------
#	Article		IF	CITATIONS
2714	Terminase Subunits from the Pseudomonas-Phage E217. Journal of Molecular Biology, 20.	22, 434, 167799.	2.0	7
2716	It started with a Cys: Spontaneous cysteine modification during cryo-EM grid preparation. Molecular Biosciences, 0, 9, .	. Frontiers in	1.6	5
2718	Cryo-EMÂstructure of the Smc5/6 holo-complex. Nucleic Acids Research, 2022, 50, 9505-	9520.	6.5	14
2719	A naturally arising broad and potent CD4-binding site antibody with low somatic mutation Advances, 2022, 8, .	n. Science	4.7	11
2720	Identification of IOMA-class neutralizing antibodies targeting the CD4-binding site on the envelope glycoprotein. Nature Communications, 2022, 13, .	HIV-1	5.8	5
2721	An antibody that neutralizes SARS-CoV-1 and SARS-CoV-2 by binding to a conserved spike the receptor binding motif. Science Immunology, 2022, 7, .	e epitope outside	5.6	23
2723	Mechanism of AAA+ ATPase-mediated RuvAB–Holliday junction branch migration. Natu 630-639.	re, 2022, 609,	13.7	17
2724	Structural basis of receptor usage by the engineered capsid AAV-PHP.eB. Molecular Thera and Clinical Development, 2022, 26, 343-354.	py - Methods	1.8	9
2725	StarMap: a user-friendly workflow for Rosetta-driven molecular structure refinement. Natu Protocols, 2023, 18, 239-264.	ıre	5.5	12
2726	Bacterial divisome protein FtsA forms curved antiparallel double filaments when binding t Nature Microbiology, 2022, 7, 1686-1701.	o FtsN.	5.9	14
2728	Structural basis of a two-antibody cocktail exhibiting highly potent and broadly neutralizin activities against SARS-CoV-2 variants including diverse Omicron sublineages. Cell Discov	ופ ery, 2022, 8, .	3.1	13
2730	Molecular basis for the recognition of the AUUAAA polyadenylation signal by mPSF. Rna, 2 1534-1541.	2022, 28,	1.6	2
2731	Structural mechanism for bidirectional actin cross-linking by T-plastin. Proceedings of the Academy of Sciences of the United States of America, 2022, 119, .	National	3.3	12
2732	Structure of the active Gi-coupled human lysophosphatidic acid receptor 1 complexed wit agonist. Nature Communications, 2022, 13, .	h a potent	5.8	18
2734	Neuronal RNA granules are ribosome complexes stalled at the pre-translocation state. Jou Molecular Biology, 2022, 434, 167801.	rnal of	2.0	7
2735	Multi-curve fitting and tubulin-lattice signal removal for structure determination of large microtubule-based motors. Journal of Structural Biology, 2022, 214, 107897.		1.3	5
2736	Cryo-EM Analysis of the Lipopolysaccharide Flippase MsbA. Methods in Molecular Biology 233-247.	, 2022, ,	0.4	0
2737	Cryo-EM samples of gas-phase purified protein assemblies using native electrospray ion-b deposition. Faraday Discussions, 0, 240, 67-80.	eam	1.6	12

#	Article	IF	CITATIONS
2738	Cryomicroscopy <i>in situ</i> : what is the smallest molecule that can be directly identified without labels in a cell?. Faraday Discussions, 0, , .	1.6	11
2739	Structural bases for aspartate recognition and polymerization efficiency of cyanobacterial cyanophycin synthetase. Nature Communications, 2022, 13, .	5.8	6
2740	Structural basis for shape-selective recognition and aminoacylation of a D-armless human mitochondrial tRNA. Nature Communications, 2022, 13, .	5.8	10
2745	Structural basis for activation of Arf1 at the Golgi complex. Cell Reports, 2022, 40, 111282.	2.9	12
2746	Structural and mechanistic basis for recognition of alternative tRNA precursor substrates by bacterial ribonuclease P. Nature Communications, 2022, 13, .	5.8	6
2748	Molecular architecture of the C. elegans centriole. PLoS Biology, 2022, 20, e3001784.	2.6	12
2749	Structure of cyanobacterial photosystem I complexed with ferredoxin at 1.97 à resolution. Communications Biology, 2022, 5, .	2.0	8
2750	Structure of the membrane-bound formate hydrogenlyase complex from Escherichia coli. Nature Communications, 2022, 13, .	5.8	16
2751	Molecular architecture of the autoinhibited kinesin-1 lambda particle. Science Advances, 2022, 8, .	4.7	13
2752	The augmin complex architecture reveals structural insights into microtubule branching. Nature Communications, 2022, 13, .	5.8	6
2753	Local Flexibility of a New Single-Ring Chaperonin Encoded by Bacteriophage AR9 Bacillus subtilis. Biomedicines, 2022, 10, 2347.	1.4	0
2754	Tail proteins of phage SU10 reorganize into the nozzle for genome delivery. Nature Communications, 2022, 13, .	5.8	10
2758	Cryo–electron microscopy unveils unique structural features of the human Kir2.1 channel. Science Advances, 2022, 8, .	4.7	11
2762	Membrane-bound mRNA immunogens lower the threshold to activate HIV Env V2 apex-directed broadly neutralizing B cell precursors in humanized mice. Immunity, 2022, 55, 2168-2186.e6.	6.6	15
2763	Structural insights into the G protein selectivity revealed by the human EP3-Gi signaling complex. Cell Reports, 2022, 40, 111323.	2.9	4
2764	Cryoelectron microscopy structures of a human neutralizing antibody bound to MERS-CoV spike glycoprotein. Frontiers in Microbiology, 0, 13, .	1.5	1
2765	Columnar structure of human telomeric chromatin. Nature, 2022, 609, 1048-1055.	13.7	27
2766	Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity. Nature, 2022, 610, 582-591.	13.7	99

#	Article	IF	Citations
2767	Methotrexate recognition by the human reduced folate carrier SLC19A1. Nature, 2022, 609, 1056-1062.	13.7	21
2768	The hemolysin A secretion system is a multi-engine pump containing three ABC transporters. Cell, 2022, 185, 3329-3340.e13.	13.5	5
2770	Structural insights into human CCAN complex assembled onto DNA. Cell Discovery, 2022, 8, .	3.1	14
2771	Structural basis for recognition of N-formyl peptides as pathogen-associated molecular patterns. Nature Communications, 2022, 13, .	5.8	18
2776	Long-primed germinal centres with enduring affinity maturation and clonal migration. Nature, 2022, 609, 998-1004.	13.7	62
2778	Human immunoglobulin repertoire analysis guides design of vaccine priming immunogens targeting HIV V2-apex broadly neutralizing antibody precursors. Immunity, 2022, 55, 2149-2167.e9.	6.6	21
2779	Mechanism by which T7 bacteriophage protein Gp1.2 inhibits <i>Escherichia coli</i> dGTPase. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
2780	Stabilized HIV-1 envelope immunization induces neutralizing antibodies to the CD4bs and protects macaques against mucosal infection. Science Translational Medicine, 2022, 14, .	5.8	15
2781	InÂvitro characterization of the full-length human dynein-1 cargo adaptor BicD2. Structure, 2022, 30, 1470-1478.e3.	1.6	3
2782	Structures of \hat{I}_{\pm} -synuclein filaments from human brains with Lewy pathology. Nature, 2022, 610, 791-795.	13.7	124
2785	Structural basis of adhesion GPCR GPR110 activation by stalk peptide and G-proteins coupling. Nature Communications, 2022, 13, .	5.8	12
2788	The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans. Life Science Alliance, 2022, 5, e202201568.	1.3	4
2790	Structure and function of H+/K+ pump mutants reveal Na+/K+ pump mechanisms. Nature Communications, 2022, 13, .	5.8	8
2793	Architecture of the yeast Pol III pre-termination complex and pausing mechanism on poly(dT) termination signals. Cell Reports, 2022, 40, 111316.	2.9	11
2795	Single-particle cryo-EM structures from iDPC–STEM at near-atomic resolution. Nature Methods, 2022, 19, 1126-1136.	9.0	26
2796	SARS-CoV-2 Production, Purification Methods and UV Inactivation for Proteomics and Structural Studies. Viruses, 2022, 14, 1989.	1.5	6
2797	The DNA-damage kinase ATR activates the FANCD2-FANCI clamp by priming it for ubiquitination. Nature Structural and Molecular Biology, 2022, 29, 881-890.	3.6	10
2798	Structural basis of AcrIF24 as an anti-CRISPR protein and transcriptional suppressor. Nature Chemical Biology, 2022, 18, 1417-1424.	3.9	6

#	Article	IF	CITATIONS
2799	Structure of dynein–dynactin on microtubules shows tandem adaptor binding. Nature, 2022, 610, 212-216.	13.7	37
2801	High-Resolution Cryo-Electron Microscopy Reveals the Unique Striated Hollow Structure of Photocatalytic Macrocyclic Polydiacetylene Nanotubes. Journal of the American Chemical Society, 2022, 144, 17889-17896.	6.6	6
2802	Comprehensive phylogenetic analysis of the ribonucleotide reductase family reveals an ancestral clade. ELife, 0, 11, .	2.8	9
2803	Structure of the Ebola virus polymerase complex. Nature, 2022, 610, 394-401.	13.7	22
2804	Sensing of individual stalled 80S ribosomes by Fap1 for nonfunctional rRNA turnover. Molecular Cell, 2022, 82, 3424-3437.e8.	4.5	15
2805	Mechanism of protein-primed template-independent DNA synthesis by Abi polymerases. Nucleic Acids Research, 2022, 50, 10026-10040.	6.5	3
2806	Structure of the malaria vaccine candidate Pfs48/45 and its recognition by transmission blocking antibodies. Nature Communications, 2022, 13, .	5.8	8
2807	Cryo-electron microscopy and image classification reveal the existence and structure of the coxsackievirus A6 virion. Communications Biology, 2022, 5, .	2.0	3
2808	Structural basis for p53 binding to its nucleosomal target DNA sequence. , 2022, 1, .		6
2809	Activation of the insulin receptor by an insulin mimetic peptide. Nature Communications, 2022, 13, .	5.8	14
2810	Molecular architecture of the augmin complex. Nature Communications, 2022, 13, .	5.8	9
2813	In situ structural analysis reveals membrane shape transitions during autophagosome formation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	43
2815	Cryo-EM Structure and Functional Studies of EBNA1 Binding to the Family of Repeats and Dyad Symmetry Elements of Epstein-Barr Virus <i>oriP</i> . Journal of Virology, 2022, 96, .	1.5	4
2816	Structural basis of microRNA biogenesis by Dicer-1 and its partner protein Loqs-PB. Molecular Cell, 2022, 82, 4049-4063.e6.	4.5	23
2817	Inositol hexakisphosphate is required for Integrator function. Nature Communications, 2022, 13, .	5.8	12
2818	Improved mammalian retromer cryo-EM structures reveal a new assembly interface. Journal of Biological Chemistry, 2022, 298, 102523.	1.6	2
2819	Structural basis for gating mechanism of the human sodium-potassium pump. Nature Communications, 2022, 13, .	5.8	9
2820	Geometric effects in gas vesicle buckling under ultrasound. Biophysical Journal, 2022, 121, 4221-4228.	0.2	4

#	Article	IF	CITATIONS
2821	Neural representations of cryo-EM maps and a graph-based interpretation. BMC Bioinformatics, 2022, 23, .	1.2	4
2822	Structure and mechanism of human cystine exporter cystinosin. Cell, 2022, 185, 3739-3752.e18.	13.5	13
2823	Structural basis for the activity regulation of a potassium channel AKT1 from Arabidopsis. Nature Communications, 2022, 13, .	5.8	13
2824	Activation of the human insulin receptor by non-insulin-related peptides. Nature Communications, 2022, 13, .	5.8	8
2825	SARS-CoV-2 Delta and Omicron variants evade population antibody response by mutations in a single spike epitope. Nature Microbiology, 2022, 7, 1635-1649.	5.9	25
2827	Visualizing translation dynamics at atomic detail inside a bacterial cell. Nature, 2022, 610, 205-211.	13.7	61
2828	Molecular insights into antibody-mediated protection against the prototypic simian immunodeficiency virus. Nature Communications, 2022, 13, .	5.8	3
2829	A universal coupling mechanism of respiratory complex I. Nature, 2022, 609, 808-814.	13.7	36
2831	The lysosomal transporter TAPL has a dual role as peptide translocator and phosphatidylserine floppase. Nature Communications, 2022, 13, .	5.8	5
2833	Anti-CRISPR protein AcrIF4 inhibits the type I-F CRISPR-Cas surveillance complex by blocking nuclease recruitment and DNA cleavage. Journal of Biological Chemistry, 2022, 298, 102575.	1.6	4
2835	Biochemical Characterization of the TINTIN Module of the NuA4 Complex Reveals Allosteric Regulation of Nucleosome Interaction. Molecular and Cellular Biology, 2022, 42, .	1.1	2
2836	Cryo-EM structure-based selection of computed ligand poses enables design of MTA-synergic PRMT5 inhibitors of better potency. Communications Biology, 2022, 5, .	2.0	2
2838	Biparatopic nanobodies targeting the receptor binding domain efficiently neutralize SARS-CoV-2. IScience, 2022, 25, 105259.	1.9	4
2839	Combating the SARS-CoV-2 Omicron (BA.1) and BA.2 with potent bispecific antibodies engineered from non-Omicron neutralizing antibodies. Cell Discovery, 2022, 8, .	3.1	10
2840	Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75. Cell Host and Microbe, 2022, 30, 1527-1539.e5.	5.1	109
2841	SPACA9 is a lumenal protein of human ciliary singlet and doublet microtubules. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
2842	Cryo-electron structures of the extreme thermostable enzymes Sulfur Oxygenase Reductase and Lumazine Synthase. PLoS ONE, 2022, 17, e0275487.	1.1	2
2845	Isolation and structure of the fibril protein, a major component of the internal ribbon for Spiroplasma swimming. Frontiers in Microbiology, 0, 13, .	1.5	8

#	Article	IF	CITATIONS
2848	A step-by-step protocol for capturing conformational snapshots of ligand gated ion channels by single-particle cryo-EM. STAR Protocols, 2022, 3, 101732.	0.5	1
2850	Staphylococcus aureus 30S Ribosomal Subunit Purification and Its Biochemical and Cryo-EM Analysis. Bio-protocol, 2022, 12, .	0.2	1
2851	CryoAl: Amortized Inference ofÂPoses forÂAb Initio Reconstruction ofÂ3D Molecular Volumes fromÂReal Cryo-EM Images. Lecture Notes in Computer Science, 2022, , 540-557.	1.0	8
2852	A brief review on the molecular biology of human adenoviruses. Baghdad Journal of Biochemistry and Applied Biological Sciences, 2022, 3, 166-182.	0.4	0
2853	Production and Characterisation of Stabilised PV-3 Virus-like Particles Using Pichia pastoris. Viruses, 2022, 14, 2159.	1.5	2
2856	ATP-dependent polymerization dynamics of bacterial actin proteins involved in <i>Spiroplasma</i> swimming. Open Biology, 2022, 12, .	1.5	10
2857	Transient Prenyltransferase–Cyclase Association in Fusicoccadiene Synthase, an Assembly-Line Terpene Synthase. Biochemistry, 2022, 61, 2417-2430.	1.2	4
2858	Cryo-EM structures of LolCDE reveal the molecular mechanism of bacterial lipoprotein sorting in Escherichia coli. PLoS Biology, 2022, 20, e3001823.	2.6	10
2859	Structural insights into RNA-mediated transcription regulation in bacteria. Molecular Cell, 2022, 82, 3885-3900.e10.	4.5	8
2860	Insights into the role of Nup62 and Nup93 in assembling cytoplasmic ring and central transport channel of the nuclear pore complex. Molecular Biology of the Cell, 0, , .	0.9	1
2861	Structure of the human heterodimeric transporter 4F2hc-LAT2 in complex with Anticalin, an alternative binding protein for applications in single-particle cryo-EM. Scientific Reports, 2022, 12, .	1.6	3
2862	Cryo-EM structure of an ATTRwt amyloid fibril from systemic non-hereditary transthyretin amyloidosis. Nature Communications, 2022, 13, .	5.8	14
2863	Bending forces and nucleotide state jointly regulate F-actin structure. Nature, 2022, 611, 380-386.	13.7	49
2864	The role of bivalent ions in the regulation of D-loop extension mediated by DMC1 during meiotic recombination. IScience, 2022, 25, 105439.	1.9	2
2866	Structure and function of a bacterial type III-E CRISPR–Cas7-11 complex. Nature Microbiology, 2022, 7, 2078-2088.	5.9	14
2867	Structural insight into Tn3 family transposition mechanism. Nature Communications, 2022, 13, .	5.8	4
2868	Dynamic HIV-1 spike motion creates vulnerability for its membrane-bound tripod to antibody attack. Nature Communications, 2022, 13, .	5.8	6
2869	Inhibited KdpFABC transitions into an E1 off-cycle state. ELife, 0, 11, .	2.8	5

#	Article	IF	CITATIONS
2870	HIV-1 CD4-binding site germline antibody–En∨ structures inform vaccine design. Nature Communications, 2022, 13, .	5.8	5
2871	Helical ultrastructure of the metalloprotease meprin $\hat{I}\pm$ in complex with a small molecule inhibitor. Nature Communications, 2022, 13, .	5.8	5
2872	Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex. Nature Plants, 2022, 8, 1191-1201.	4.7	14
2873	Geometrically programmed self-limited assembly of tubules using DNA origami colloids. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
2875	Progress in special resolution of structural analysis by cryo-EM. Microscopy (Oxford, England), 0, , .	0.7	1
2876	Cryo-EM structures of thermostabilized prestin provide mechanistic insights underlying outer hair cell electromotility. Nature Communications, 2022, 13, .	5.8	14
2877	Target RNA activates the protease activity of Craspase to confer antiviral defense. Molecular Cell, 2022, 82, 4503-4518.e8.	4.5	12
2878	Structural and functional analyses of a GPCR-inhibited ion channel TRPM3. Neuron, 2023, 111, 81-91.e7.	3.8	18
2879	A distinct mammalian disome collision interface harbors K63-linked polyubiquitination of uS10 to trigger hRQT-mediated subunit dissociation. Nature Communications, 2022, 13, .	5.8	24
2880	High-resolution cryo-EM performance comparison of two latest-generation cryo electron microscopes on the human ribosome. Journal of Structural Biology, 2023, 215, 107905.	1.3	14
2881	Structure and flexibility of the yeast NuA4 histone acetyltransferase complex. ELife, 0, 11, .	2.8	6
2882	Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. Science, 2022, 378, 619-627.	6.0	117
2883	A Dynamic rRNA Ribomethylome Drives Stemness in Acute Myeloid Leukemia. Cancer Discovery, 2023, 13, 332-347.	7.7	16
2884	Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP ₂ . Science, 2022, 378, .	6.0	22
2886	Structural insights into adhesion GPCR ADGRL3 activation and Gq, Gs, Gi, and G12 coupling. Molecular Cell, 2022, 82, 4340-4352.e6.	4.5	18
2887	Cryo-EM structures of light-harvesting 2 complexes from <i>Rhodopseudomonas palustris</i> reveal the molecular origin of absorption tuning. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
2888	Structural basis for HflXr-mediated antibiotic resistance in <i>Listeria monocytogenes</i> . Nucleic Acids Research, 2022, 50, 11285-11300.	6.5	9
2889	Structural basis of TRPV3 inhibition by an antagonist. Nature Chemical Biology, 2023, 19, 81-90.	3.9	11

	CHATO	REPORT	
#	Article	IF	CITATIONS
2890	Structural Consequences of Deproteinating the 50S Ribosome. Biomolecules, 2022, 12, 1605.	1.8	0
2891	Unravelling the regulation pathway of photosynthetic AB-GAPDH. Acta Crystallographica Section D: Structural Biology, 2022, 78, 1399-1411.	1.1	2
2892	The ABC transporter MsbA adopts the wide inward-open conformation in <i>E. coli</i> cells. Science Advances, 2022, 8, .	4.7	27
2893	Cryoâ€EM structure of the octameric pore of <i>Clostridium perfringens</i> βâ€ŧoxin. EMBO Reports, 2022, 23, .	2.0	3
2894	<i>In vitro</i> structural maturation of an early stage pre-40S particle coupled with U3 snoRNA release and central pseudoknot formation. Nucleic Acids Research, 2022, 50, 11916-11923.	6.5	5
2895	Catching actin proteins in action. Nature, 2022, 611, 241-243.	13.7	2
2896	lon transfer mechanisms in Mrp-type antiporters from high resolution cryoEM and molecular dynamics simulations. Nature Communications, 2022, 13, .	5.8	6
2897	Cryo-EM Structure of Gokushovirus ΦEC6098 Reveals a Novel Capsid Architecture for a Single-Scaffolding Protein, Microvirus Assembly System. Journal of Virology, 2022, 96, .	1.5	1
2898	Structure and functionality of a multimeric human COQ7:COQ9 complex. Molecular Cell, 2022, 82, 4307-4323.e10.	4.5	21
2899	Gossypol Broadly Inhibits Coronaviruses by Targeting RNAâ€Dependent RNA Polymerases. Advanced Science, 2022, 9, .	5.6	14
2900	CryoEM structural exploration of catalytically active enzyme pyruvate carboxylase. Nature Communications, 2022, 13, .	5.8	7
2901	Cryomicroscopy reveals the structural basis for a flexible hinge motion in the immunoglobulin M pentamer. Nature Communications, 2022, 13, .	5.8	17
2902	Structural mechanism of SGLT1 inhibitors. Nature Communications, 2022, 13, .	5.8	11
2903	Structure and mechanism of the type I-G CRISPR effector. Nucleic Acids Research, 2022, 50, 11214-11228.	6.5	11
2904	The His-tag as a decoy modulating preferred orientation in cryoEM. Frontiers in Molecular Biosciences, 0, 9, .	1.6	2
2907	Mechanism of 4-aminopyridine inhibition of the lysosomal channel TMEM175. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
2908	Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum. Nature Communications, 2022, 13, .	5.8	10
2909	Cryo-EM structures of the translocational binary toxin complex CDTa-bound CDTb-pore from Clostridioides difficile. Nature Communications, 2022, 13, .	5.8	4

#	Article	IF	Citations
2910	Recognition of cyclic dinucleotides and folates by human SLC19A1. Nature, 2022, 612, 170-176.	13.7	19
2911	Self-assembly and structure of a clathrin-independent AP-1:Arf1 tubular membrane coat. Science Advances, 2022, 8, .	4.7	4
2912	The Vaccinia Virus DNA Helicase Structure from Combined Single-Particle Cryo-Electron Microscopy and AlphaFold2 Prediction. Viruses, 2022, 14, 2206.	1.5	7
2913	AAA+ protease-adaptor structures reveal altered conformations and ring specialization. Nature Structural and Molecular Biology, 2022, 29, 1068-1079.	3.6	6
2916	The RIG-I receptor adopts two different conformations for distinguishing host from viral RNA ligands. Molecular Cell, 2022, 82, 4131-4144.e6.	4.5	12
2918	The nucleoplasmic phase of pre-40S formation prior to nuclear export. Nucleic Acids Research, 2022, 50, 11924-11937.	6.5	10
2920	Broad-Spectrum Virus Trapping with Heparan Sulfate-Modified DNA Origami Shells. ACS Nano, 2022, 16, 20002-20009.	7.3	11
2921	Cryo–electron microscopy structure of the H3-H4 octasome: A nucleosome-like particle without histones H2A and H2B. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
2922	Assembly and purification of AvrSr35-induced Sr35 resistosome and determination of its structure by cryo-EM. STAR Protocols, 2022, 3, 101796.	0.5	0
2923	Structural insights into blue-green light utilization by marine green algal light harvesting complex II at 2.78 Ã BBA Advances, 2022, 2, 100064.	0.7	4
2925	High-resolution structural analysis of enterovirus-reactive polyclonal antibodies in complex with whole virions. , 2022, 1, .		6
2928	Head-to-tail polymerization by VEL proteins underpins cold-induced Polycomb silencing in flowering control. Cell Reports, 2022, 41, 111607.	2.9	10
2929	SARS-CoV-2 spike conformation determines plasma neutralizing activity elicited by a wide panel of human vaccines. Science Immunology, 2022, 7, .	5.6	42
2930	Mechanochemical tuning of a kinesin motor essential for malaria parasite transmission. Nature Communications, 2022, 13, .	5.8	3
2931	An LH1–RC photocomplex from an extremophilic phototroph provides insight into origins of two photosynthesis proteins. Communications Biology, 2022, 5, .	2.0	12
2932	Antigenic mapping reveals sites of vulnerability on α-HCoV spike protein. Communications Biology, 2022, 5, .	2.0	2
2936	Structural dynamics of AAA + ATPase Drg1 and mechanism of benzo-diazaborine inhibition. Nature Communications, 2022, 13, .	5.8	3
2937	Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell, 2022, 185, 4361-4375.e19.	13.5	71

# 2938	ARTICLE Structure of the GOLD-domain seven-transmembrane helix protein family member TMEM87A. ELife, 0, 11,	lF 2.8	Citations 8
2939	Anionic lipids unlock the gates of select ion channels in the pacemaker family. Nature Structural and Molecular Biology, 2022, 29, 1092-1100.	3.6	15
2941	Structure of the RhlR-PqsE complex from Pseudomonas aeruginosa reveals mechanistic insights into quorum-sensing gene regulation. Structure, 2022, 30, 1626-1636.e4.	1.6	7
2942	Open-channel structure of a pentameric ligand-gated ion channel reveals a mechanism of leaflet-specific phospholipid modulation. Nature Communications, 2022, 13, .	5.8	14
2944	Understanding VPAC receptor family peptide binding and selectivity. Nature Communications, 2022, 13, .	5.8	2
2945	Voltage-sensor movements in the Eag Kv channel under an applied electric field. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
2946	Uncovering structural ensembles from single-particle cryo-EM data using cryoDRGN. Nature Protocols, 0, , .	5.5	12
2947	ATG9A and ATG2A form a heteromeric complex essential for autophagosome formation. Molecular Cell, 2022, 82, 4324-4339.e8.	4.5	50
2949	Potent SARS-CoV-2 neutralizing antibodies with therapeutic effects in two animal models. IScience, 2022, 25, 105596.	1.9	8
2950	Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores. Nature Communications, 2022, 13, .	5.8	13
2951	Electron cryotomography of SARS-CoV-2 virions reveals cylinder-shaped particles with a double layer RNP assembly. Communications Biology, 2022, 5, .	2.0	8
2952	Lassa virus glycoprotein nanoparticles elicit neutralizing antibody responses and protection. Cell Host and Microbe, 2022, 30, 1759-1772.e12.	5.1	20
2953	Structural basis for the inactivation of cytosolic DNA sensing by the vaccinia virus. Nature Communications, 2022, 13, .	5.8	6
2954	Structural and dynamic basis of DNA capture and translocation by mitochondrial Twinkle helicase. Nucleic Acids Research, 2022, 50, 11965-11978.	6.5	4
2955	Structure determination of inactive-state GPCRs with a universal nanobody. Nature Structural and Molecular Biology, 2022, 29, 1188-1195.	3.6	41
2956	Complementary antibody lineages achieve neutralization breadth in an HIV-1 infected elite neutralizer. PLoS Pathogens, 2022, 18, e1010945.	2.1	0
2960	Unsupervised Cryo-EM Images Denoising and Clustering Based on Deep Convolutional Autoencoder and K-Means++. IEEE Transactions on Medical Imaging, 2023, 42, 1509-1521.	5.4	2
2961	Analysis of the conformational heterogeneity of the Rieske iron–sulfur protein in complex III ₂ by cryo-EM. IUCrJ, 2023, 10, 27-37.	1.0	2

#	Article	IF	CITATIONS
2962	Characterizing the resolution and throughput of the Apollo direct electron detector. Journal of Structural Biology: X, 2023, 7, 100080.	0.7	2
2963	Human antibody BD-218 has broad neutralizing activity against concerning variants of SARS-CoV-2. International Journal of Biological Macromolecules, 2023, 227, 896-902.	3.6	2
2964	Cryo-EM structure of a eukaryotic zinc transporter at a low pH suggests its Zn2+-releasing mechanism. Journal of Structural Biology, 2023, 215, 107926.	1.3	7
2965	Two Distinct Modes of DNA Binding by an MCM Helicase Enable DNA Translocation. International Journal of Molecular Sciences, 2022, 23, 14678.	1.8	1
2966	Structures of transcription preinitiation complex engaged with the +1 nucleosome. Nature Structural and Molecular Biology, 2023, 30, 226-232.	3.6	19
2967	Cryo-EM structures of the active NLRP3 inflammasome disc. Nature, 2023, 613, 595-600.	13.7	64
2968	Structures and comparison of endogenous 2-oxoglutarate and pyruvate dehydrogenase complexes from bovine kidney. Cell Discovery, 2022, 8, .	3.1	10
2969	Switching of Receptor Binding Poses between Closely Related Enteroviruses. Viruses, 2022, 14, 2625.	1.5	1
2971	Structure of human phagocyte NADPH oxidase in the resting state. ELife, 0, 11, .	2.8	18
2973	Cell-Free Protein Synthesis of Particulate Methane Monooxygenase into Nanodiscs. ACS Synthetic Biology, 2022, 11, 4009-4017.	1.9	6
2974	Structures of the holo CRISPR RNA-guided transposon integration complex. Nature, 2023, 613, 775-782.	13.7	24
2975	Fine-mapping the immunodominant antibody epitopes on consensus sequence-based HIV-1 envelope trimer vaccine candidates. Npj Vaccines, 2022, 7, .	2.9	4
2977	A conserved glutathione binding site in poliovirus is a target for antivirals and vaccine stabilisation. Communications Biology, 2022, 5, .	2.0	3
2978	Insights into distinct signaling profiles of the ÂμOR activated by diverse agonists. Nature Chemical Biology, 2023, 19, 423-430.	3.9	39
2979	Structural basis for NaV1.7 inhibition by pore blockers. Nature Structural and Molecular Biology, 2022, 29, 1208-1216.	3.6	14
2980	Structural basis of tankyrase activation by polymerization. Nature, 2022, 612, 162-169.	13.7	9
2982	Integrating model simulation tools and <scp>cryoâ€electron</scp> microscopy. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	8
2983	A Roadmap for Edge Computing Enabled Automated Multidimensional Transmission Electron Microscopy. Microscopy Today, 2022, 30, 10-19.	0.2	2

#	Article	IF	CITATIONS
2984	Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments. Nature Communications, 2022, 13, .	5.8	7
2985	Structural basis of SNAPc-dependent snRNA transcription initiation by RNA polymerase II. Nature Structural and Molecular Biology, 2022, 29, 1159-1169.	3.6	5
2986	Conformational changes in mitochondrial complex I of the thermophilic eukaryote <i>Chaetomium thermophilum</i> . Science Advances, 2022, 8, .	4.7	10
2988	Structures of RecBCD in complex with phage-encoded inhibitor proteins reveal distinctive strategies for evasion of a bacterial immunity hub. ELife, 0, 11, .	2.8	9
2989	HSP90-CDC37-PP5 forms a structural platform for kinase dephosphorylation. Nature Communications, 2022, 13, .	5.8	15
2990	Structure of the Acidobacteria homodimeric reaction center bound with cytochrome c. Nature Communications, 2022, 13, .	5.8	10
2991	Structure of monkeypox virus DNA polymerase holoenzyme. Science, 2023, 379, 100-105.	6.0	31
2992	A non-neutralizing glycoprotein B monoclonal antibody protects against herpes simplex virus disease in mice. Journal of Clinical Investigation, 2023, 133, .	3.9	5
2994	Structural transitions during the cooperative assembly of baculovirus single-stranded DNA-binding protein on ssDNA. Nucleic Acids Research, 0, , .	6.5	1
2996	Multiple sub-state structures of SERCA2b reveal conformational overlap at transition steps during the catalytic cycle. Cell Reports, 2022, 41, 111760.	2.9	3
2997	Structural Studies Reveal that Endosomal Cations Promote Formation of Infectious Coxsackievirus A9 A-Particles, Facilitating RNA and VP4 Release. Journal of Virology, 2022, 96, .	1.5	1
2998	Structural insights into the covalent regulation of PAPP-A activity by proMBP and STC2. Cell Discovery, 2022, 8, .	3.1	4
3000	Mechanism of IFT-A polymerization into trains for ciliary transport. Cell, 2022, 185, 4986-4998.e12.	13.5	15
3003	A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0. ELife, 0, 11, .	2.8	84
3004	Structure of the mitoribosomal small subunit with streptomycin reveals Fe-S clusters and physiological molecules. ELife, 0, 11, .	2.8	11
3005	A male germ-cell-specific ribosome controls male fertility. Nature, 2022, 612, 725-731.	13.7	22
3006	Membrane-mediated interaction of non-conventional snake three-finger toxins with nicotinic acetylcholine receptors. Communications Biology, 2022, 5, .	2.0	6
3007	The conserved centrosomin motif, \hat{I}^{3} TuNA, forms a dimer that directly activates microtubule nucleation by the \hat{I}^{3} -tubulin ring complex (\hat{I}^{3} TuRC). ELife, 0, 11, .	2.8	10

#	Article	IF	CITATIONS
3008	Structural basis for Parkinson's disease-linked LRRK2's binding to microtubules. Nature Structural and Molecular Biology, 2022, 29, 1196-1207.	3.6	13
3009	Identifying antibiotics based on structural differences in the conserved allostery from mitochondrial heme-copper oxidases. Nature Communications, 2022, 13, .	5.8	2
3010	Structural visualization of the tubulin folding pathway directed by human chaperonin TRiC/CCT. Cell, 2022, 185, 4770-4787.e20.	13.5	26
3011	Structural insights into p300 regulation and acetylation-dependent genome organisation. Nature Communications, 2022, 13, .	5.8	21
3012	High-resolution cryo-EM structure of the <i>Shigella</i> virus Sf6 genome delivery tail machine. Science Advances, 2022, 8, .	4.7	10
3013	The structure of the human LACTB filament reveals the mechanisms of assembly and membrane binding. PLoS Biology, 2022, 20, e3001899.	2.6	4
3014	Structure of a dimeric photosystem II complex from aÂcyanobacterium acclimated to far-red light. Journal of Biological Chemistry, 2023, 299, 102815.	1.6	8
3015	Structures of the eukaryotic ribosome and its translational states in situ. Nature Communications, 2022, 13, .	5.8	31
3016	Structure of a volume-regulated heteromeric LRRC8A/C channel. Nature Structural and Molecular Biology, 2023, 30, 52-61.	3.6	12
3017	Network analysis uncovers the communication structure of SARS-CoV-2 spike protein identifying sites for immunogen design. IScience, 2023, 26, 105855.	1.9	7
3018	Rational identification of potent and broad sarbecovirus-neutralizing antibody cocktails from SARS convalescents. Cell Reports, 2022, 41, 111845.	2.9	46
3019	Discovery, structure, and function of filamentous 3-methylcrotonyl-CoA carboxylase. Structure, 2023, 31, 100-110.e4.	1.6	4
3020	Electron cryo-microscopy reveals the structure of the archaeal thread filament. Nature Communications, 2022, 13, .	5.8	7
3021	Structural mechanism of extranucleosomal DNA readout by the INO80 complex. Science Advances, 2022, 8, .	4.7	12
3022	Cryo-EM structure of ssDNA bacteriophage $\hat{l}_1^1 CjT23$ provides insight into early virus evolution. Nature Communications, 2022, 13, .	5.8	1
3023	Chromatin localization of nucleophosmin organizes ribosome biogenesis. Molecular Cell, 2022, 82, 4443-4457.e9.	4.5	6
3024	A new polymorphism of human amylin fibrils with similar protofilaments and a conserved core. IScience, 2022, 25, 105705.	1.9	5
3026	Mechanism of human Lig1 regulation by PCNA in Okazaki fragment sealing. Nature Communications, 2022, 13, .	5.8	11

#	Article	IF	CITATIONS
3027	Integrative structural and functional analysis of human malic enzyme 3: A potential therapeutic target for pancreatic cancer. Heliyon, 2022, 8, e12392.	1.4	0
3028	Close relatives of MERS-CoV in bats use ACE2 as their functional receptors. Nature, 2022, 612, 748-757.	13.7	46
3029	Modular UBE2H-CTLH E2-E3 complexes regulate erythroid maturation. ELife, 0, 11, .	2.8	4
3030	Structural basis of the acyl-transfer mechanism of human GPAT1. Nature Structural and Molecular Biology, 2023, 30, 22-30.	3.6	1
3031	Biophysical characterization of calcium-binding and modulatory-domain dynamics in a pentameric ligand-gated ion channel. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	0
3032	Parallel cryo electron tomography on in situ lamellae. Nature Methods, 2023, 20, 131-138.	9.0	45
3034	Graph identification of proteins in tomograms (<scp>GRIPâ€Tomo</scp>). Protein Science, 0, , .	3.1	1
3035	Structure and host specificity of <i>Staphylococcus epidermidis</i> bacteriophage Andhra. Science Advances, 2022, 8, .	4.7	8
3036	The crystal structure of the EspB-EspK virulence factor-chaperone complex suggests an additional type VII secretion mechanism in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2023, 299, 102761.	1.6	5
3037	Cross-Species Permissivity: Structure of a Goat Adeno-Associated Virus and Its Complex with the Human Receptor AAVR. Journal of Virology, 2022, 96, .	1.5	3
3038	Ligand recognition and activation of neuromedin U receptor 2. Nature Communications, 2022, 13, .	5.8	2
3039	Structural insight into the constitutive activity of human orphan receptor GPR12. Science Bulletin, 2023, 68, 95-104.	4.3	8
3042	A novel capsid protein network allows the characteristic internal membrane structure of Marseilleviridae giant viruses. Scientific Reports, 2022, 12, .	1.6	8
3044	Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels. Cell, 2022, 185, 4801-4810.e13.	13.5	7
3045	Structural insights into a shared mechanism of human STING activation by a potent agonist and an autoimmune disease-associated mutation. Cell Discovery, 2022, 8, .	3.1	13
3046	Structures of the entire human opioid receptor family. Cell, 2023, 186, 413-427.e17.	13.5	34
3047	Cryo-EM structures of mitochondrial respiratory complex I from Drosophila melanogaster. ELife, 0, 12, .	2.8	11
3048	The Ewald sphere/focus gradient does not limit the resolution of cryoEM reconstructions. Journal of Structural Biology: X, 2023, 7, 100083.	0.7	0

#	Article	IF	CITATIONS
3049	The human pre-replication complex is an open complex. Cell, 2023, 186, 98-111.e21.	13.5	19
3050	Nucleosome dyad determines the H1 C-terminus collapse on distinct DNA arms. Structure, 2023, 31, 201-212.e5.	1.6	1
3051	Brominated lipid probes expose structural asymmetries in constricted membranes. Nature Structural and Molecular Biology, 2023, 30, 167-175.	3.6	6
3052	Cryo-EM structures of amyloid-β filaments with the Arctic mutation (E22G) from human and mouse brains. Acta Neuropathologica, 2023, 145, 325-333.	3.9	24
3053	High-Resolution Structural Analysis of Dyneins by Cryo-electron Microscopy. Methods in Molecular Biology, 2023, , 257-279.	0.4	0
3054	Inhibition of the proton-activated chloride channel PAC by PIP2. ELife, 0, 12, .	2.8	2
3056	Structural basis of CHMP2A–CHMP3 ESCRT-III polymer assembly and membrane cleavage. Nature Structural and Molecular Biology, 2023, 30, 81-90.	3.6	16
3058	The cryoEM structure of cytochrome bd from C. glutamicum provides novel insights into structural properties of actinobacterial terminal oxidases. Frontiers in Chemistry, 0, 10, .	1.8	2
3059	A Germline-Targeting Chimpanzee SIV Envelope Glycoprotein Elicits a New Class of V2-Apex Directed Cross-Neutralizing Antibodies. MBio, 2023, 14, .	1.8	4
3060	The molecular structure of IFT-A and IFT-B in anterograde intraflagellar transport trains. Nature Structural and Molecular Biology, 2023, 30, 584-593.	3.6	27
3061	The neoepitope of the complement C5b-9 Membrane Attack Complex is formed by proximity of adjacent ancillary regions of C9. Communications Biology, 2023, 6, .	2.0	1
3062	A multipoint guidance mechanism for β-barrel folding on the SAM complex. Nature Structural and Molecular Biology, 2023, 30, 176-187.	3.6	9
3063	Mechanism of Ca2+ transport by ferroportin. ELife, 0, 12, .	2.8	8
3065	Structural basis for heparan sulfate co-polymerase action by the EXT1–2 complex. Nature Chemical Biology, 2023, 19, 565-574.	3.9	13
3066	Molecular role of NAA38 in thermostability and catalytic activity of the human NatC N-terminal acetyltransferase. Structure, 2023, 31, 166-173.e4.	1.6	4
3067	Structure-Based Stabilization of SOSIP Env Enhances Recombinant Ectodomain Durability and Yield. Journal of Virology, 2023, 97, .	1.5	10
3068	A structural dendrogram of the actinobacteriophage major capsid proteins provides important structural insights into the evolution of capsid stability. Structure, 2023, 31, 282-294.e5.	1.6	3
3071	Structural basis for intrinsic transcription termination. Nature, 2023, 613, 783-789.	13.7	12

#	Article	IF	Citations
3073	Structure-guided mutagenesis of the capsid protein indicates that a nanovirus requires assembled viral particles for systemic infection. PLoS Pathogens, 2023, 19, e1011086.	2.1	4
3074	Molecular basis of the plant ROS1-mediated active DNA demethylation. Nature Plants, 2023, 9, 271-279.	4.7	4
3075	Structural basis underlying specific biochemical activities of non-muscle tropomyosin isoforms. Cell Reports, 2023, 42, 111900.	2.9	3
3077	Targeted degradation via direct 26S proteasome recruitment. Nature Chemical Biology, 2023, 19, 55-63.	3.9	31
3078	SUMO enhances unfolding of SUMO–polyubiquitin-modified substrates by the Ufd1/Npl4/Cdc48 complex. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	4
3079	The S. cerevisiae Yta7 ATPase hexamer contains a unique bromodomain tier that functions in nucleosome disassembly. Journal of Biological Chemistry, 2022, , 102852.	1.6	1
3081	Addressing compressive deformation of proteins embedded in crystalline ice. Structure, 2023, 31, 213-220.e3.	1.6	1
3082	Structure of the Flight Muscle Thick Filament from the Bumble Bee, Bombus ignitus, at 6 Ã Resolution. International Journal of Molecular Sciences, 2023, 24, 377.	1.8	5
3083	Unsupervised Heterogeneous Cryo-EM Projection Image Classification Using Autoencoder. , 2022, , .		1
3084	Structural basis of ferroportin inhibition by minihepcidin PR73. PLoS Biology, 2023, 21, e3001936.	2.6	4
3085	Frozen in time: analyzing molecular dynamics with time-resolved cryo-EM. Structure, 2023, 31, 4-19.	1.6	14
3088	Structural basis for a conserved neutralization epitope on the receptor-binding domain of SARS-CoV-2. Nature Communications, 2023, 14, .	5.8	8
3089	Destabilizing NF1 variants act in a dominant negative manner through neurofibromin dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3
3090	VelcroVax: a "Bolt-On―Vaccine Platform for Glycoprotein Display. MSphere, 0, , .	1.3	0
3091	Cryo-EM structure and protease activity of the type III-E CRISPR-Cas effector. Nature Microbiology, 2023, 8, 522-532.	5.9	4
3092	Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science, 2023, 379, 351-357.	6.0	30
3093	Structure and supramolecular organization of the canine distemper virus attachment glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	7
3094	Structural basis of Rho-dependent transcription termination. Nature, 2023, 614, 367-374.	13.7	29

#	Article	IF	CITATIONS
3095	The SARS-CoV-2 accessory protein Orf3a is not an ion channel, but does interact with trafficking proteins. ELife, 0, 12, .	2.8	20
3096	Rare ribosomal RNA sequences from archaea stabilize the bacterial ribosome. Nucleic Acids Research, 2023, 51, 1880-1894.	6.5	5
3098	Interaction of the periplasmic chaperone SurA with the inner membrane protein secretion (SEC) machinery. Biochemical Journal, 2023, 480, 283-296.	1.7	5
3099	Stabilization of membrane topologies by proteinaceous remorin scaffolds. Nature Communications, 2023, 14, .	5.8	6
3100	ArpC5 isoforms regulate Arp2/3 complex–dependent protrusion through differential Ena/VASP positioning. Science Advances, 2023, 9, .	4.7	8
3102	Pneumococcal capsule expression is controlled through a conserved, distal cis-regulatory element during infection. PLoS Pathogens, 2023, 19, e1011035.	2.1	4
3103	Human Uridine 5′-Monophosphate Synthase Stores Metabolic Potential in Inactive Biomolecular Condensates. Journal of Biological Chemistry, 2023, , 102949.	1.6	0
3104	Cryo-EM structure of the Mre11-Rad50-Nbs1 complex reveals the molecular mechanism of scaffolding functions. Molecular Cell, 2023, 83, 167-185.e9.	4.5	16
3105	The human CNOT1-CNOT10-CNOT11 complex forms a structural platform for protein-protein interactions. Cell Reports, 2023, 42, 111902.	2.9	11
3106	Convolutional networks for supervised mining of molecular patterns within cellular context. Nature Methods, 2023, 20, 284-294.	9.0	33
3109	Structures of honeybee-infecting Lake Sinai virus reveal domain functions and capsid assembly with dynamic motions. Nature Communications, 2023, 14, .	5.8	2
3110	Structural basis for bacterial energy extraction from atmospheric hydrogen. Nature, 2023, 615, 541-547.	13.7	19
3112	Concurrent remodelling of nucleolar 60S subunit precursors by the Rea1 ATPase and Spb4 RNA helicase. ELife, 0, 12, .	2.8	3
3113	Cytoplasmic contractile injection systems mediate cell death in Streptomyces. Nature Microbiology, 2023, 8, 711-726.	5.9	10
3114	Structural and mechanistic insights into fungal \hat{l}^2 -1,3-glucan synthase FKS1. Nature, 2023, 616, 190-198.	13.7	36
3115	A co-transcriptional ribosome assembly checkpoint controls nascent large ribosomal subunit maturation. Nature Structural and Molecular Biology, 2023, 30, 594-599.	3.6	4
3116	Basis of the H2AK119Âspecificity of the Polycomb repressive deubiquitinase. Nature, 2023, 616, 176-182.	13.7	8
3117	Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimers as HIV-1 vaccine candidates. Nature Communications, 2023, 14, .	5.8	14

		CITATION RE	PORT	
#	Article		IF	CITATIONS
3118	Structure of Anabaena flos-aquae gas vesicles revealed by cryo-ET. Structure, 2023, 31,	518-528.e6.	1.6	15
3119	Cryoelectron microscopic structure of the nucleoprotein–RNA complex of the Europe Lloviu virus. , 2023, 2, .	ean filovirus,		0
3120	CryoEM Reveals Oligomeric Isomers of a Multienzyme Complex and Assembly Mechanic Structural Biology: X, 2023, , 100088.	cs. Journal of	0.7	1
3121	A review of the approaches used to solve sub-100ÂkDa membrane proteins by cryo-elec Journal of Structural Biology, 2023, 215, 107959.	ctron microscopy.	1.3	3
3122	A protocol for capturing RNA-sensing innate immune receptors in multiple conformatio single-particle cryo-EM. STAR Protocols, 2023, 4, 102166.	ns by	0.5	1
3123	CryoEM single particle reconstruction with a complex-valued particle stack. Journal of S Biology, 2023, 215, 107945.	tructural	1.3	0
3124	Structural insight into the intraflagellar transport complex IFT-A and its assembly in the IFT train. Nature Communications, 2023, 14, .	anterograde	5.8	8
3126	Architecture of the biofilm-associated archaic Chaperone-Usher pilus CupE from Pseudo aeruginosa. PLoS Pathogens, 2023, 19, e1011177.	bmonas	2.1	1
3127	Integration of an Event-driven Timepix3 Hybrid Pixel Detector into a Cryo-EM Workflow and Microanalysis, 2023, 29, 352-363.	. Microscopy	0.2	5
3130	Structure of the lysosomal mTORC1–TFEB–Rag–Ragulator megacomplex. Nature	e, 2023, 614, 572-579.	13.7	46
3131	The <scp>cryoâ€EM</scp> structure of fullâ€length <scp>RAD52</scp> protein contai ring. FEBS Open Bio, 2023, 13, 408-418.	ins an undecameric	1.0	11
3132	Recognition of the <scp>CCT5 diâ€Glu</scp> degron by <scp>CRL4^{DCAF12on <scp>TRiC</scp> assembly. EMBO Journal, 2023, 42, .}</scp>	p> is dependent	3.5	9
3133	Structural basis of a transcription pre-initiation complex on a divergent promoter. Mole 2023, 83, 574-588.e11.	cular Cell,	4.5	6
3134	Structural basis for substrate selection by the SARS-CoV-2 replicase. Nature, 2023, 614	, 781-787.	13.7	14
3135	The SspB adaptor drives structural changes in the AAA+ ClpXP protease during ssrA-tag delivery. Proceedings of the National Academy of Sciences of the United States of Ame	ged substrate rica, 2023, 120, .	3.3	2
3137	Cryo-EM structure of a monomeric RC-LH1-PufX supercomplex with high-carotenoid co Rhodobacter capsulatus. Structure, 2023, 31, 318-328.e3.	ntent from	1.6	9
3138	Structure of Geobacter cytochrome OmcZ identifies mechanism of nanowire assembly conductivity. Nature Microbiology, 2023, 8, 284-298.	and	5.9	27
3139	The <scp>cryoâ€EM</scp> structure of the <scp>CENPâ€A</scp> nucleosome in comp <scp>ggKNL2</scp> . EMBO Journal, 2023, 42, .	plex with	3.5	6

#	Article	IF	CITATIONS
3141	Epoxidized graphene grid for highly efficient high-resolution cryoEM structural analysis. Scientific Reports, 2023, 13, .	1.6	6
3142	Structural basis of the transcription termination factor Rho engagement with transcribing RNA polymerase from <i>Thermus thermophilus</i> . Science Advances, 2023, 9, .	4.7	6
3143	Structures of BIRC6-client complexes provide a mechanism of SMAC-mediated release of caspases. Science, 2023, 379, 1105-1111.	6.0	10
3144	A molecular device for the redox quality control of GroEL/ES substrates. Cell, 2023, 186, 1039-1049.e17.	13.5	6
3145	Molecular basis of RADAR anti-phage supramolecular assemblies. Cell, 2023, 186, 999-1012.e20.	13.5	21
3146	Structural mechanism of CRL4â€instructed STAT2 degradation via a novel cytomegaloviral DCAF receptor. EMBO Journal, 2023, 42, .	3.5	6
3147	Purification and Characterization of Authentic 30S Ribosomal Precursors Induced by Heat Shock. International Journal of Molecular Sciences, 2023, 24, 3491.	1.8	0
3148	Structure of the Saccharolobus solfataricus type III-D CRISPR effector. Current Research in Structural Biology, 2023, 5, 100098.	1.1	0
3151	Small molecule inhibitors of 15-PGDH exploit a physiologic induced-fit closing system. Nature Communications, 2023, 14, .	5.8	2
3152	Structure and dynamics of the essential endogenous mycobacterial polyketide synthase Pks13. Nature Structural and Molecular Biology, 2023, 30, 296-308.	3.6	9
3153	Deciphering Bacteriophage T5 Host Recognition Mechanism and Infection Trigger. Journal of Virology, 2023, 97, .	1.5	8
3154	Synthetic E2-Ub-nucleosome conjugates for studying nucleosome ubiquitination. CheM, 2023, 9, 1221-1240.	5.8	17
3155	A Fijivirus Major Viroplasm Protein Shows RNA-Stimulated ATPase Activity by Adopting Pentameric and Hexameric Assemblies of Dimers. MBio, 0, , .	1.8	0
3158	Menin "reads―H3K79me2 mark in a nucleosomal context. Science, 2023, 379, 717-723.	6.0	13
3159	E3 ligase autoinhibition by C-degron mimicry maintains C-degron substrate fidelity. Molecular Cell, 2023, 83, 770-786.e9.	4.5	14
3160	Molecular basis of eIF5A-dependent CAT tailing in eukaryotic ribosome-associated quality control. Molecular Cell, 2023, 83, 607-621.e4.	4.5	9
3161	Structural basis for membrane attack complex inhibition by CD59. Nature Communications, 2023, 14, .	5.8	8
3162	Cryo-EM captures early ribosome assembly in action. Nature Communications, 2023, 14, .	5.8	7

#	Article	IF	CITATIONS
3163	Structure and mechanism of sulfofructose transaldolase, a key enzyme in sulfoquinovose metabolism. Structure, 2023, 31, 244-252.e4.	1.6	1
3164	Mechanism of activation and biased signaling in complement receptor C5aR1. Cell Research, 2023, 33, 312-324.	5.7	15
3165	Native structure of mosquito salivary protein uncovers domains relevant to pathogen transmission. Nature Communications, 2023, 14, .	5.8	4
3166	Structure of Dunaliella photosystem II reveals conformational flexibility of stacked and unstacked supercomplexes. ELife, 0, 12, .	2.8	4
3169	Design of a stabilized non-glycosylated Pfs48/45 antigen enables a potent malaria transmission-blocking nanoparticle vaccine. Npj Vaccines, 2023, 8, .	2.9	7
3171	Conformational changes in the human Cx43/GJA1 gap junction channel visualized using cryo-EM. Nature Communications, 2023, 14, .	5.8	13
3172	Uphill energy transfer mechanism for photosynthesis in an Antarctic alga. Nature Communications, 2023, 14, .	5.8	5
3173	Rhodobacter capsulatus forms a compact crescent-shaped LH1–RC photocomplex. Nature Communications, 2023, 14, .	5.8	6
3174	Prospect of acromegaly therapy: molecular mechanism of clinical drugs octreotide and paltusotine. Nature Communications, 2023, 14, .	5.8	7
3175	Structural Basis of the Mechanisms of Action and Immunity of Lactococcin A, a Class IId Bacteriocin. Applied and Environmental Microbiology, 2023, 89, .	1.4	1
3176	Ring-stacked capsids of white spot syndrome virus and structural transitions with genome ejection. Science Advances, 2023, 9, .	4.7	3
3177	Molecular Basis of the Electron Bifurcation Mechanism in the [FeFe]-Hydrogenase Complex HydABC. Journal of the American Chemical Society, 2023, 145, 5696-5709.	6.6	14
3178	Positive and negative allosteric modulation of GluK2 kainate receptors by BPAM344 and antiepileptic perampanel. Cell Reports, 2023, 42, 112124.	2.9	9
3179	A shape-shifting nuclease unravels structured RNA. Nature Structural and Molecular Biology, 2023, 30, 339-347.	3.6	2
3180	Discovery of natural-product-derived sequanamycins as potent oral anti-tuberculosis agents. Cell, 2023, 186, 1013-1025.e24.	13.5	11
3181	Structure of human NaV1.6 channel reveals Na+ selectivity and pore blockade by 4,9-anhydro-tetrodotoxin. Nature Communications, 2023, 14, .	5.8	8
3182	Structural and DNA end resection study of the bacterial NurA-HerA complex. BMC Biology, 2023, 21, .	1.7	3
3184	The translating bacterial ribosome at 1.55 à resolution generated by cryo-EM imaging services. Nature Communications, 2023, 14,	5.8	13

#	Article	IF	CITATIONS
3185	Insights into translocation mechanism and ribosome evolution from cryo-EM structures of translocation intermediates of <i>Giardia intestinalis</i> . Nucleic Acids Research, 2023, 51, 3436-3451.	6.5	3
3187	Membrane phospholipids control gating of the mechanosensitive potassium leak channel TREK1. Nature Communications, 2023, 14, .	5.8	9
3188	Purification and CryoEM Image Analysis of the Bacterial Flagellar Filament. Methods in Molecular Biology, 2023, , 43-53.	0.4	0
3190	Purification and Structural Analysis of the Gliding Motility Machinery in Mycoplasma mobile. Methods in Molecular Biology, 2023, , 311-319.	0.4	0
3191	New SNCA mutation and structures of α-synuclein filaments from juvenile-onset synucleinopathy. Acta Neuropathologica, 2023, 145, 561-572.	3.9	8
3192	Mutagenic analysis of the bundle-shaped phycobilisome from Gloeobacter violaceus. Photosynthesis Research, O, , .	1.6	2
3193	Ribosomes in RNA Granules Are Stalled on mRNA Sequences That Are Consensus Sites for FMRP Association. Journal of Neuroscience, 2023, 43, 2440-2459.	1.7	6
3194	Insights into the structure-function relationship of the NorQ/NorD chaperones from Paracoccus denitrificans reveal shared principles of interacting MoxR AAA+/VWA domain proteins. BMC Biology, 2023, 21, .	1.7	0
3196	Phototrophy by antenna-containing rhodopsin pumps in aquatic environments. Nature, 2023, 615, 535-540.	13.7	11
3198	Disease-relevant β2-microglobulin variants share a common amyloid fold. Nature Communications, 2023, 14, .	5.8	5
3199	Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody against antigenically distinct Omicron subvariants. Journal of Clinical Investigation, 2023, 133, .	3.9	4
3200	Cryo-EM structure of gas vesicles for buoyancy-controlled motility. Cell, 2023, 186, 975-986.e13.	13.5	16
3201	Structural insights into TRAP association with ribosome-Sec61 complex and translocon inhibition by a CADA derivative. Science Advances, 2023, 9, .	4.7	9
3203	CD19 CAR antigen engagement mechanisms and affinity tuning. Science Immunology, 2023, 8, .	5.6	11
3204	Cryo-EM structures of human SPCA1a reveal the mechanism of Ca ²⁺ /Mn ²⁺ transport into the Golgi apparatus. Science Advances, 2023, 9, .	4.7	4
3205	Design of a stabilized RBD enables potently neutralizing SARS-CoV-2 single-component nanoparticle vaccines. Cell Reports, 2023, 42, 112266.	2.9	6
3207	Genome-encoded ABCF factors implicated in intrinsic antibiotic resistance in Gram-positive bacteria: VmlR2, Ard1 and CplR. Nucleic Acids Research, 2023, 51, 4536-4554.	6.5	9
3208	Activity and Structural Dynamics of Human ABCA1 in a Lipid Membrane. Journal of Molecular Biology, 2023, 435, 168038.	2.0	3

#	Article	IF	CITATIONS
3210	Structure and mechanism of the plant RNA polymerase V. Science, 2023, 379, 1209-1213.	6.0	9
3212	Cryo-EM structures of an LRRC8 chimera with native functional properties reveal heptameric assembly. ELife, 0, 12, .	2.8	5
3213	C–N bond formation by a polyketide synthase. Nature Communications, 2023, 14, .	5.8	3
3216	Cryo-EM structures of human Cx36/GJD2 neuronal gap junction channel. Nature Communications, 2023, 14, .	5.8	11
3217	Structural basis of a two-step tRNA recognition mechanism for plastid glycyl-tRNA synthetase. Nucleic Acids Research, 2023, 51, 4000-4011.	6.5	3
3218	Structural basis and dynamics of Chikungunya alphavirus RNA capping by nsP1 capping pores. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
3219	Cryo-EM structure of the four-subunit <i>Rhodobacter sphaeroides</i> cytochrome <i>bc</i> ₁ complex in styrene maleic acid nanodiscs. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	9
3221	Structural basis of plp2-mediated cytoskeletal protein folding by TRiC/CCT. Science Advances, 2023, 9, .	4.7	6
3223	Determining protein structures in cellular lamella at pseudo-atomic resolution by GisSPA. Nature Communications, 2023, 14, .	5.8	9
3224	A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery. Cell, 2023, 186, 1244-1262.e34.	13.5	15
3225	Structure of Photosystem I Supercomplex Isolated from a Chlamydomonas reinhardtii Cytochrome b6f Temperature-Sensitive Mutant. Biomolecules, 2023, 13, 537.	1.8	1
3227	Cryo-EM reveals dynamics of Tetrahymena group I intron self-splicing. Nature Catalysis, 2023, 6, 298-309.	16.1	3
3228	Batch Production of High-Quality Graphene Grids for Cryo-EM: Cryo-EM Structure of <i>Methylococcus capsulatus</i> Soluble Methane Monooxygenase Hydroxylase. ACS Nano, 2023, 17, 6011-6022.	7.3	3
3229	Structural basis for assembly and lipid-mediated gating of LRRC8A:C volume-regulated anion channels. Nature Structural and Molecular Biology, 2023, 30, 841-852.	3.6	9
3231	Heterologous Assembly of Pleomorphic Bacterial Microcompartment Shell Architectures Spanning the Nano―to Microscale. Advanced Materials, 2023, 35, .	11.1	4
3235	Structural Insights into the Distortion of the Ribosomal Small Subunit at Different Magnesium Concentrations. Biomolecules, 2023, 13, 566.	1.8	1
3236	Cryo-EM analyses of KIT and oncogenic mutants reveal structural oncogenic plasticity and a target for therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
3237	Stoichiometry and architecture of the platelet membrane complex glycoprotein Ib-IX-V. Biological Chemistry, 2024, 405, 91-104.	1.2	1

#	Article	IF	CITATIONS
3240	Structure of the Spring Viraemia of Carp Virus Ribonucleoprotein Complex Reveals Its Assembly Mechanism and Application in Antiviral Drug Screening. Journal of Virology, 0, , .	1.5	0
3242	Immunoglobulin M perception by Fcî¼R. Nature, 2023, 615, 907-912.	13.7	8
3243	CFTR function, pathology and pharmacology at single-molecule resolution. Nature, 2023, 616, 606-614.	13.7	17
3244	Structural basis of mitochondrial membrane bending by the l–ll–lll2–lV2 supercomplex. Nature, 2023, 615, 934-938.	13.7	30
3245	The lipid linked oligosaccharide polymerase Wzy and its regulating co-polymerase, Wzz, from enterobacterial common antigen biosynthesis form a complex. Open Biology, 2023, 13, .	1.5	4
3246	Cryo-EM reconstruction of the human 40S ribosomal subunit at 2.15 Ã resolution. Nucleic Acids Research, 2023, 51, 4043-4054.	6.5	3
3247	Accelerating cryo-EM Reconstruction of RELION on the New Sunway Supercomputer. , 2022, , .		1
3248	Resting mitochondrial complex I from Drosophila melanogaster adopts a helix-locked state. ELife, 0, 12, .	2.8	7
3249	Helical allophycocyanin nanotubes absorb far-red light in a thermophilic cyanobacterium. Science Advances, 2023, 9, .	4.7	6
3250	Structural basis of bacteriophage T5 infection trigger and <i>E. coli</i> cell wall perforation. Science Advances, 2023, 9, .	4.7	12
3251	Effective Multivalent Oriented Presentation of Meningococcal NadA Antigen Trimers by Self-Assembling Ferritin Nanoparticles. International Journal of Molecular Sciences, 2023, 24, 6183.	1.8	3
3252	Modulatory mechanisms of TARP Î ³ 8-selective AMPA receptor therapeutics. Nature Communications, 2023, 14, .	5.8	4
3253	Conformational transitions and allosteric modulation in a heteromeric glycine receptor. Nature Communications, 2023, 14, .	5.8	5
3254	An in-solution snapshot of SARS-COV-2 main protease maturation process and inhibition. Nature Communications, 2023, 14, .	5.8	5
3255	Cryo-EM structure of a catalytic amyloid fibril. Scientific Reports, 2023, 13, .	1.6	5
3257	Structure of the Newcastle Disease Virus L protein in complex with tetrameric phosphoprotein. Nature Communications, 2023, 14, .	5.8	5
3258	Antigenic mapping and functional characterization of human New World hantavirus neutralizing antibodies. ELife, 0, 12, .	2.8	9
3259	A general mechanism for transcription bubble nucleation in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	2

		CITATION RE	PORT	
#	Article		IF	CITATIONS
3260	Structural and functional analysis of human pannexin 2 channel. Nature Communication	ıs, 2023, 14, .	5.8	6
3261	Structural basis for CaVα2δ:gabapentin binding. Nature Structural and Molecular Biolog 735-739.	gy, 2023, 30,	3.6	8
3262	Structural basis of Ty1 integrase tethering to RNA polymerase III for targeted retrotrans integration. Nature Communications, 2023, 14, .	poson	5.8	2
3263	Structural basis of the substrate recognition and inhibition mechanism of Plasmodium for nucleoside transporter PfENT1. Nature Communications, 2023, 14, .	alciparum	5.8	3
3264	Characterization of the rotavirus assembly pathway in situ using cryoelectron tomograp and Microbe, 2023, 31, 604-615.e4.	hy. Cell Host	5.1	10
3265	Basic helix-loop-helix pioneer factors interact with the histone octamer to invade nucleo generate nucleosome-depleted regions. Molecular Cell, 2023, 83, 1251-1263.e6.	somes and	4.5	17
3268	Commercial influenza vaccines vary in HA-complex structure and in induction of cross-reantibodies. Nature Communications, 2023, 14, .	active HA	5.8	6
3269	Three structural solutions for bacterial adhesion pilus stability and superelasticity. Struc .	ture, 2023, ,	1.6	0
3270	The structural basis of the pH-homeostasis mediated by the Clâ^'/HCO3â^' exchanger, Al Communications, 2023, 14, .	E2. Nature	5.8	4
3271	Structural basis for enzymatic terminal C–H bond functionalization of alkanes. Nature and Molecular Biology, 2023, 30, 521-526.	e Structural	3.6	5
3278	Molecular architecture and gating mechanisms of the Drosophila TRPA1 channel. Cell Di 9, .	iscovery, 2023,	3.1	5
3279	Yeast PIC-mediator structure with RNA polymerase II C-terminal domain. Proceedings of Academy of Sciences of the United States of America, 2023, 120, .	the National	3.3	6
3281	Comprehensive structural analysis reveals broad-spectrum neutralizing antibodies again Omicron variants. Cell Discovery, 2023, 9, .	st SARS-CoV-2	3.1	2
3282	Inhibition of FAM46/TENT5 activity by BCCIPα adopting a unique fold. Science Advance	s, 2023, 9, .	4.7	4
3284	Systemwide disassembly and assembly of SCF ubiquitin ligase complexes. Cell, 2023, 18	36, 1895-1911.e21.	13.5	10
3285	Rational design of a highly immunogenic prefusion-stabilized F glycoprotein antigen for syncytial virus vaccine. Science Translational Medicine, 2023, 15, .	a respiratory	5.8	14
3286	Environmentally Ultrasensitive Fluorine Probe to Resolve Protein Conformational Ensem ¹⁹ F NMR and Cryo-EM. Journal of the American Chemical Society, 2023, 14	bles by 45, 8583-8592.	6.6	6
3287	Structural basis of pre-tRNA intron removal by human tRNA splicing endonuclease. Mole 2023, 83, 1328-1339.e4.	cular Cell,	4.5	8

#	Article	IF	CITATIONS
3288	AFM-based force spectroscopy unravels stepwise formation of the DNA transposition complex in the widespread Tn3 family mobile genetic elements. Nucleic Acids Research, 0, , .	6.5	0
3290	Mechanism of sphingolipid homeostasis revealed by structural analysis of <i>Arabidopsis</i> SPT-ORM1 complex. Science Advances, 2023, 9, .	4.7	5
3291	Diverse cytomotive actins and tubulins share a polymerization switch mechanism conferring robust dynamics. Science Advances, 2023, 9, .	4.7	7
3292	Structural insights into angiotensin receptor signaling modulation by balanced and biased agonists. EMBO Journal, 2023, 42, .	3.5	6
3293	Cryo-electron microscopy structures of capsids and in situ portals of DNA-devoid capsids of human cytomegalovirus. Nature Communications, 2023, 14, .	5.8	0
3294	Transmembrane protein CD69 acts as an S1PR1 agonist. ELife, 0, 12, .	2.8	5
3295	Structural basis of sensory receptor evolution in octopus. Nature, 2023, 616, 373-377.	13.7	9
3296	Sensory specializations drive octopus and squid behaviour. Nature, 2023, 616, 378-383.	13.7	10
3297	Interdigitated immunoglobulin arrays form the hyperstable surface layer of the extremophilic bacterium <i>Deinococcus radiodurans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	9
3298	Near-atomic architecture of Singapore grouper iridovirus and implications for giant virus assembly. Nature Communications, 2023, 14, .	5.8	8
3299	Big data in contemporary electron microscopy: challenges and opportunities in data transfer, compute and management. Histochemistry and Cell Biology, 0, , .	0.8	2
3300	Integrated model of the vertebrate augmin complex. Nature Communications, 2023, 14, .	5.8	3
3301	Structural basis of the alkaline pH-dependent activation of insulin receptor-related receptor. Nature Structural and Molecular Biology, 2023, 30, 661-669.	3.6	3
3302	Cryo-EM structure of the human Sirtuin 6–nucleosome complex. Science Advances, 2023, 9, .	4.7	12
3303	Structural and functional properties of a plant NRAMP-related aluminum transporter. ELife, 0, 12, .	2.8	0
3304	Two assembly modes for SIN3 histone deacetylase complexes. Cell Discovery, 2023, 9, .	3.1	6
3306	CryoEM and stability analysis of virus-like particles of potyvirus and ipomovirus infecting a common host. Communications Biology, 2023, 6, .	2.0	4
3307	The structural basis of tRNA recognition by arginyl-tRNA-protein transferase. Nature Communications, 2023, 14, .	5.8	4

#	Article	IF	CITATIONS
3308	The dynamic architecture of Map1- and NatB-ribosome complexes coordinates the sequential modifications of nascent polypeptide chains. PLoS Biology, 2023, 21, e3001995.	2.6	5
3310	Mechanism of RecF–RecO–RecR cooperation in bacterial homologous recombination. Nature Structural and Molecular Biology, 2023, 30, 650-660.	3.6	1
3311	The mechanism of STING autoinhibition and activation. Molecular Cell, 2023, 83, 1502-1518.e10.	4.5	16
3313	IS21 family transposase cleaved donor complex traps two right-handed superhelical crossings. Nature Communications, 2023, 14, .	5.8	0
3437	Cryo-EM for Structure Determination of Mitochondrial Ribosome Samples. Methods in Molecular Biology, 2023, , 89-100.	0.4	0
3467	Cryo-electron Microscopy of Protein Cages. Methods in Molecular Biology, 2023, , 173-210.	0.4	0
3669	An Auto-Encoder toÂReconstruct Structure withÂCryo-EM Images viaÂTheoretically Guaranteed Isometric Latent Space, andÂlts Application forÂAutomatically Computing theÂConformational Pathway. Lecture Notes in Computer Science, 2023, , 394-404.	1.0	0
3782	RNA Heterogeneity Visualized Under AFM. , 2023, , 348-369.		0
3786	Unsupervised Refinement of Protein Structures. , 2023, , 327-347.		0
3965	Expression, Purification, and Cryo-EM Structural Analysis of an Outer Membrane Secretin Channel. Methods in Molecular Biology, 2024, , 291-310.	0.4	0