Control of RNA viruses in mosquito cells through the ac endogenous viral elements

ELife 8, DOI: 10.7554/elife.41244

Citation Report

#	Article	IF	CITATIONS
1	Endogenous Viral Element-Derived Piwi-Interacting RNAs (piRNAs) Are Not Required for Production of Ping-Pong-Dependent piRNAs from Diaphorina citri Densovirus. MBio, 2020, 11, .	1.8	8
2	aBravo Is a Novel Aedes aegypti Antiviral Protein That Interacts with, but Acts Independently of, the Exogenous siRNA Pathway Effector Dicer 2. Viruses, 2020, 12, 748.	1.5	5
3	In and Outs of Chuviridae Endogenous Viral Elements: Origin of a Potentially New Retrovirus and Signature of Ancient and Ongoing Arms Race in Mosquito Genomes. Frontiers in Genetics, 2020, 11, 542437.	1.1	26
4	Non-retroviral Endogenous Viral Element Limits Cognate Virus Replication in Aedes aegypti Ovaries. Current Biology, 2020, 30, 3495-3506.e6.	1.8	88
5	Improved reference genome of the arboviral vector Aedes albopictus. Genome Biology, 2020, 21, 215.	3.8	65
6	Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses, 2020, 12, 964.	1.5	15
7	The Potential Role of Endogenous Viral Elements in the Evolution of Bats as Reservoirs for Zoonotic Viruses. Annual Review of Virology, 2020, 7, 103-119.	3.0	34
8	Viral and subviral derived small RNAs as pathogenic determinants in plants and insects. Advances in Virus Research, 2020, 107, 1-36.	0.9	9
9	Research progress on viral accommodation 2009 to 2019. Developmental and Comparative Immunology, 2020, 112, 103771.	1.0	25
10	A single unidirectional piRNA cluster similar to the <i>flamenco</i> locus is the major source of EVE-derived transcription and small RNAs in <i>Aedes aegypti</i> mosquitoes. Rna, 2020, 26, 581-594.	1.6	26
11	Antiviral Effectors and Gene Drive Strategies for Mosquito Population Suppression or Replacement to Mitigate Arbovirus Transmission by Aedes aegypti. Insects, 2020, 11, 52.	1.0	26
12	Differential Small RNA Responses against Co-Infecting Insect-Specific Viruses in Aedes albopictus Mosquitoes. Viruses, 2020, 12, 468.	1.5	16
13	Differential Role for a Defined Lateral Horn Neuron Subset in NaÃ⁻ve Odor Valence in Drosophila. Scientific Reports, 2020, 10, 6147.	1.6	21
14	Mosquito antiviral immune pathways. Developmental and Comparative Immunology, 2021, 116, 103964.	1.0	35
15	Transposable Elements and the Evolution of Insects. Annual Review of Entomology, 2021, 66, 355-372.	5.7	64
16	The discovery, distribution, and diversity of DNA viruses associated with <i>Drosophila melanogaster </i> i>in Europe. Virus Evolution, 2021, 7, veab031.	2.2	25
17	The Interplay Between Viruses and RNAi Pathways in Insects. Annual Review of Entomology, 2021, 66, 61-79.	5.7	47
18	Leaning Into the Bite: The piRNA Pathway as an Exemplar for the Genetic Engineering Need in Mosquitoes. Frontiers in Cellular and Infection Microbiology, 2020, 10, 614342.	1.8	2

CITATION REPORT

#	Article	IF	CITATIONS
19	A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons. Genome Research, 2021, 31, 512-528.	2.4	29
20	Sending Out Alarms: A Perspective on Intercellular Communications in Insect Antiviral Immune Response. Frontiers in Immunology, 2021, 12, 613729.	2.2	3
21	Population genomics in the arboviral vector <i>Aedes aegypti</i> reveals the genomic architecture and evolution of endogenous viral elements. Molecular Ecology, 2021, 30, 1594-1611.	2.0	37
23	Reproductive activation in honeybee (<i>Apis mellifera</i>) workers protects against abiotic and biotic stress. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190737.	1.8	18
24	Profile of Small RNAs, vDNA Forms and Viral Integrations in Late Chikungunya Virus Infection of Aedes albopictus Mosquitoes. Viruses, 2021, 13, 553.	1.5	13
25	Full genome characterization of Laem Singh virus (LSNV) in shrimp Penaeus monodon. Aquaculture, 2021, 538, 736533.	1.7	4
26	PIWI proteomics identifies Atari and Pasilla as piRNA biogenesis factors in Aedes mosquitoes. Cell Reports, 2021, 35, 109073.	2.9	14
28	Detection of Flaviviral-Like DNA Sequences in Aedes aegypti (Diptera: Culicidae) Collected From Argentina. Journal of Medical Entomology, 2021, 58, 2406-2411.	0.9	2
30	Genetic determinants of antiviral immunity in dipteran insects – Compiling the experimental evidence. Developmental and Comparative Immunology, 2021, 119, 104010.	1.0	25
31	Novel RNA Viruses from the Transcriptome of Pheromone Glands in the Pink Bollworm Moth, Pectinophora gossypiella. Insects, 2021, 12, 556.	1.0	5
32	A piRNA-lncRNA regulatory network initiates responder and trailer piRNA formation during mosquito embryonic development. Rna, 2021, 27, 1155-1172.	1.6	12
33	Transovarial transmission of a core virome in the Chagas disease vector Rhodnius prolixus. PLoS Pathogens, 2021, 17, e1009780.	2.1	7
34	Symbiotic Interactions Between Mosquitoes and Mosquito Viruses. Frontiers in Cellular and Infection Microbiology, 2021, 11, 694020.	1.8	23
35	Interactions of the Insect-Specific Palm Creek Virus with Zika and Chikungunya Viruses in Aedes Mosquitoes. Microorganisms, 2021, 9, 1652.	1.6	10
36	Ancient viral integrations in marsupials: a potential antiviral defence. Virus Evolution, 2021, 7, veab076.	2.2	7
37	RNAi-based immunity in insects against baculoviruses and the strategies of baculoviruses involved in siRNA and miRNA pathways to weaken the defense. Developmental and Comparative Immunology, 2021, 122, 104116.	1.0	9
38	Sugar feeding protects against arboviral infection by enhancing gut immunity in the mosquito vector Aedes aegypti. PLoS Pathogens, 2021, 17, e1009870.	2.1	23
39	Shrimp Parvovirus Circular DNA Fragments Arise From Both Endogenous Viral Elements and the Infecting Virus. Frontiers in Immunology, 2021, 12, 729528.	2.2	15

#	Article	IF	CITATIONS
40	Vector Transmission of Animal Viruses. , 2021, , 542-551.		1
44	The piRNA pathway in planarian flatworms: new model, new insights. Biological Chemistry, 2020, 401, 1123-1141.	1.2	8
45	Diverse Defenses: A Perspective Comparing Dipteran Piwi-piRNA Pathways. Cells, 2020, 9, 2180.	1.8	10
47	Endogenous viral elements in mosquito genomes: current knowledge and outstanding questions. Current Opinion in Insect Science, 2022, 49, 22-30.	2.2	11
50	Small RNA Response to Infection of the Insect-Specific Lammi Virus and Hanko Virus in an Aedes albopictus Cell Line. Viruses, 2021, 13, 2181.	1.5	5
53	The diversity of endogenous viral elements in insects. Current Opinion in Insect Science, 2022, 49, 48-55.	2.2	22
54	RNA virus EVEs in insect genomes. Current Opinion in Insect Science, 2022, 49, 42-47.	2.2	13
55	Bioinformatic and cell-based tools for pooled CRISPR knockout screening in mosquitos. Nature Communications, 2021, 12, 6825.	5.8	3
56	Aedes aegypti Piwi4 Structural Features Are Necessary for RNA Binding and Nuclear Localization. International Journal of Molecular Sciences, 2021, 22, 12733.	1.8	7
57	Exosomes/microvesicles target SARS-CoV-2 via innate and RNA-induced immunity with PIWI-piRNA system. Life Science Alliance, 2022, 5, e202101240.	1.3	10
58	Virus and endogenous viral element-derived small non-coding RNAs and their roles in insect–virus interaction. Current Opinion in Insect Science, 2022, 49, 85-92.	2.2	2
59	Transposable element repression using piRNAs, and its relevance to endogenous viral elements (EVEs) and immunity in insects. Current Opinion in Insect Science, 2022, 50, 100876.	2.2	3
60	Do the Biological Roles of Endogenous and Lysogenous Viruses Represent Faustian Bargains?. Advances in Environmental Microbiology, 2022, , 113-154.	0.1	3
61	Untangling the roles of RNA helicases in antiviral innate immunity. PLoS Pathogens, 2021, 17, e1010072.	2.1	20
62	Evolution and diversity of inherited viruses in the Nearctic phantom midge, <i>Chaoborus americanus</i> . Virus Evolution, 2022, 8, veac018.	2.2	3
63	The Neglected Virome of Triatomine Insects. Frontiers in Tropical Diseases, 2022, 3, .	0.5	1
64	Antiviral RNAi Response against the Insect-Specific Agua Salud Alphavirus. MSphere, 2022, 7, e0100321.	1.3	4
65	BmNPV p35 Reduces the Accumulation of Virus-Derived siRNAs and Hinders the Function of siRNAs to Facilitate Viral Infection. Frontiers in Immunology, 2022, 13, 845268.	2.2	3

CITATION REPORT

	CITATION	CITATION REPORT	
#	Article	IF	Citations
66	Viral Induction of Novel Somatic and Germline DNA Functions in Host Arthropods Opens a New Research Frontier in Biology. Frontiers in Molecular Biosciences, 2022, 9, 847670.	1.6	0
67	BmCPV-Derived Circular DNA vcDNA-S7 Mediated by Bombyx mori Reverse Transcriptase (RT) Regulates BmCPV Infection. Frontiers in Immunology, 2022, 13, 861007.	2.2	6
68	Somatic piRNAs and Transposons are Differentially Expressed Coincident with Skeletal Muscle Atrophy and Programmed Cell Death. Frontiers in Genetics, 2021, 12, 775369.	1.1	5
72	Invading viral DNA triggers dsRNA synthesis by RNA polymerase II to activate antiviral RNA interference in Drosophila. Cell Reports, 2022, 39, 110976.	2.9	12
74	PIWI Proteins Play an Antiviral Role in Lepidopteran Cell Lines. Viruses, 2022, 14, 1442.	1.5	7
77	Shrimp genome sequence contains independent clusters of ancient and current Endogenous Viral Elements (EVE) of the parvovirus IHHNV. BMC Genomics, 2022, 23, .	1.2	6
79	Integrated Jingmenvirus Polymerase Gene in Ixodes ricinus Genome. Viruses, 2022, 14, 1908.	1.5	5
80	Optimized In Vitro CRISPR/Cas9 Gene Editing Tool in the West Nile Virus Mosquito Vector, Culex quinquefasciatus. Insects, 2022, 13, 856.	1.0	1
81	Understanding pathogen survival and transmission by arthropod vectors to prevent human disease. Science, 2022, 377, .	6.0	11
82	Virome and nrEVEome diversity of Aedes albopictus mosquitoes from La Reunion Island and China. Virology Journal, 2022, 19, .	1.4	3
84	The piRNA pathway is required for nucleopolyhedrovirus replication in Lepidoptera. Insect Science, 0, ,	1.5	3
85	Culex Mosquito Piwi4 Is Antiviral against Two Negative-Sense RNA Viruses. Viruses, 2022, 14, 2758.	1.5	3
86	Origins and diversification of animal innate immune responses against viral infections. Nature Ecology and Evolution, 0, , .	3.4	6
87	Positiveâ€strand RNA viruses—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2023, 1521, 46-66.	1.8	0
88	Antiviral RNAi Response in Culex quinquefasciatus-Derived HSU Cells. Viruses, 2023, 15, 436.	1.5	2
89	What Are the Functional Roles of Piwi Proteins and piRNAs in Insects?. Insects, 2023, 14, 187.	1.0	6
90	RNA interference is essential to modulating the pathogenesis of mosquito-borne viruses in the yellow fever mosquito <i>Aedes aegypti</i> . Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	10
91	Chromatin profiling identifies transcriptional readthrough as a conserved mechanism for piRNA biogenesis in mosquitoes. Cell Reports, 2023, 42, 112257.	2.9	2

#	Article	IF	CITATIONS
92	Ancient origin of Jingchuvirales derived glycoproteins integrated in arthropod genomes. Genetics and Molecular Biology, 2023, 46, .	0.6	1
97	RNAi: The Mosquito Defense System Against Damage Due to Arbovirus Infection. , 2023, , 3-14.		Ο

CITATION REPORT