Cryo-EM structures of the autoinhibited E. coli ATP syn

ELife 5, DOI: 10.7554/elife.21598

Citation Report

#	Article	IF	CITATIONS
1	Cryo-EM analysis of a domain antibody bound rotary ATPase complex. Journal of Structural Biology, 2017, 197, 350-353.	1.3	7
2	Conformational dynamics of the rotary subunit F in the A ₃ B ₃ <scp>DF</scp> complex of <i>Methanosarcina mazei</i> Gö1 Aâ€ <scp>ATP</scp> synthase monitored by singleâ€molecule <scp>FRET</scp> . FEBS Letters, 2017, 591, 854-862.	1.3	8
3	Atomic model for the dimeric F _O region of mitochondrial ATP synthase. Science, 2017, 358, 936-940.	6.0	194
4	A γ-subunit point mutation in Chlamydomonas reinhardtii chloroplast F1Fo-ATP synthase confers tolerance to reactive oxygen species. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 966-974.	0.5	13
5	Protonation-dependent stepped rotation of the F-type ATP synthase c-ring observed by single-molecule measurements. Journal of Biological Chemistry, 2017, 292, 17093-17100.	1.6	21
6	Catalytic robustness and torque generation of the F1-ATPase. Biophysical Reviews, 2017, 9, 103-118.	1.5	48
7	Elastic strain and twist analysis of protein structural data and allostery of the transmembrane channel KcsA. Physical Biology, 2018, 15, 036004.	0.8	5
8	ATP synthase from <i>Trypanosoma brucei</i> has an elaborated canonical F ₁ -domain and conventional catalytic sites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2102-2107.	3.3	27
9	The <scp>NMR</scp> solution structure of <i>Mycobacterium tuberculosis</i> Fâ€ <scp>ATP</scp> synthase subunit ε provides new insight into energy coupling inside the rotary engine. FEBS Journal, 2018, 285, 1111-1128.	2.2	37
10	Cryo EM structure of intact rotary H+-ATPase/synthase from Thermus thermophilus. Nature Communications, 2018, 9, 89.	5.8	44
11	Crystallographic and enzymatic insights into the mechanisms of Mg-ADP inhibition in the A1 complex of the A1AO ATP synthase. Journal of Structural Biology, 2018, 201, 26-35.	1.3	4
12	Deleting the IF ₁ -like <i>ζ</i> subunit from <i>Paracoccus denitrificans</i> ATP synthase is not sufficient to activate ATP hydrolysis. Open Biology, 2018, 8, 170206.	1.5	19
13	Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. Science, 2018, 362, 829-834.	6.0	155
14	Control of rotation of the F1FO-ATP synthase nanomotor by an inhibitory α-helix from unfolded ε or intrinsically disordered ζ and IF1 proteins. Journal of Bioenergetics and Biomembranes, 2018, 50, 403-424.	1.0	17
15	ADP-Inhibition of H+-FOF1-ATP Synthase. Biochemistry (Moscow), 2018, 83, 1141-1160.	0.7	24
16	The Peripheral Stalk of Rotary ATPases. Frontiers in Physiology, 2018, 9, 1243.	1.3	24
17	Evidence for a Partially Stalled γ Rotor in F ₁ -ATPase from Hydrogen–Deuterium Exchange Experiments and Molecular Dynamics Simulations. Journal of the American Chemical Society, 2018, 140, 14860-14869.	6.6	10
18	Structure and function of Mycobacterium-specific components of F-ATP synthase subunits α and ε. Journal of Structural Biology, 2018, 204, 420-434.	1.3	9

#	Article	IF	CITATIONS
19	Ectopic Neo-Formed Intracellular Membranes in Escherichia coli: A Response to Membrane Protein-Induced Stress Involving Membrane Curvature and Domains. Biomolecules, 2018, 8, 88.	1.8	13
20	Cryo-EM of ATP synthases. Current Opinion in Structural Biology, 2018, 52, 71-79.	2.6	46
21	Diffusion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy. Accounts of Chemical Research, 2018, 51, 1911-1920.	7.6	67
22	Insights into the regulatory function of the É› subunit from bacterial F-type ATP synthases: a comparison of structural, biochemical and biophysical data. Open Biology, 2018, 8, 170275.	1.5	21
23	Molecular basis of diseases caused by the mtDNA mutation m.8969G>A in the subunit a of ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 602-611.	0.5	19
24	The regulatory subunit ε in Escherichia coli FOF1-ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 775-788.	0.5	41
25	ATP Synthase Diseases of Mitochondrial Genetic Origin. Frontiers in Physiology, 2018, 9, 329.	1.3	88
26	Nucleus-Encoded Protein BFA1 Promotes Efficient Assembly of the Chloroplast ATP Synthase Coupling Factor 1. Plant Cell, 2018, 30, 1770-1788.	3.1	38
27	Structure, mechanism, and regulation of the chloroplast ATP synthase. Science, 2018, 360, .	6.0	308
28	Engineered Protein Model of the ATP synthase H+- Channel Shows No Salt Bridge at the Rotor-Stator Interface. Scientific Reports, 2018, 8, 11361.	1.6	4
29	Interaction between γC87 and γR242 residues participates in energy coupling between catalysis and proton translocation in Escherichia coli ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 679-687.	0.5	5
30	Disrupting coupling within mycobacterial F-ATP synthases subunit ε causes dysregulated energy production and cell wall biosynthesis. Scientific Reports, 2019, 9, 16759.	1.6	29
31	Cryo-EM studies of the rotary H ⁺ -ATPase/synthase from <i>Thermus thermophilus</i> . Biophysics and Physicobiology, 2019, 16, 140-146.	0.5	8
32	The structure of the catalytic domain of the ATP synthase from <i>Mycobacterium smegmatis</i> is a target for developing antitubercular drugs. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4206-4211.	3.3	38
33	Amino Acid Residues β139, β189, and β319 Modulate ADP-Inhibition in Escherichia coli H+-FOF1-ATP Synthase. Biochemistry (Moscow), 2019, 84, 407-415.	0.7	4
34	Structure of F 1 -ATPase from the obligate anaerobe Fusobacterium nucleatum. Open Biology, 2019, 9, 190066.	1.5	3
35	Structure and subunit arrangement of Mycobacterial F1FO ATP synthase and novel features of the unique mycobacterial subunit δ. Journal of Structural Biology, 2019, 207, 199-208.	1.3	22
36	Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science, 2019, 364, 1068-1075.	6.0	145

CITATION REPORT

	CITATION	CITATION REPORT	
#	Article	IF	Citations
37	Structure and Mechanisms of F-Type ATP Synthases. Annual Review of Biochemistry, 2019, 88, 515-549.	5.0	266
38	Essay on Biomembrane Structure. Journal of Membrane Biology, 2019, 252, 115-130.	1.0	11
39	The structural features of AcetobacteriumÂwoodii F―ATP synthase reveal the importance of the unique subunit γâ€loop in Na + translocation and ATP synthesis. FEBS Journal, 2019, 286, 1894-1907.	2.2	4
40	Structural Asymmetry and Kinetic Limping of Single Rotary F-ATP Synthases. Molecules, 2019, 24, 504.	1.7	21
41	Unusual features of the c-ring of F1FO ATP synthases. Scientific Reports, 2019, 9, 18547.	1.6	19
42	Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of Enterococcus hirae V1-ATPase. Journal of Biological Chemistry, 2019, 294, 17017-17030.	1.6	29
43	Mutation Q259L in subunit beta in Bacillus subtilis ATP synthase attenuates ADP-inhibition and decreases fitness in mixed cultures. Biochemical and Biophysical Research Communications, 2019, 509, 102-107.	1.0	5
44	Distance measurements in the F0F1-ATP synthase from E. coli using smFRET and PELDOR spectroscopy. European Biophysics Journal, 2020, 49, 1-10.	1.2	4
45	Unique structural and mechanistic properties of mycobacterial F-ATP synthases: Implications for drug design. Progress in Biophysics and Molecular Biology, 2020, 152, 64-73.	1.4	22
46	The Unique C-Terminal Extension of Mycobacterial F-ATP Synthase Subunit α Is the Major Contributor to Its Latent ATP Hydrolysis Activity. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	12
47	The 3 × 120° rotary mechanism of <i>Paracoccus denitrificans</i> F ₁ -ATPase is different from that of the bacterial and mitochondrial F ₁ -ATPases. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29647-29657.	3.3	19
48	External succinate and potassium ions influence Dcu dependent FOF1-ATPase activity and H+ flux of Escherichia coli at different pHs. Journal of Bioenergetics and Biomembranes, 2020, 52, 377-382.	1.0	9
49	Type III ATP synthase is a symmetry-deviated dimer that induces membrane curvature through tetramerization. Nature Communications, 2020, 11, 5342.	5.8	37
50	Significance of Leu and Ser in the βDELSEED-loop of Escherichia coli ATP synthase. International Journal of Biological Macromolecules, 2020, 165, 2588-2597.	3.6	5
51	Physiology of Highly Radioresistant Escherichia coli After Experimental Evolution for 100 Cycles of Selection. Frontiers in Microbiology, 2020, 11, 582590.	1.5	7
52	Structural basis of redox modulation on chloroplast ATP synthase. Communications Biology, 2020, 3, 482.	2.0	25
53	Structure of the dimeric ATP synthase from bovine mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23519-23526.	3.3	136
54	A Clobal Ramachandran Score Identifies Protein Structures with Unlikely Stereochemistry. Structure, 2020, 28, 1249-1258.e2.	1.6	86

#	Article	IF	CITATIONS
55	3D reconstruction and flexibility of the hybrid engine Acetobacterium woodii F-ATP synthase. Biochemical and Biophysical Research Communications, 2020, 527, 518-524.	1.0	1
56	Structural and functional properties of plant mitochondrial F-ATP synthase. Mitochondrion, 2020, 53, 178-193.	1.6	37
57	Cryo-EM structures provide insight into how E. coli F1Fo ATP synthase accommodates symmetry mismatch. Nature Communications, 2020, 11, 2615.	5.8	85
58	Effects of nanoporous Au on ATP synthase. MRS Communications, 2020, 10, 173-178.	0.8	1
59	The Molecular Basis for Purine Binding Selectivity in the Bacterial ATP Synthase ϵ Subunit. ChemBioChem, 2020, 21, 3249-3254.	1.3	5
60	Insect venom peptides as potent inhibitors of Escherichia coli ATP synthase. International Journal of Biological Macromolecules, 2020, 150, 23-30.	3.6	14
61	F-ATP-ase of Escherichia coli membranes: The ubiquitous MgADP-inhibited state and the inhibited state induced by the ε–subunit's C-terminal domain are mutually exclusive. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148189.	0.5	12
62	A systematic assessment of mycobacterial F ₁ â€ATPase subunit ε's role in latent ATPase hydrolysis. FEBS Journal, 2021, 288, 818-836.	2.2	11
63	Engineering protein fragments via evolutionary and protein–protein interaction algorithms: <i>de novo</i> design of peptide inhibitors for F _O F ₁ â€ATP synthase. FEBS Letters, 2021, 595, 183-194.	1.3	3
64	Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline. Nature, 2021, 589, 143-147.	13.7	110
65	A highâ€ŧhroughput genetically directed protein crosslinking analysis reveals the physiological relevance of the ATP synthase â€~inserted' state. FEBS Journal, 2021, 288, 2989-3009.	2.2	10
66	Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chemical Reviews, 2021, 121, 1804-1844.	23.0	30
68	Reliable identification of protein-protein interactions by crosslinking mass spectrometry. Nature Communications, 2021, 12, 3564.	5.8	69
71	Complexome profiling reveals novel insights into the composition and assembly of the mitochondrial ATP synthase of Arabidopsis thaliana. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148425.	0.5	13
72	ATP Synthase: Expression, Purification, and Function. Methods in Molecular Biology, 2020, 2073, 73-84.	0.4	7
73	ATP synthase: Evolution, energetics, and membrane interactions. Journal of General Physiology, 2020, 152, .	0.9	41
76	The structural basis of a high affinity ATP binding ε subunit from a bacterial ATP synthase. PLoS ONE, 2017, 12, e0177907.	1.1	13
77	ATP synthase and Alzheimer's disease: putting a spin on the mitochondrial hypothesis. Aging, 2020, 12, 16647-16662.	1.4	33

CITATION REPORT

ARTICLE IF CITATIONS # Structure of a bacterial ATP synthase. ELife, 2019, 8, . 2.8 133 78 Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP. ELife, 2019, 8, . 79 2.8 48 Single mutations in the $\hat{I}\mu$ subunit from thermophilic <i>Bacillus</i> PS3 generate a high binding affinity 80 0.9 3 site for ATP. PeerJ, 2018, 6, e5505. Structure and supramolecular architecture of chloroplast ATP synthase. Advances in Botanical 0.5 Research, 2020, 96, 27-74. Atpl^{[~] is an inhibitor of FOF1 ATP synthase to arrest ATP hydrolysis during low-energy conditions in} 87 1.8 22 cyanobacteria. Current Biology, 2022, 32, 136-148.e5. Structure of the ATP synthase from <i>Mycobacterium smegmatis</i> provides targets for treating tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 3.3 118, . 89 A basic introduction to single particles cryo-electron microscopy. AIMS Biophysics, 2021, 9, 5-20. 0.3 1 Single-molecule FRET combined with electrokinetic trapping reveals real-time enzyme kinetics of 2.8 individual F-ATP synthases. Nanoscale, 2022, 14, 2327-2336. Insights on the proton translocation pathways in $FD_{4}F1$ -ATP synthase using molecular dynamics 91 3 1.4 simulations. Archives of Biochemistry and Biophysics, 2022, 717, 109135. pH-dependent 11Ű F1FO ATP synthase sub-steps reveal insight into the FO torque generating mechanism. 2.8 ELife, 2021, 10, . Structure of ATP synthase from ESKAPE pathogen <i>Acinetobacter baumannii</i>. Science Advances, 93 4.714 2022, 8, eabl5966. ATP synthase FOF1 structure, function, and structure-based drug design. Cellular and Molecular Life 94 2.4 Sciences, 2022, 79, 179. An <i>In silico</i> Study of Imidazo[1,2-a]pyridine Derivatives with Homology Modelled F1F0 ATP 95 0.1 0 Synthase Against <i>Mýcobacterium Tuberculosis</i>. Anti-Infective Agents, 2022, 20, . Structure of ATP synthase under strain during catalysis. Nature Communications, 2022, 13, 2232. 5.8 CryoEM Reveals the Complexity and Diversity of ATP Synthases. Frontiers in Microbiology, 0, 13, . 109 1.5 13 Chemical Conformation of the Essential Glutamate Site of the <i>c</i>-Ring within Thermophilic <i>Bacillus</i> F_oF₁-ATP Synthase Determined by Solid-State NMR Based on its Isolated <i>c</i>-Ring Structure. Journal of the American Chemical Society, 2022, 144, 14132-14139. 111 F1FO ATP synthase molecular motor mechanisms. Frontiers in Microbiology, 0, 13, . 1.513 Regulatory Mechanisms and Environmental Adaptation of the F-ATPase Family. Biological and Pharmaceutical Bulletin, 2022, 45, 1412-1418.

CITATION REPORT

#	Article	IF	CITATIONS
113	CGL160-mediated recruitment of the coupling factor CF1 is required for efficient thylakoid ATP synthase assembly, photosynthesis, and chloroplast development in Arabidopsis. Plant Cell, 2023, 35, 488-509.	3.1	0
114	Changes within the central stalk of E. coli F1Fo ATP synthase observed after addition of ATP. Communications Biology, 2023, 6, .	2.0	9
115	Bacterial and mammalian F1FO-ATPase: Structural similarities and divergences to exploit in the battle against Mycobacterium tuberculosis. International Review of Cell and Molecular Biology, 2023, , .	1.6	0
118	The biogenesis and regulation of the plant oxidative phosphorylation system. Plant Physiology, 2023, 192, 728-747.	2.3	6
119	Mutational analysis of a conserved positive charge in the c-ring of E. coli ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2023, 1864, 148962.	0.5	1
120	ATP binding by an F1Fo ATP synthase ε subunit is pH dependent, suggesting a diversity of ε subunit functional regulation in bacteria. Frontiers in Molecular Biosciences, 0, 10, .	1.6	4
121	F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. International Journal of Molecular Sciences, 2023, 24, 5417.	1.8	5

CITATION REPORT