Mechanistic insight into a peptide hormone signaling co abscission

ELife 5, DOI: 10.7554/elife.15075

Citation Report

#	Article	IF	CITATIONS
1	Q&A: How does peptide signaling direct plant development?. BMC Biology, 2016, 14, 58.	3.8	34
2	Allele-Specific Interactions between CAST AWAY and NEVERSHED Control Abscission in Arabidopsis Flowers. Frontiers in Plant Science, 2016, 7, 1588.	3.6	5
3	Precursor processing for plant peptide hormone maturation by subtilisin-like serine proteinases. Science, 2016, 354, 1594-1597.	12.6	118
4	SERKing Coreceptors for Receptors. Trends in Plant Science, 2016, 21, 1017-1033.	8.8	172
5	Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology, 2016, 16, 537-552.	22.7	1,031
6	Structural Insight into Recognition of Plant Peptide Hormones by Receptors. Molecular Plant, 2016, 9, 1454-1463.	8.3	35
7	Disrupting ER-associated protein degradation suppresses the abscission defect of a weak <i>hae hsl2</i> mutant in Arabidopsis. Journal of Experimental Botany, 2016, 67, 5473-5484.	4.8	18
8	CLAVATA 1-type receptors in plant development. Journal of Experimental Botany, 2016, 67, 4827-4833.	4.8	60
9	Root diffusion barrier control by a vasculature-derived peptide binding to the SGN3 receptor. Science, 2017, 355, 280-284.	12.6	211
10	The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science, 2017, 355, 287-289.	12.6	541
11	The Structural Basis of Ligand Perception and Signal Activation by Receptor Kinases. Annual Review of Plant Biology, 2017, 68, 109-137.	18.7	247
12	Plant cell wall signalling and receptor-like kinases. Biochemical Journal, 2017, 474, 471-492.	3.7	142
13	Mechanisms and Strategies Shaping Plant Peptide Hormones. Plant and Cell Physiology, 2017, 58, 1313-1318.	3.1	25
14	Two SERK Receptor-Like Kinases Interact with EMS1 to Control Anther Cell Fate Determination. Plant Physiology, 2017, 173, 326-337.	4.8	72
15	In Silico Prediction of Ligand-Binding Sites of Plant Receptor Kinases Using Conservation Mapping. Methods in Molecular Biology, 2017, 1621, 93-105.	0.9	2
16	Perception of rootâ€active <scp>CLE</scp> peptides requires <scp>CORYNE</scp> function in the phloem vasculature. EMBO Reports, 2017, 18, 1367-1381.	4.5	80
17	Ligand Receptor-Mediated Regulation of Growth in Plants. Current Topics in Developmental Biology, 2017, 123, 331-363.	2.2	15
18	Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. Plant Cell, 2017, 29, 618-637.	6.6	552

ATION RED

#	Article	IF	CITATIONS
19	Gametophytic Pollen Tube Guidance: Attractant Peptides, Gametic Controls, and Receptors. Plant Physiology, 2017, 173, 112-121.	4.8	100
20	Stem development through vascular tissues: EPFL–ERECTA family signaling that bounces in and out of phloem. Journal of Experimental Botany, 2017, 68, 45-53.	4.8	36
21	Genome-Wide Identification of <i>Medicago</i> Peptides Involved in Macronutrient Responses and Nodulation. Plant Physiology, 2017, 175, 1669-1689.	4.8	101
22	The study of pattern-triggered immunity in Arabidopsis. Canadian Journal of Plant Pathology, 2017, 39, 275-281.	1.4	1
23	Structural basis for receptor recognition of pollen tube attraction peptides. Nature Communications, 2017, 8, 1331.	12.8	55
24	The IDA-LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana. Journal of Experimental Botany, 2017, 68, 3557-3571.	4.8	34
25	<scp>IDL</scp> 6â€ <scp>HAE</scp> / <scp>HSL</scp> 2 impacts pectin degradation and resistance to <i>Pseudomonas syringae</i> pv tomato <scp>DC</scp> 3000 in Arabidopsis leaves. Plant Journal, 2017, 89, 250-263.	5.7	80
26	Single-Molecule Fluorescence Methods to Study Plant Hormone Signal Transduction Pathways. Frontiers in Plant Science, 2017, 8, 1888.	3.6	7
27	BAK1 is involved in AtRALF1-induced inhibition of root cell expansion. PLoS Genetics, 2017, 13, e1007053.	3.5	37
28	Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves. PLoS Genetics, 2017, 13, e1007132.	3.5	44
29	Abscission in plants. Current Biology, 2018, 28, R338-R339.	3.9	32
30	Ectopic expression of the <scp><i>Coffea canephora</i></scp> SERK1 homologâ€induced differential transcription of genes involved in auxin metabolism and in the developmental control of embryogenesis. Physiologia Plantarum, 2018, 163, 530-551.	5.2	23
31	The root-knot nematode Meloidogyne incognita produces a functional mimic of the Arabidopsis INFLORESCENCE DEFICIENT IN ABSCISSION signaling peptide. Journal of Experimental Botany, 2018, 69, 3009-3021.	4.8	31
32	Signaling Peptides and Receptors Coordinating Plant Root Development. Trends in Plant Science, 2018, 23, 337-351.	8.8	79
33	Molecular control of stomatal development. Biochemical Journal, 2018, 475, 441-454.	3.7	106
34	Plant cell surface receptor-mediated signaling – a common theme amid diversity. Journal of Cell Science, 2018, 131, .	2.0	134
35	Post-translational maturation of IDA, a peptide signal controlling floral organ abscission in Arabidopsis. Communicative and Integrative Biology, 2018, 11, e1395119.	1.4	9
36	An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature, 2018, 553, 342-346.	27.8	241

		15	C
#	ARTICLE A Lignin Molecular Brace Controls Precision Processing of Cell Walls Critical for Surface Integrity	IF	CITATIONS
37	in Arabidopsis. Cell, 2018, 173, 1468-1480.e9.	28.9	109
38	INFLORESCENCE DEFICIENT IN ABSCISSION-like is an abscission-associated and phytohormone-regulated gene in flower separation of Lupinus luteus. Plant Growth Regulation, 2018, 85, 91-100.	3.4	30
39	CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. Journal of Experimental Botany, 2018, 69, 1829-1836.	4.8	72
40	Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family coreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3488-3493.	7.1	89
41	From structure to function – a family portrait of plant subtilases. New Phytologist, 2018, 218, 901-915.	7.3	108
42	Advances in abscission signaling. Journal of Experimental Botany, 2018, 69, 733-740.	4.8	80
43	Diverse Peptide Hormones Affecting Root Growth Identified in the Medicago truncatula Secreted Peptidome. Molecular and Cellular Proteomics, 2018, 17, 160-174.	3.8	57
44	Transcriptomic evidence for distinct mechanisms underlying abscission deficiency in the Arabidopsis mutants haesa/haesa-like 2 and nevershed. BMC Research Notes, 2018, 11, 754.	1.4	6
45	The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors. Nature Plants, 2018, 4, 1071-1081.	9.3	114
46	The Toolbox to Study Protein–Protein Interactions in Plants. Critical Reviews in Plant Sciences, 2018, 37, 308-334.	5.7	16
47	CLERK is a novel receptor kinase required for sensing of root-active CLE peptides in <i>Arabidopsis</i> . Development (Cambridge), 2018, 145, .	2.5	61
48	Nematode-secreted peptides and host factor mimicry. Journal of Experimental Botany, 2018, 69, 2866-2868.	4.8	6
49	The <i>Xanthomonas</i> effector XopK harbours E3 ubiquitinâ€ligase activity that is required for virulence. New Phytologist, 2018, 220, 219-231.	7.3	47
50	The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling. Nature Plants, 2018, 4, 596-604.	9.3	62
51	Impact of Plant Peptides on Symbiotic Nodule Development and Functioning. Frontiers in Plant Science, 2018, 9, 1026.	3.6	44
52	Cloning, Characterization, and Functional Investigation of VaHAESA from Vitis amurensis Inoculated with Plasmopara viticola. International Journal of Molecular Sciences, 2018, 19, 1204.	4.1	10
53	The SERK3 elongated allele defines a role for BIR ectodomains in brassinosteroid signalling. Nature Plants, 2018, 4, 345-351.	9.3	48
54	A potato STRUBBELIG-RECEPTOR FAMILY member, StLRPK1, associates with StSERK3A/BAK1 and activates immunity. Journal of Experimental Botany, 2018, 69, 5573-5586.	4.8	12

#	Article	lF	CITATIONS
55	Structural Insight into Recognition of Plant Peptide Hormones by Plant Receptor Kinases. , 2018, , 31-46.		0
56	Regulation of plant peptide hormones and growth factors by postâ€translational modification. Plant Biology, 2019, 21, 49-63.	3.8	72
57	Structural biology of cell surface receptor–ligand interactions. Current Opinion in Plant Biology, 2019, 52, 38-45.	7.1	6
58	Molecular and Hormonal Aspects of Drought-Triggered Flower Shedding in Yellow Lupine. International Journal of Molecular Sciences, 2019, 20, 3731.	4.1	20
59	Control of Organ Abscission and Other Cell Separation Processes by Evolutionary Conserved Peptide Signaling. Plants, 2019, 8, 225.	3.5	31
60	Plant Peptide Hormones. Russian Journal of Plant Physiology, 2019, 66, 171-189.	1.1	24
61	Plant Leucine-Rich Repeat Receptor Kinase (LRR-RK): Structure, Ligand Perception, and Activation Mechanism. Molecules, 2019, 24, 3081.	3.8	47
62	SERK Receptor-like Kinases Control Division Patterns of Vascular Precursors and Ground Tissue Stem Cells during Embryo Development in Arabidopsis. Molecular Plant, 2019, 12, 984-1002.	8.3	26
63	Diverse function of plant peptide hormones in local signaling and development. Current Opinion in Plant Biology, 2019, 51, 81-87.	7.1	49
64	The PIP Peptide of INFLORESCENCE DEFICIENT IN ABSCISSION Enhances Populus Leaf and Elaeis guineensis Fruit Abscission. Plants, 2019, 8, 143.	3.5	22
65	More than cell wall hydrolysis: orchestration of cellular dynamics for organ separation. Current Opinion in Plant Biology, 2019, 51, 37-43.	7.1	10
66	Hypermorphic <i>SERK1</i> Mutations Function via a <i>SOBIR1</i> Pathway to Activate Floral Abscission Signaling. Plant Physiology, 2019, 180, 1219-1229.	4.8	11
67	A MAPK cascade downstream of IDA–HAE/HSL2 ligand–receptor pair in lateral root emergence. Nature Plants, 2019, 5, 414-423.	9.3	90
68	Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. Journal of Experimental Botany, 2019, 70, 1525-1538.	4.8	38
69	Proteolytic Processing of SERK3/BAK1 Regulates Plant Immunity, Development, and Cell Death. Plant Physiology, 2019, 180, 543-558.	4.8	42
70	Multi-tasking of SERK-like kinases in plant embryogenesis, growth, and development: current advances and biotechnological applications. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	13
71	Identification and Characterization of HAESA-Like Genes Involved in the Fruitlet Abscission in Litchi. International Journal of Molecular Sciences, 2019, 20, 5945.	4.1	14
72	Characterization of Somatic Embryogenesis Receptor-Like Kinase 4 as a Negative Regulator of Leaf Senescence in Arabidopsis. Cells, 2019, 8, 50.	4.1	20

#	Article	IF	CITATIONS
73	Look Closely, the Beautiful May Be Small: Precursor-Derived Peptides in Plants. Annual Review of Plant Biology, 2019, 70, 153-186.	18.7	119
74	Receptor-Like Protein Kinases Function Upstream of MAPKs in Regulating Plant Development. International Journal of Molecular Sciences, 2020, 21, 7638.	4.1	14
75	Genomeâ€wide and structural analyses of pseudokinases encoded in the genome of <scp><i>Arabidopsis thaliana</i></scp> provide functional insights. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1620-1638.	2.6	9
76	A strong correlation between consensus sequences and unique super secondary structures in leucine rich repeats. Proteins: Structure, Function and Bioinformatics, 2020, 88, 840-852.	2.6	8
77	Small Peptides Raising in Plants. Molecular Plant, 2020, 13, 1101.	8.3	3
78	Constitutive Activation of Leucine-Rich Repeat Receptor Kinase Signaling Pathways by BAK1-INTERACTING RECEPTOR-LIKE KINASE3 Chimera. Plant Cell, 2020, 32, 3311-3323.	6.6	22
79	Processing and Formation of Bioactive CLE40 Peptide Are Controlled by Posttranslational Proline Hydroxylation. Plant Physiology, 2020, 184, 1573-1584.	4.8	21
80	Production mechanisms, structural features and post-translational modifications of plant peptides. Journal of Plant Biology, 2020, 63, 259-265.	2.1	2
81	Plant Biology: Distinct New Players in Processing Peptide Hormones during Abscission. Current Biology, 2020, 30, R715-R717.	3.9	4
82	Arabidopsis Transmembrane Receptor-Like Kinases (RLKs): A Bridge between Extracellular Signal and Intracellular Regulatory Machinery. International Journal of Molecular Sciences, 2020, 21, 4000.	4.1	71
83	Paired Receptor and Coreceptor Kinases Perceive Extracellular Signals to Control Plant Development. Plant Physiology, 2020, 182, 1667-1681.	4.8	47
84	FERONIA cytoplasmic domain: node of varied signal outputs. ABIOTECH, 2020, 1, 135-146.	3.9	12
85	Peptide signaling for drought-induced tomato flower drop. Science, 2020, 367, 1482-1485.	12.6	105
86	Leucineâ€rich repeat receptorâ€like kinase II phylogenetics reveals five main clades throughout the plant kingdom. Plant Journal, 2020, 103, 547-560.	5.7	17
87	Emerging mechanisms to fine-tune receptor kinase signaling specificity. Current Opinion in Plant Biology, 2020, 57, 41-51.	7.1	9
88	Perception of Agrobacterium tumefaciens flagellin by FLS2XL confers resistance to crown gall disease. Nature Plants, 2020, 6, 22-27.	9.3	46
89	Structural evolution drives diversification of the large LRRâ€RLK gene family. New Phytologist, 2020, 226, 1492-1505.	7.3	53
90	Molecular mechanism for the recognition of sequence-divergent CIF peptides by the plant receptor kinases GSO1/SGN3 and GSO2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2693-2703.	7.1	68

#	Article	IF	CITATIONS
91	KNOX protein KNAT1 regulates fruitlet abscission in litchi by repressing ethylene biosynthetic genes. Journal of Experimental Botany, 2020, 71, 4069-4082.	4.8	35
92	Structural Insights into the Plant Immune Receptors PRRs and NLRs. Plant Physiology, 2020, 182, 1566-1581.	4.8	37
93	In Vitro Analytical Approaches to Study Plant Ligand-Receptor Interactions. Plant Physiology, 2020, 182, 1697-1712.	4.8	24
94	Comprehensive in silico modeling of the rice plant PRR Xa21 and its interaction with RaxX21-sY and OsSERK2. RSC Advances, 2020, 10, 15800-15814.	3.6	5
95	The Peptide Hormone Receptor CEPR1 Functions in the Reproductive Tissue to Control Seed Size and Yield. Plant Physiology, 2020, 183, 620-636.	4.8	17
96	Interfering Peptides Targeting Protein–Protein Interactions in the Ethylene Plant Hormone Signaling Pathway as Tools to Delay Plant Senescence. Methods in Molecular Biology, 2021, 2213, 71-85.	0.9	3
97	Computational prediction method to decipher receptor–glycoligand interactions in plant immunity. Plant Journal, 2021, 105, 1710-1726.	5.7	14
98	Structural biology of plant defence. New Phytologist, 2021, 229, 692-711.	7.3	29
99	Identification and characterization of the LRR repeats in plant LRR-RLKs. BMC Molecular and Cell Biology, 2021, 22, 9.	2.0	15
100	Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2. Nature Communications, 2021, 12, 705.	12.8	71
102	Recent advances in peptide signaling during Arabidopsis root development. Journal of Experimental Botany, 2021, 72, 2889-2902.	4.8	21
103	EPIP-Evoked Modifications of Redox, Lipid, and Pectin Homeostasis in the Abscission Zone of Lupine Flowers. International Journal of Molecular Sciences, 2021, 22, 3001.	4.1	8
105	Inflorescence abscission protein SIIDL6 promotes low light intensity-induced tomato flower abscission. Plant Physiology, 2021, 186, 1288-1301.	4.8	22
106	Characterization of Two Ethephon-Induced IDA-Like Genes from Mango, and Elucidation of Their Involvement in Regulating Organ Abscission. Genes, 2021, 12, 439.	2.4	10
107	Cross-talk between transcriptome, phytohormone and HD-ZIP gene family analysis illuminates the molecular mechanism underlying fruitlet abscission in sweet cherry (Prunus avium L). BMC Plant Biology, 2021, 21, 173.	3.6	11
108	Bioinformatics and Expression Analysis of IDA-Like Genes Reveal Their Potential Functions in Flower Abscission and Stress Response in Tobacco (Nicotiana tabacum L.). Frontiers in Genetics, 2021, 12, 670794.	2.3	3
109	An Evolutionarily Conserved Coreceptor Gene Is Essential for CLAVATA Signaling in Marchantia polymorpha. Frontiers in Plant Science, 2021, 12, 657548.	3.6	16
110	IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like peptides and HAE (HAESA)-like receptors regulate corolla abscission in Nicotiana benthamiana flowers. BMC Plant Biology, 2021, 21, 226.	3.6	13

#	Article	IF	CITATIONS
111	Brassinosteroids suppress ethylene-induced fruitlet abscission through LcBZR1/2-mediated transcriptional repression of <i>LcACS1</i> / <i>4</i> and <i>LcACO2</i> / <i>3</i> in litchi. Horticulture Research, 2021, 8, 105.	6.3	17
112	A new method to visualize CEP hormone–CEP receptor interactions in vascular tissue <i>in vivo</i> . Journal of Experimental Botany, 2021, 72, 6164-6174.	4.8	7
113	Advances and perspectives in discovery and functional analysis of small secreted proteins in plants. Horticulture Research, 2021, 8, 130.	6.3	20
114	The sequenced genomes of nonflowering land plants reveal the innovative evolutionary history of peptide signaling. Plant Cell, 2021, 33, 2915-2934.	6.6	30
115	Chemical control of receptor kinase signaling by rapamycin-induced dimerization. Molecular Plant, 2021, 14, 1379-1390.	8.3	12
116	CLAVATA3, a plant peptide controlling stem cell fate in the meristem. Peptides, 2021, 142, 170579.	2.4	10
117	CASPARIAN STRIP INTEGRITY FACTOR (CIF) family peptides - regulator of plant extracellular barriers. Peptides, 2021, 143, 170599.	2.4	5
118	Phytocytokines function as immunological modulators of plant immunity. Stress Biology, 2021, 1, 8.	3.1	37
119	Pathogen- and plant-derived peptides trigger plant immunity. Peptides, 2021, 144, 170611.	2.4	6
120	Molecular mechanisms of plant peptide binding to receptors. Peptides, 2021, 144, 170614.	2.4	7
121	Protein Phosphorylation in Plant Cell Signaling. Methods in Molecular Biology, 2021, 2358, 45-71.	0.9	9
126	Crystal structure of the leucine-rich repeat ectodomain of the plant immune receptor kinase SOBIR1. Acta Crystallographica Section D: Structural Biology, 2019, 75, 488-497.	2.3	11
127	Polyproline II Helix as a Recognition Motif of Plant Peptide Hormones and Flagellin Peptide flg22. Protein and Peptide Letters, 2019, 26, 684-690.	0.9	1
128	Emerging roles of pathogen-secreted host mimics in plant disease development. Trends in Parasitology, 2021, 37, 1082-1095.	3.3	8
134	Genome-Wide Analysis of HAESA/HAESA-Like Kinase Family in Rice. American Journal of Plant Sciences, 2020, 11, 1254-1269.	0.8	0
135	A peptide encoding gene MdCLE8 regulates lateral root development in apple. Plant Cell, Tissue and Organ Culture, 2022, 148, 419-427.	2.3	1
136	Crystal structure of the extracellular domain of the receptor-like kinase TMK3 from <i>Arabidopsis thaliana</i> . Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 384-390.	0.8	3
137	The Phloem Intercalated With Xylem-Correlated 3 Receptor-Like Kinase Constitutively Interacts With Brassinosteroid Insensitive 1-Associated Receptor Kinase 1 and Is Involved in Vascular Development in Arabidopsis. Frontiers in Plant Science, 2021, 12, 706633.	3.6	6

#	Article	IF	CITATIONS
138	The LcKNAT1-LcEIL2/3 Regulatory Module Is Involved in Fruitlet Abscission in Litchi. Frontiers in Plant Science, 2021, 12, 802016.	3.6	4
139	DeepLRR: An Online Webserver for Leucine-Rich-Repeat Containing Protein Characterization Based on Deep Learning. Plants, 2022, 11, 136.	3.5	5
140	Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives. Plant Communications, 2022, 3, 100273.	7.7	16
141	Essential roles of SERKs in the ROOT MERISTEM GROWTH FACTOR-mediated signaling pathway. Plant Physiology, 2022, 189, 165-177.	4.8	11
142	MAP kinase cascades in plant development and immune signaling. EMBO Reports, 2022, 23, e53817.	4.5	41
143	HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides. Nature Communications, 2022, 13, 876.	12.8	24
145	Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature, 2022, 605, 332-339.	27.8	64
146	Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3. ELife, 0, 11, .	6.0	20
148	Floral organ abscission in Arabidopsis requires the combined activities of three TALE homeodomain transcription factors. Journal of Experimental Botany, 2022, 73, 6150-6169.	4.8	5
150	The INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE6 Peptide Functions as a Positive Modulator of Leaf Senescence in Arabidopsis thaliana. Frontiers in Plant Science, 0, 13, .	3.6	3
153	Biogenesis of post-translationally modified peptide signals for plant reproductive development. Current Opinion in Plant Biology, 2022, 69, 102274.	7.1	13
154	Role of somatic embryogenesis receptor-like kinase family in plants. , 2023, , 121-138.		0
155	PEP7 acts as a peptide ligand for the receptor kinase SIRK1 to regulate aquaporin-mediated water influx and lateral root growth. Molecular Plant, 2022, 15, 1615-1631.	8.3	11
156	Transcriptome and targeted hormone metabolome reveal the molecular mechanisms of flower abscission in camellia. Frontiers in Plant Science, 0, 13, .	3.6	2
157	Involvement of IDA-HAE Module in Natural Development of Tomato Flower Abscission. Plants, 2023, 12, 185.	3.5	3
158	Mechanisms controlling plant proteases and their substrates. Cell Death and Differentiation, 2023, 30, 1047-1058.	11.2	1
159	Brt9SIDA/IDALs as peptide signals mediate diverse biological pathways in plants. Plant Science, 2023, 330, 111642.	3.6	0
160	Morphological Characterization of Metamorphosis in Stamens of Anemone barbulata Turcz. (Ranunculaceae). Agronomy, 2023, 13, 554.	3.0	1

	Сплис		
#	Article	IF	CITATIONS
162	Genetics of destemming in pepper: A step towards mechanical harvesting. Frontiers in Genetics, 0, 14, .	2.3	0
163	Structural insight of peptide-ligand recognition by plant membrane receptors. Plant Morphology, 2022, 34, 29-36.	0.1	0
164	Functional Expression of the Ectodomain of Plant Receptor Kinases in Plant Suspension Culture. Methods in Molecular Biology, 2023, , 129-143.	0.9	0
165	Ectopic Expression of AGAMOUS-like 18 from Litchi (Litchi chinensis Sonn.) Delayed the Floral Organ Abscission in Arabidopsis. Horticulturae, 2023, 9, 578.	2.8	0
166	Genomic loci associated with leaf abscission contribute to machine picking and environmental adaptability in upland cotton (Gossypium hirsutum L.). Journal of Advanced Research, 2024, 58, 31-43.	9.5	1
167	Mobile Signaling Peptides: Secret Molecular Messengers with a Mighty Role in Plant Life. Journal of Plant Growth Regulation, 2023, 42, 6801-6834.	5.1	0
168	Peptidomics Methods Applied to the Study of Flower Development. Methods in Molecular Biology, 2023, , 509-536.	0.9	0
169	Reproductive defects in the abscission mutant <i>ida-2</i> are caused by T-DNA–induced genomic rearrangements. Plant Physiology, 2023, 193, 2292-2297.	4.8	3
170	Plant abscission: An age-old yet ongoing challenge in future agriculture. Journal of Plant Biotechnology, 0, 50, .	0.4	0
172	Asymmetric Evolution of Protein Domains in the Leucine-Rich Repeat Receptor-Like Kinase Family of Plant Signaling Proteins. Molecular Biology and Evolution, 2023, 40, .	8.9	2
173	Studying the Effect of Dense Planting on the Mechanism of Flower Abscission in Soybean through Combined Transcriptome-Metabolome Analysis. Agronomy, 2023, 13, 2561.	3.0	0
175	An update on evolutionary, structural, and functional studies of receptor-like kinases in plants. Frontiers in Plant Science, 0, 15, .	3.6	0
176	Small but mighty: Peptides regulating abiotic stress responses in plants. Plant, Cell and Environment, 2024, 47, 1207-1223.	5.7	1
178	Dissection of the <i>IDA</i> promoter identifies WRKY transcription factors as abscission regulators in Arabidopsis. Journal of Experimental Botany, 2024, 75, 2417-2434.	4.8	0
179	The transcriptional control of LcIDL1–LcHSL2 complex by LcARF5 integrates auxin and ethylene signaling for litchi fruitlet abscission. Journal of Integrative Plant Biology, 0, , .	8.5	0

TION R