Thalidomide promotes degradation of SALL4, a transcri Radial Ray syndrome

ELife 7, DOI: 10.7554/elife.38430

Citation Report

#	Article	IF	CITATIONS
2	Thalidomide Teratogenic Effects Linked to Degradation of SALL4: After 60 years, researchers have now shed light on the mechanism underlying thalidomide's devastating teratogenic effects. American Journal of Medical Genetics, Part A, 2018, 176, 2538-2539.	0.7	1
3	The interacting domains in cereblon differentially modulate the immunomodulatory drug-mediated ubiquitination and degradation of its binding partners. Biochemical and Biophysical Research Communications, 2018, 507, 443-449.	1.0	15
4	Chirality and Wine. Bone Marrow Transplantation, 2018, 53, 1491-1492.	1.3	0
5	A new target for thalidomide. Nature Chemical Biology, 2018, 14, 904-905.	3.9	3
6	The role of ESCO2, SALL4 and TBX5 genes in the susceptibility to thalidomide teratogenesis. Scientific Reports, 2019, 9, 11413.	1.6	11
7	Bifunctional chemical probes inducing protein–protein interactions. Current Opinion in Chemical Biology, 2019, 52, 145-156.	2.8	83
8	De-Novo Design of Cereblon (CRBN) Effectors Guided by Natural Hydrolysis Products of Thalidomide Derivatives. Journal of Medicinal Chemistry, 2019, 62, 6615-6629.	2.9	38
9	Aryl Sulfonamides Degrade RBM39 and RBM23 by Recruitment to CRL4-DCAF15. Cell Reports, 2019, 29, 1499-1510.e6.	2.9	84
10	Structural Basis and Kinetic Pathway of RBM39 Recruitment to DCAF15 by a Sulfonamide Molecular Glue E7820. Structure, 2019, 27, 1625-1633.e3.	1.6	105
11	Evolution of Cereblon-Mediated Protein Degradation as a Therapeutic Modality. ACS Medicinal Chemistry Letters, 2019, 10, 1592-1602.	1.3	39
12	Development of targeted protein degradation therapeutics. Nature Chemical Biology, 2019, 15, 937-944.	3.9	303
13	p63 is a cereblon substrate involved in thalidomide teratogenicity. Nature Chemical Biology, 2019, 15, 1077-1084.	3.9	94
14	Peptidic degron for IMiD-induced degradation of heterologous proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2539-2544.	3.3	41
15	Susceptibility to adverse drug reactions. British Journal of Clinical Pharmacology, 2019, 85, 2205-2212.	1.1	24
16	Molecular mechanisms of cereblon-based drugs. , 2019, 202, 132-139.		46
17	Patterns of substrate affinity, competition, and degradation kinetics underlie biological activity of thalidomide analogs. Blood, 2019, 134, 160-170.	0.6	41
18	Targeted Protein Degradation for Kinase Selectivity. Cell Chemical Biology, 2019, 26, 307-308.	2.5	0
19	A critical evaluation of the approaches to targeted protein degradation for drug discovery. Drug Discovery Today: Technologies, 2019, 31, 5-13.	4.0	37

#	Article	IF	CITATIONS
21	Cereblon modulators: Low molecular weight inducers of protein degradation. Drug Discovery Today: Technologies, 2019, 31, 29-34.	4.0	77
22	Analysis of exposure margins in developmental toxicity studies for detection of human teratogens. Regulatory Toxicology and Pharmacology, 2019, 105, 62-68.	1.3	13
23	Development of Dual and Selective Degraders of Cyclinâ€Dependent Kinases 4 and 6. Angewandte Chemie - International Edition, 2019, 58, 6321-6326.	7.2	179
24	Development of Dual and Selective Degraders of Cyclinâ€Dependent Kinases 4 and 6. Angewandte Chemie, 2019, 131, 6387-6392.	1.6	11
25	Using Ubiquitin Binders to Decipher the Ubiquitin Code. Trends in Biochemical Sciences, 2019, 44, 599-615.	3.7	65
26	The Pandora's box of thalidomide analogs and their substrates. Blood, 2019, 134, 105-106.	0.6	2
27	Neuroinflammation as a Factor of Neurodegenerative Disease: Thalidomide Analogs as Treatments. Frontiers in Cell and Developmental Biology, 2019, 7, 313.	1.8	91
28	Identification and characterization of cancer vulnerabilities via targeted protein degradation. Drug Discovery Today: Technologies, 2019, 31, 81-90.	4.0	25
29	The teratogenic effects of thalidomide on limbs. Journal of Hand Surgery: European Volume, 2019, 44, 88-95.	0.5	53
30	Detection and Prioritization of Developmentally Neurotoxic and/or Neurotoxic Compounds Using Zebrafish. Toxicological Sciences, 2019, 168, 225-240.	1.4	30
31	From Discovery to Bedside: Targeting the Ubiquitin System. Cell Chemical Biology, 2019, 26, 156-177.	2.5	113
32	Bruton tyrosine kinase degradation as a therapeutic strategy for cancer. Blood, 2019, 133, 952-961.	0.6	117
33	Safety differentiation: emerging competitive edge in drug development. Drug Discovery Today, 2019, 24, 285-292.	3.2	1
34	Environmental Risk Factors for Congenital Heart Disease. Cold Spring Harbor Perspectives in Biology, 2020, 12, a037234.	2.3	73
35	pSILAC method coupled with two complementary digestion approaches reveals PRPF39 as a new E7070-dependent DCAF15 substrate. Journal of Proteomics, 2020, 210, 103545.	1.2	15
36	Use of Zebrafish in Drug Discovery Toxicology. Chemical Research in Toxicology, 2020, 33, 95-118.	1.7	315
37	Development and Characterization of a Wee1 Kinase Degrader. Cell Chemical Biology, 2020, 27, 57-65.e9.	2.5	68
38	The Redox Theory of Development. Antioxidants and Redox Signaling, 2020, 32, 715-740.	2.5	37

ARTICLE IF CITATIONS # Exploring Targeted Degradation Strategy for Oncogenic KRASG12C. Cell Chemical Biology, 2020, 27, 39 2.5 182 19-31.e6. Targeted protein degradation: current and future challenges. Current Opinion in Chemical Biology, 2.8 74 2020, 56, 35-41. Discovery of an AKT Degrader with Prolonged Inhibition of Downstream Signaling. Cell Chemical 41 2.5 84 Biology, 2020, 27, 66-73.e7. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nature 3.9 136 Chemical Biology, 2020, 16, 7-14. Role of cereblon in angiogenesis and in mediating the antiangiogenic activity of immunomodulatory 43 0.2 13 drugs. FASEB Journal, 2020, 34, 11395-11404. Focus on germ-layer markers: A human stem cell-based model for in vitro teratogenicity testing. 1.3 Reproductive Toxicology, 2020, 98, 286-298. Small-molecule-induced polymerization triggers degradation of BCL6. Nature, 2020, 588, 164-168. 45 13.7 143 Cereblon Modulators Target ZBTB16 and Its Oncogenic Fusion Partners for Degradation via Distinct Structural Degrons. ACS Chemical Biology, 2020, 15, 3149-3158. 46 1.6 Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development. Cell, 2020, 47 13.5 163 183, 1714-1731.e10. Early Transcriptomic Changes upon Thalidomide Exposure Influence the Later Neuronal Development in Human Embryonic Stem Cell-Derived Spheres. International Journal of Molecular Sciences, 2020, 21, 1.8 5564. A Buchwald–Hartwig Protocol to Enable Rapid Linker Exploration of Cereblon E3â€Ligase PROTACs**. 49 1.7 11 Chemistry - A European Journal, 2020, 26, 16818-16823. The FDA-approved drugs ticlopidine, sertaconazole, and dexlansoprazole can cause morphological 4.2 changes in C.Âelegans. Chemosphere, 2020, 261, 127756. Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. 51 6.9 69 Journal of Hematology and Oncology, 2020, 13, 103. PROTACs: An Emerging Therapeutic Modality in Precision Medicine. Cell Chemical Biology, 2020, 27, 2.5 242 998-1014. Selective Degradation of GSPT1 by Cereblon Modulators Identified via a Focused Combinatorial 53 1.6 46 Library. ACS Chemical Biology, 2020, 15, 2722-2730. ARID2 is a pomalidomide-dependent CRL4CRBN substrate in multiple myeloma cells. Nature Chemical 54 53 Biology, 2020, 16, 1208-1217. Structural bases of IMiD selectivity that emerges by 5-hydroxythalidomide. Nature Communications, 55 5.8 38 2020, 11, 4578. Combination Treatment with GSK126 and Pomalidomide Induces B-Cell Differentiation in EZH2 Gain-of-Function Mutant Diffuse Large B-Cell Lymphoma. Cancers, 2020, 12, 2541.

		Report	
#	Article	IF	CITATIONS
57	Caspase-8 Inhibition Prevents the Cleavage and Degradation of E3 Ligase Substrate Receptor Cereblon and Potentiates Its Biological Function. Frontiers in Cell and Developmental Biology, 2020, 8, 605989.	1.8	4
58	Ubiquitination and Ubiquitin-Like Modifications in Multiple Myeloma: Biology and Therapy. Cancers, 2020, 12, 3764.	1.7	13
59	Cereblon Promotes the Ubiquitination and Proteasomal Degradation of Interleukin Enhancer-Binding Factor 2. Protein Journal, 2020, 39, 411-421.	0.7	2
60	Molecular Mechanisms of the Teratogenic Effects of Thalidomide. Pharmaceuticals, 2020, 13, 95.	1.7	48
61	Beute für das Proteasom: Gezielter Proteinabbau aus medizinalchemischer Perspektive. Angewandte Chemie, 2020, 132, 15576-15595.	1.6	6
62	Prey for the Proteasome: Targeted Protein Degradation—A Medicinal Chemist's Perspective. Angewandte Chemie - International Edition, 2020, 59, 15448-15466.	7.2	102
63	Development of the Proximal-Anterior Skeletal Elements in the Mouse Hindlimb Is Regulated by a Transcriptional and Signaling Network Controlled by Sall4. Genetics, 2020, 215, 129-141.	1.2	8
64	PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics. Oncogene, 2020, 39, 4909-4924.	2.6	139
65	The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature, 2020, 585, 293-297.	13.7	219
66	†Design, synthesis, and strategic use of small chemical probes towardÂidentification of novel targets for drug development'. Current Opinion in Chemical Biology, 2020, 56, 91-97.	2.8	9
67	A Cell-Based Target Engagement Assay for the Identification of Cereblon E3ÂUbiquitin Ligase Ligands and Their Application in HDAC6 Degraders. Cell Chemical Biology, 2020, 27, 866-876.e8.	2.5	51
68	Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nature Structural and Molecular Biology, 2020, 27, 605-614.	3.6	111
69	Modeling Congenital Heart Disease Using Pluripotent Stem Cells. Current Cardiology Reports, 2020, 22, 55.	1.3	4
70	Manumycin polyketides act as molecular glues between UBR7 and P53. Nature Chemical Biology, 2020, 16, 1189-1198.	3.9	79
71	Molecular mechanisms of thalidomide and its derivatives. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2020, 96, 189-203.	1.6	55
72	The application of ubiquitin ligases in the PROTAC drug design. Acta Biochimica Et Biophysica Sinica, 2020, 52, 776-790.	0.9	13
73	Bifunctional Molecules beyond PROTACs. Journal of Medicinal Chemistry, 2020, 63, 2802-2806.	2.9	15
74	Targeting the E3 ubiquitin ligases DCAF15 and cereblon for cancer therapy. Seminars in Cancer Biology, 2020, 67, 53-60.	4.3	9

ARTICLE IF CITATIONS # Critical Assessment of Targeted Protein Degradation as a Research Tool and Pharmacological 75 4.0 56 Modality. Trends in Pharmacological Sciences, 2020, 41, 305-317. Crystal structure of the SALL4–pomalidomide–cereblon–DDB1 complex. Nature Structural and 3.6 Mólecular Biology, 2020, 27, 319-322. Genome-wide screening reveals a role for subcellular localization of CRBN in the anti-myeloma 77 1.6 25 activity of pomalidomide. Scientific Reports, 2020, 10, 4012. Rapid and deep-scale ubiquitylation profiling for biology and translational research. Nature 5.8 Communications, 2020, 11, 359. CRL4-Cereblon complex in Thalidomide Embryopathy: a translational investigation. Scientific Reports, 79 1.6 8 2020, 10, 851. Novel immunomodulatory drugs and neo-substrates. Biomarker Research, 2020, 8, 2. 2.8 Harnessing the Power of Proteolysis for Targeted Protein Inactivation. Molecular Cell, 2020, 77, 81 4.5 140 446-460. Proteolysisâ€targeting chimeras in drug development: A safety perspective. British Journal of Pharmacology, 2020, 177, 1709-1718. 2.7 The novel cereblon modulator CC-885 inhibits mitophagy via selective degradation of BNIP3L. Acta 83 2.8 25 Pharmacologica Sinica, 2020, 41, 1246-1254. Recent advances in the molecular mechanism of thalidomide teratogenicity. Biomedicine and 84 2.5 Pharmacotherapy, 2020, 127, 110114. Proteomic approaches for the profiling of ubiquitylation events and their applications in drug 1.2 85 10 discovery. Journal of Proteomics, 2021, 231, 103996. A drug repositioning success: The repositioned therapeutic applications and mechanisms of action of 86 24 thalidomide. Journal of Oncology Pharmacy Practice, 2021, 27, 673-678. CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia 87 0.6 103 stem cells. Blood, 2021, 137, 661-677. Small-Molecule Approaches to Targeted Protein Degradation. Annual Review of Cancer Biology, 2021, 2.3 5, 181-201. Target Validation Using PROTACs: Applying the Four Pillars Framework. SLAS Discovery, 2021, 26, 89 1.4 22 474-483. Generation of a lenalidomide-sensitive syngeneic murine in vivo multiple myeloma model by expression of Crbn. Experimental Hematology, 2021, 93, 61-69.e4. Proteomics-Based Identification of DUB Substrates Using Selective Inhibitors. Cell Chemical Biology, 91 2.527 2021, 28, 78-87.e3. A Tale of Two Tails: Efficient Profiling of Protein Degraders by Specific Functional and Target 1.4 Engagement Readouts. SLAS Discovery, 2021, 26, 534-546.

#	Article	IF	CITATIONS
93	PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of catalytic drugs. Progress in Medicinal Chemistry, 2021, 60, 67-190.	4.1	23
94	Thalidomide and its metabolite 5â€hydroxythalidomide induce teratogenicity via the cereblon neosubstrate PLZF. EMBO Journal, 2021, 40, e105375.	3.5	47
95	Zinc Finger Protein SALL4 Functions through an AT-Rich Motif to Regulate Gene Expression. Cell Reports, 2021, 34, 108574.	2.9	36
96	Selective degradation-inducing probes for studying cereblon (CRBN) biology. RSC Medicinal Chemistry, 2021, 12, 1381-1390.	1.7	17
97	FutureTox IV Workshop Summary: <i>Predictive Toxicology for Healthy Children</i> . Toxicological Sciences, 2021, 180, 198-211.	1.4	15
98	The Vital Role of Proteomics in Characterizing Novel Protein Degraders. SLAS Discovery, 2021, 26, 518-523.	1.4	12
99	SALL4 controls cell fate in response to DNA base composition. Molecular Cell, 2021, 81, 845-858.e8.	4.5	29
100	Rationalizing PROTAC-Mediated Ternary Complex Formation Using Rosetta. Journal of Chemical Information and Modeling, 2021, 61, 1368-1382.	2.5	77
102	Avadomide Induces Degradation of ZMYM2 Fusion Oncoproteins in Hematologic Malignancies. Blood Cancer Discovery, 2021, 2, 250-265.	2.6	19
103	Repurposing Immunomodulatory Imide Drugs (IMiDs) in Neuropsychiatric and Neurodegenerative Disorders. Frontiers in Neuroscience, 2021, 15, 656921.	1.4	16
104	N-Adamantyl Phthalimidine: A New Thalidomide-like Drug That Lacks Cereblon Binding and Mitigates Neuronal and Synaptic Loss, Neuroinflammation, and Behavioral Deficits in Traumatic Brain Injury and LPS Challenge. ACS Pharmacology and Translational Science, 2021, 4, 980-1000.	2.5	14
105	Cereblon-Based Small-Molecule Compounds to Control Neural Stem Cell Proliferation in Regenerative Medicine. Frontiers in Cell and Developmental Biology, 2021, 9, 629326.	1.8	13
107	Phenotypic screening with target identification and validation in the discovery and development of E3 ligase modulators. Cell Chemical Biology, 2021, 28, 283-299.	2.5	15
108	Cancer therapies based on targeted protein degradation — lessons learned with lenalidomide. Nature Reviews Clinical Oncology, 2021, 18, 401-417.	12.5	69
109	Ubiquitinâ€dependent regulation of transcription in development and disease. EMBO Reports, 2021, 22, e51078.	2.0	16
110	Acute pharmacological degradation of Helios destabilizes regulatory T cells. Nature Chemical Biology, 2021, 17, 711-717.	3.9	52
112	Advancing targeted protein degradation for cancer therapy. Nature Reviews Cancer, 2021, 21, 638-654.	12.8	251
113	Key regulators of sensitivity to immunomodulatory drugs in cancer treatment. Biomarker Research, 2021, 9, 43.	2.8	8

#	Article	IF	CITATIONS
114	Comparative Genomics Identifies Putative Interspecies Mechanisms Underlying Crbn-Sall4-Linked Thalidomide Embryopathy. Frontiers in Genetics, 2021, 12, 680217.	1.1	2
115	Unifying Catalysis Framework to Dissect Proteasomal Degradation Paradigms. ACS Central Science, 2021, 7, 1117-1125.	5.3	15
116	Exploiting ubiquitin ligase cereblon as a target for small-molecule compounds in medicine and chemical biology. Cell Chemical Biology, 2021, 28, 987-999.	2.5	23
117	An E3 ligase guide to the galaxy of small-molecule-induced protein degradation. Cell Chemical Biology, 2021, 28, 1000-1013.	2.5	55
118	Development of MDM2 degraders based on ligands derived from Ugi reactions: Lessons and discoveries. European Journal of Medicinal Chemistry, 2021, 219, 113425.	2.6	36
120	Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. Cell Chemical Biology, 2021, 28, 1014-1031.	2.5	62
121	A biphenyl inhibitor of elF4E targeting an internal binding site enables the design of cell-permeable PROTAC-degraders. European Journal of Medicinal Chemistry, 2021, 219, 113435.	2.6	15
122	Molecular Glues for Targeted Protein Degradation: From Serendipity to Rational Discovery. Journal of Medicinal Chemistry, 2021, 64, 10606-10620.	2.9	144
123	Light-Controllable PROTACs for Temporospatial Control of Protein Degradation. Frontiers in Cell and Developmental Biology, 2021, 9, 678077.	1.8	18
124	Establishment of an in vitro method of rabbit embryo toxicity with toxicokinetics study. Journal of Applied Toxicology, 2021, , .	1.4	0
125	Chemo-proteomics exploration of HDAC degradability by small molecule degraders. Cell Chemical Biology, 2021, 28, 1514-1527.e4.	2.5	41
126	Haven't got a glue: Protein surface variation for the design of molecular glue degraders. Cell Chemical Biology, 2021, 28, 1032-1047.	2.5	78
127	Thalidomide affects limb formation and multiple myeloma related genes in human induced pluripotent stem cells and their mesoderm differentiation. Biochemistry and Biophysics Reports, 2021, 26, 100978.	0.7	2
128	Structure-Guided Design of a "Bump-and-Hole―Bromodomain-Based Degradation Tag. Journal of Medicinal Chemistry, 2021, 64, 11637-11650.	2.9	11
129	Identification and selectivity profiling of small-molecule degraders via multi-omics approaches. Cell Chemical Biology, 2021, 28, 1048-1060.	2.5	34
131	Targeted Degradation of the Oncogenic Phosphatase SHP2. Biochemistry, 2021, 60, 2593-2609.	1.2	21
132	Folate-Guided Protein Degradation by Immunomodulatory Imide Drug-Based Molecular Glues and Proteolysis Targeting Chimeras. Journal of Medicinal Chemistry, 2021, 64, 12273-12285.	2.9	37
133	Mutations in CRBN and other cereblon pathway genes are infrequently associated with acquired resistance to immunomodulatory drugs. Leukemia, 2021, 35, 3017-3020.	3.3	11

#	ARTICLE	IF	CITATIONS
134	The rise and rise of protein degradation: Opportunities and challenges ahead. Drug Discovery Today, 2021, 26, 2889-2897.	3.2	41
135	The E3 ubiquitin ligase component, Cereblon, is an evolutionarily conserved regulator of Wnt signaling. Nature Communications, 2021, 12, 5263.	5.8	20
136	TRIM8 modulates the EWS/FLI oncoprotein to promote survival in Ewing sarcoma. Cancer Cell, 2021, 39, 1262-1278.e7.	7.7	49
137	Caspase-8 Regulates the Antimyeloma Activity of Bortezomib and Lenalidomide. Journal of Pharmacology and Experimental Therapeutics, 2021, 379, 303-309.	1.3	5
138	USP15 antagonizes CRL4 ^{CRBN} -mediated ubiquitylation of glutamine synthetase and neosubstrates. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
139	Redefining the Scope of Targeted Protein Degradation: Translational Opportunities in Hijacking the Autophagy–Lysosome Pathway. Biochemistry, 2023, 62, 580-587.	1.2	8
140	Ligandability of E3 Ligases for Targeted Protein Degradation Applications. Biochemistry, 2023, 62, 588-600.	1.2	47
141	In vitro teratogenicity testing using a 3D, embryo-like gastruloid system. Reproductive Toxicology, 2021, 105, 72-90.	1.3	35
142	Profiling CELMoD-Mediated Degradation of Cereblon. Methods in Molecular Biology, 2021, 2365, 283-300.	0.4	1
143	Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Science Translational Medicine, 2021, 13, .	5.8	132
144	Structural Biology of CRL Ubiquitin Ligases. Advances in Experimental Medicine and Biology, 2020, 1217, 9-31.	0.8	38
148	Targeted Protein Degradation: An Emerging Therapeutic Strategy in Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2020, 21, 214-230.	0.9	11
149	Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. ELife, 2019, 8, .	2.8	184
150	Unlocking a dark past. ELife, 2018, 7, .	2.8	1
153	PROTAC-mediated Target Degradation: A Paradigm Changer in Drug Discovery?. RSC Drug Discovery Series, 2020, , 1-13.	0.2	2
154	Chapter 6. Structure-based PROTAC Design. RSC Drug Discovery Series, 2020, , 115-134.	0.2	0
156	Clinical and genetic approach in the characterization of newborns with anorectal malformation. Journal of Maternal-Fetal and Neonatal Medicine, 2022, 35, 4513-4520.	0.7	3
157	IMiDs induce FAM83F degradation via an interaction with CK1α to attenuate Wnt signalling. Life Science Alliance, 2021, 4, e202000804.	1.3	3

#	ARTICLE	IF	CITATIONS
158	Biochemical mechanisms of drug toxicity. , 2022, , 267-302.		0
159	Targeted Protein Degradation Chemical Probes. Chemical Biology, 2020, , 150-181.	0.1	0
160	Pregnancy and birth outcomes: A role for environment-epigenome interactions. , 2020, , 109-123.		0
161	New Activities of CELMoDs, Cereblon E3 Ligase-modulating Drugs. RSC Drug Discovery Series, 2020, , 94-114.	0.2	Ο
163	Inhibitors, PROTACs and Molecular Glues as Diverse Therapeutic Modalities to Target Cyclin-Dependent Kinase. Cancers, 2021, 13, 5506.	1.7	17
165	Applications of Targeted Protein Degradation in Drug Discovery. Annals of Chemical Science Research, 2021, 2, .	0.1	Ο
166	Discovering new biology with drug-resistance alleles. Nature Chemical Biology, 2021, 17, 1219-1229.	3.9	11
167	EP300 Selectively Controls the Enhancer Landscape of <i>MYCN</i> -Amplified Neuroblastoma. Cancer Discovery, 2022, 12, 730-751.	7.7	64
168	Safety and efficacy of thalidomide in patients with transfusion-dependent β-thalassemia: a randomized clinical trial. Signal Transduction and Targeted Therapy, 2021, 6, 405.	7.1	14
170	PLZF and its fusion proteins are pomalidomide-dependent CRBN neosubstrates. Communications Biology, 2021, 4, 1277.	2.0	6
171	Molecular Mechanisms of Cereblon-Interacting Small Molecules in Multiple Myeloma Therapy. Journal of Personalized Medicine, 2021, 11, 1185.	1.1	6
172	Genome Instability in Multiple Myeloma: Facts and Factors. Cancers, 2021, 13, 5949.	1.7	17
173	A proximity biotinylation-based approach to identify protein-E3 ligase interactions induced by PROTACs and molecular glues. Nature Communications, 2022, 13, 183.	5.8	36
174	Development of Photolenalidomide for Cellular Target Identification. Journal of the American Chemical Society, 2022, 144, 606-614.	6.6	20
175	PROTAC targeted protein degraders: the past is prologue. Nature Reviews Drug Discovery, 2022, 21, 181-200.	21.5	912
176	Ligand-induced degrons for studying nuclear functions. Current Opinion in Cell Biology, 2022, 74, 29-36.	2.6	11
177	The Ubiquitination-Dependent and -Independent Functions of Cereblon in Cancer and Neurological Diseases. Journal of Molecular Biology, 2022, 434, 167457.	2.0	5
178	Defining molecular glues with a dual-nanobody cannabidiol sensor. Nature Communications, 2022, 13, 815.	5.8	39

#	Article	IF	CITATIONS
179	Emerging mechanisms of targeted protein degradation by molecular glues. Methods in Cell Biology, 2022, , .	0.5	1
181	Profiling the Landscape of Drug Resistance Mutations in Neosubstrates to Molecular Glue Degraders. ACS Central Science, 2022, 8, 417-429.	5.3	30
182	The emerging role of mass spectrometry-based proteomics in drug discovery. Nature Reviews Drug Discovery, 2022, 21, 637-654.	21.5	110
183	Stem cellâ€based regionâ€specific brain organoids: Novel models to understand neurodevelopmental defects. Birth Defects Research, 2022, 114, 1003-1013.	0.8	1
184	A New IMiD for Systemic Lupus Erythematosus — Tempering Our Excitement. New England Journal of Medicine, 2022, 386, 1085-1086.	13.9	1
185	Targeted protein degraders march towards the clinic for neurodegenerative diseases. Ageing Research Reviews, 2022, 78, 101616.	5.0	19
186	Development of PDE6D and CK1α Degraders through Chemical Derivatization of FPFT-2216. Journal of Medicinal Chemistry, 2022, 65, 747-756.	2.9	15
187	SALL Proteins; Common and Antagonistic Roles in Cancer. Cancers, 2021, 13, 6292.	1.7	16
190	Optimization of the <i>TeraTox</i> Assay for Preclinical Teratogenicity Assessment. Toxicological Sciences, 2022, 188, 17-33.	1.4	10
191	IKAROS and MENIN coordinate therapeutically actionable leukemogenic gene expression in MLL-r acute myeloid leukemia. Nature Cancer, 2022, 3, 595-613.	5.7	16
192	Advances and perspectives of proteolysis targeting chimeras (PROTACs) in drug discovery. Bioorganic Chemistry, 2022, 125, 105848.	2.0	17
194	Selectivity through Targeted Protein Degradation (TPD). Journal of Medicinal Chemistry, 2022, 65, 8113-8126.	2.9	15
196	Discovery of CRBN as a target of thalidomide: a breakthrough for progress in the development of protein degraders. Chemical Society Reviews, 2022, 51, 6234-6250.	18.7	37
197	Degradation of GSPT1 causes TP53-independent cell death in leukemia while sparing normal hematopoietic stem cells. Journal of Clinical Investigation, 2022, 132, .	3.9	17
198	Temporal resolution of gene derepression and proteome changes upon PROTAC-mediated degradation of BCL11A protein in erythroid cells. Cell Chemical Biology, 2022, 29, 1273-1287.e8.	2.5	14
199	The Casein kinase 1α agonist pyrvinium attenuates Wnt-mediated CK1α degradation via interaction with the E3Âubiquitin ligase component Cereblon. Journal of Biological Chemistry, 2022, 298, 102227.	1.6	4
200	SimPLIT: Simplified Sample Preparation for Large-Scale Isobaric Tagging Proteomics. Journal of Proteome Research, 2022, 21, 1842-1856.	1.8	9
201	Enriching Proteolysis Targeting Chimeras with a Second Modality: When Two Are Better Than One. Journal of Medicinal Chemistry, 2022, 65, 9507-9530.	2.9	14

#	Article	IF	CITATIONS
202	Mechanisms of action of immunomodulatory drugs — from teratogenicity to treatment of multiple myeloma. Gematologiya I Transfuziologiya, 2022, 67, 240-260.	0.1	4
203	Molecular Glues: The Adhesive Connecting Targeted Protein Degradation to the Clinic. Biochemistry, 2023, 62, 601-623.	1.2	43
204	Targeting cereblon in hematologic malignancies. Blood Reviews, 2023, 57, 100994.	2.8	8
205	Key Considerations in Targeted Protein Degradation Drug Discovery and Development. Frontiers in Chemistry, 0, 10, .	1.8	7
206	Redirecting the Neo-Substrate Specificity of Cereblon-Targeting PROTACs to Helios. ACS Chemical Biology, 2022, 17, 2404-2410.	1.6	3
207	SALL4: An Intriguing Therapeutic Target in Cancer Treatment. Cells, 2022, 11, 2601.	1.8	10
209	Methods to characterize and discover molecular degraders in cells. Chemical Society Reviews, 2022, 51, 7115-7137.	18.7	3
210	Chirality for simple graphs of size up to 12. Journal of Mathematical Chemistry, 0, , .	0.7	0
211	Von Hippel–Lindau disease: insights into oxygen sensing, protein degradation, and cancer. Journal of Clinical Investigation, 2022, 132, .	3.9	36
212	CRL4CRBN E3 Ligase Complex as a Therapeutic Target in Multiple Myeloma. Cancers, 2022, 14, 4492.	1.7	12
213	Exploring the target scope of KEAP1 E3 ligase-based PROTACs. Cell Chemical Biology, 2022, 29, 1470-1481.e31.	2.5	29
214	Proteolysis Targeting Chimeras (PROTACs): A Perspective on Integral Membrane Protein Degradation. ACS Pharmacology and Translational Science, 2022, 5, 849-858.	2.5	18
215	Embryo-fetal exposure and developmental outcome of lenalidomide following oral administration to pregnant cynomolgus monkeys. Reproductive Toxicology, 2022, 114, 57-65.	1.3	2
218	Acute pharmacological degradation of ERK5 does not inhibit cellular immune response or proliferation. Cell Chemical Biology, 2022, , .	2.5	7
219	Using human genetics to improve safety assessment of therapeutics. Nature Reviews Drug Discovery, 2023, 22, 145-162.	21.5	20
220	The E3 ligase adapter cereblon targets the C-terminal cyclic imide degron. Nature, 2022, 610, 775-782.	13.7	49
221	Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacologica Sinica, 2022, 43, 3112-3129.	2.8	11
222	The role of E3 ubiquitin ligase in multiple myeloma: potential for cereblon E3 ligase modulators in the treatment of relapsed/refractory disease. Expert Review of Proteomics, 2022, 19, 235-246.	1.3	3

#	Article	IF	CITATIONS
227	Synthesis, antiproliferative and anti-MDR activities of lathyrane diterpene derivatives based on configuration inversion strategy. Bioorganic Chemistry, 2023, 131, 106329.	2.0	1
228	PPI-Miner: A Structure and Sequence Motif Co-Driven Protein–Protein Interaction Mining and Modeling Computational Method. Journal of Chemical Information and Modeling, 2022, 62, 6160-6171.	2.5	2
229	Development and Utility of a PAK1-Selective Degrader. Journal of Medicinal Chemistry, 2022, 65, 15627-15641.	2.9	6
232	Targeted Protein Degradation: Clinical Advances in the Field of Oncology. International Journal of Molecular Sciences, 2022, 23, 15440.	1.8	8
233	Development of potent and selective degraders of PI5P4Kγ. European Journal of Medicinal Chemistry, 2023, 247, 115027.	2.6	4
234	A proteome-wide atlas of drug mechanism of action. Nature Biotechnology, 2023, 41, 845-857.	9.4	28
235	Structure of SALL4 zinc finger domain reveals link between AT-rich DNA binding and Okihiro syndrome. Life Science Alliance, 2023, 6, e202201588.	1.3	2
236	Design, synthesis and biological evaluation of novel quinazolinone derivatives as CRBN E3 ligase modulators. European Journal of Medicinal Chemistry, 2023, 247, 115016.	2.6	1
237	Clinical Significance of Glycolytic Metabolic Activity in Hepatocellular Carcinoma. Cancers, 2023, 15, 186.	1.7	1
239	Structural rationalization of GSPT1 and IKZF1 degradation by thalidomide molecular glue derivatives. RSC Medicinal Chemistry, 2023, 14, 501-506.	1.7	8
240	EFMC: Trends in Medicinal Chemistry and Chemical Biology. ChemBioChem, 2023, 24, .	1.3	2
241	ITK degradation to block TÂcell receptor signaling and overcome therapeutic resistance in TÂcell lymphomas. Cell Chemical Biology, 2023, , .	2.5	2
242	Targeted protein posttranslational modifications by chemically induced proximity for cancer therapy. Journal of Biological Chemistry, 2023, 299, 104572.	1.6	9
243	A deep dive into degrader-induced protein-protein interfaces. Trends in Pharmacological Sciences, 2023, 44, 196-198.	4.0	0
244	Introduction to the <i>Targeted Degradation and Autophagy</i> Special Issue. Biochemistry, 2023, 62, 555-556.	1.2	0
245	Broad spectrum of anomalies including quadricuspid aortic valve associated with a novel frameshift <scp><i>SALL4</i></scp> variant. Clinical Genetics, 2023, 104, 133-135.	1.0	2
247	E3 Ligases Meet Their Match: Fragment-Based Approaches to Discover New E3 Ligands and to Unravel E3 Biology. Journal of Medicinal Chemistry, 2023, 66, 3173-3194.	2.9	13
248	Augmentation of Pectoral Fin Teratogenicity by Thalidomide in Human Cytochrome P450 3A-Expressing Zebrafish. Pharmaceuticals, 2023, 16, 368.	1.7	1

#	Article	IF	CITATIONS
249	Discovery and characterization of a selective IKZF2 glue degrader for cancer immunotherapy. Cell Chemical Biology, 2023, 30, 235-247.e12.	2.5	27
250	Using Rabbit Induced Pluripotent Stem Cell-Derived Cardiomyocytes to Investigate Drug-Induced Fetal Heart Malformations. Applied in Vitro Toxicology, 2023, 9, 23-34.	0.6	0
251	Cohesin: an emerging master regulator at the heart of cardiac development. Molecular Biology of the Cell, 2023, 34, .	0.9	0
252	Zebrafish in Drug Discovery: Safety Assessment. , 2022, , 1-21.		0
253	The stem cell–supporting small molecule UM171 triggers Cul3-KBTBD4–mediated degradation of ELM2 domain–harboring proteins. Journal of Biological Chemistry, 2023, 299, 104662.	1.6	2
254	Heterobifunctional Ligase Recruiters Enable pan-Degradation of Inhibitor of Apoptosis Proteins. Journal of Medicinal Chemistry, 2023, 66, 4703-4733.	2.9	2
256	Rational Chemical Design of Molecular Glue Degraders. ACS Central Science, 2023, 9, 915-926.	5.3	24
261	Editorial: Model organisms in predictive toxicology 2022. Frontiers in Pharmacology, 0, 14, .	1.6	0
285	Proteolysis Targeting Chimera (PROTAC) Design. , 2023, , 158-187.		0
292	SMALL-MOLECULE DEGRADERS OF IKAROS ZINC FINGER (IKZF) TRANSCRIPTION FACTORS. Medicinal Chemistry Reviews, 0, , 235-259.	0.1	0
293	PROTACs reach clinical development in inflammatory skin disease. Nature Medicine, 0, , .	15.2	0