Gustatory-mediated avoidance of bacterial lipopolysaco Drosophila

ELife

5,

DOI: 10.7554/elife.13133

Citation Report

#	Article	IF	CITATIONS
1	Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence. ELife, 2016, 5, .	2.8	29
2	Bacterial Signaling to the Nervous System through Toxins and Metabolites. Journal of Molecular Biology, 2017, 429, 587-605.	2.0	118
3	A Bitter Taste of the Sun Makes Egg-Laying Flies Run. Genetics, 2017, 205, 467-469.	1.2	0
4	Drosophila larvae food intake cessation following exposure to Erwinia contaminated media requires odor perception, Trpa1 channel and evf virulence factor. Journal of Insect Physiology, 2017, 99, 25-32.	0.9	15
5	Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity. American Journal of Physiology - Renal Physiology, 2017, 312, G635-G648.	1.6	62
6	Pathogen induced food evasion behavior in <i>Drosophila</i> larvae. Journal of Experimental Biology, 2017, 220, 1774-1780.	0.8	25
7	H2O2-Sensitive Isoforms of <i>Drosophila melanogaster</i> TRPA1 Act in Bitter-Sensing Gustatory Neurons to Promote Avoidance of UV During Egg-Laying. Genetics, 2017, 205, 749-759.	1.2	28
8	Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nature Communications, 2017, 8, 265.	5.8	54
9	TRPV4 activation triggers protective responses to bacterial lipopolysaccharides in airway epithelial cells. Nature Communications, 2017, 8, 1059.	5.8	86
10	Molecular and Cellular Organization of Taste Neurons in Adult Drosophila Pharynx. Cell Reports, 2017, 21, 2978-2991.	2.9	47
11	Avoidance of biological contaminants through sight, smell and touch in chimpanzees. Royal Society Open Science, 2017, 4, 170968.	1.1	38
12	The gram-negative sensing receptor PGRP-LC contributes to grooming induction in Drosophila. PLoS ONE, 2017, 12, e0185370.	1.1	12
13	A Metagenome-Wide Association Study and Arrayed Mutant Library Confirm <i>Acetobacter</i> Lipopolysaccharide Genes Are Necessary for Association with <i>Drosophila melanogaster</i> Genes, Genomes, Genetics, 2018, 8, 1119-1127.	0.8	21
14	Differential effects of lipopolysaccharide on mouse sensory TRP channels. Cell Calcium, 2018, 73, 72-81.	1.1	61
15	Using Pox-Neuro (Poxn) Mutants in Drosophila Gustation Research: A Double-Edged Sword. Frontiers in Cellular Neuroscience, 2018, 12, 382.	1.8	11
16	Membrane Proteins Mediating Reception and Transduction in Chemosensory Neurons in Mosquitoes. Frontiers in Physiology, 2018, 9, 1309.	1.3	16
17	Allatostatin C modulates nociception and immunity in Drosophila. Scientific Reports, 2018, 8, 7501.	1.6	40
18	Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila. ELife, 2018, 7, .	2.8	82

#	Article	IF	Citations
19	Behavioral Aversion to AITC Requires Both Painless and dTRPA1 in Drosophila. Frontiers in Neural Circuits, 2018, 12, 45.	1.4	15
20	Differential interactions of bacterial lipopolysaccharides with lipid membranes: implications for TRPA1-mediated chemosensation. Scientific Reports, 2018, 8, 12010.	1.6	30
21	TRP Channels as Sensors of Bacterial Endotoxins. Toxins, 2018, 10, 326.	1.5	45
22	Combinatorial Pharyngeal Taste Coding for Feeding Avoidance in Adult Drosophila. Cell Reports, 2019, 29, 961-973.e4.	2.9	32
23	Recruitment of Adult Precursor Cells Underlies Limited Repair of the Infected Larval Midgut in Drosophila. Cell Host and Microbe, 2019, 26, 412-425.e5.	5.1	25
24	Insect Immunity: From Systemic to Chemosensory Organs Protection. , 2019, , 205-229.		1
25	The Effects of a Bacterial Endotoxin on Behavior and Sensory-CNS-Motor Circuits in Drosophila melanogaster. Insects, 2019, 10, 115.	1.0	10
26	LPS perception through taste-induced reflex in Drosophila melanogaster. Journal of Insect Physiology, 2019, 112, 39-47.	0.9	12
27	TRP Channels as Sensors of Chemically-Induced Changes in Cell Membrane Mechanical Properties. International Journal of Molecular Sciences, 2019, 20, 371.	1.8	55
28	Spider mites escape bacterial infection by avoiding contaminated food. Oecologia, 2019, 189, 111-122.	0.9	7
29	Recent advances in the genetic basis of taste detection in Drosophila. Cellular and Molecular Life Sciences, 2020, 77, 1087-1101.	2.4	83
30	Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiological Reviews, 2020, 100, 725-803.	13.1	236
31	Molecular Logic and Evolution of Bitter Taste in Drosophila. Current Biology, 2020, 30, 17-30.e3.	1.8	60
32	Neural control of behavioral and molecular defenses in C. elegans. Current Opinion in Neurobiology, 2020, 62, 34-40.	2.0	23
33	How Bacteria Impact Host Nervous System and Behaviors: Lessons from Flies and Worms. Trends in Neurosciences, 2020, 43, 998-1010.	4.2	21
34	Single cell transcriptomes reveal expression patterns of chemoreceptor genes in olfactory sensory neurons of the Caribbean spiny lobster, Panulirus argus. BMC Genomics, 2020, 21, 649.	1.2	19
35	The Gustatory System in Insects. , 2020, , 148-168.		2
36	Lung Epithelial TRPA1 Mediates Lipopolysaccharide-Induced Lung Inflammation in Bronchial Epithelial Cells and Mice. Frontiers in Physiology, 2020, 11, 596314.	1.3	18

#	ARTICLE	IF	CITATIONS
37	Drosophila Aversive Behavior toward Erwinia carotovora carotovora Is Mediated by Bitter Neurons and Leukokinin. IScience, 2020, 23, 101152.	1.9	19
38	Lipid Raft Destabilization Impairs Mouse TRPA1 Responses to Cold and Bacterial Lipopolysaccharides. International Journal of Molecular Sciences, 2020, 21, 3826.	1.8	15
39	Frameshift mutations of $\langle i \rangle$ YPEL3 $\langle i \rangle$ alter the sensory circuit function in $\langle i \rangle$ Drosophila $\langle i \rangle$. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	2
40	Complex Regulatory Role of the TRPA1 Receptor in Acute and Chronic Airway Inflammation Mouse Models. International Journal of Molecular Sciences, 2020, 21, 4109.	1.8	13
41	Recent Advances in Lipopolysaccharide Recognition Systems. International Journal of Molecular Sciences, 2020, 21, 379.	1.8	178
42	The neuroethology of labeled lines in insect olfactory systems. , 2021, , 285-327.		4
43	<i>Drosophila</i> sensory receptors—a set of molecular Swiss Army Knives. Genetics, 2021, 217, 1-34.	1.2	48
44	The Agonist Action of Alkylphenols on TRPA1 Relates to Their Effects on Membrane Lipid Order: Implications for TRPA1-Mediated Chemosensation. International Journal of Molecular Sciences, 2021, 22, 3368.	1.8	9
45	TRP Channels as Cellular Targets of Particulate Matter. International Journal of Molecular Sciences, 2021, 22, 2783.	1.8	19
46	Sensing the world and its dangers: An evolutionary perspective in neuroimmunology. ELife, 2021, 10, .	2.8	29
47	TRPM channels mediate learned pathogen avoidance following intestinal distention. ELife, 2021, 10, .	2.8	20
48	Fungal phytopathogen modulates plant and insect responses to promote its dissemination. ISME Journal, 2021, 15, 3522-3533.	4.4	24
49	Impact of Microorganisms and Parasites on Neuronally Controlled Drosophila Behaviours. Cells, 2021, 10, 2350.	1.8	9
52	TLR4 Signaling Selectively and Directly Promotes CGRP Release from Vagal Afferents in the Mouse. ENeuro, 2021, 8, ENEURO.0254-20.2020.	0.9	22
53	Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. ELife, 2019, 8, .	2.8	47
54	Intestinal infection regulates behavior and learning via neuroendocrine signaling. ELife, 2019, 8, .	2.8	61
55	TRPA1 Expression and Pathophysiology in Immune Cells. International Journal of Molecular Sciences, 2021, 22, 11460.	1.8	24
56	Activation of Drosophila melanogaster TRPA1 Isoforms by Citronellal and Menthol. International Journal of Molecular Sciences, 2021, 22, 10997.	1.8	3

#	Article	IF	CITATIONS
59	Genetic Basis of Natural Variation in Spontaneous Grooming in <i>Drosophila melanogaster</i> Genes, Genomes, Genetics, 2020, 10, 3453-3460.	0.8	5
60	Evolutionary Aspects of Nociception and Pain. , 2020, , 463-480.		0
61	Neuroecology of Alcohol Preference in <i>Drosophila</i> . Annual Review of Entomology, 2022, 67, 261-279.	5.7	1
62	Sensing microbial infections in the Drosophila melanogaster genetic model organism. Immunogenetics, 2022, 74, 35-62.	1.2	15
63	Chemical cues in disease recognition and their immunomodulatory role in insects. Current Opinion in Insect Science, 2022, 50, 100884.	2.2	6
65	Mutualism promotes insect fitness by fungal nutrient compensation and facilitates fungus propagation by mediating insect oviposition preference. ISME Journal, 2022, 16, 1831-1842.	4.4	8
71	The gut efflux pump MRP-1 exports oxidized glutathione as a danger signal that stimulates behavioral immunity and aversive learning. Communications Biology, 2022, 5, 422.	2.0	1
73	Salmonella enterica changes Macrosteles quadrilineatus feeding behaviors resulting in altered S. enterica distribution on leaves and increased populations. Scientific Reports, 2022, 12, .	1.6	1
74	Mutations of Î ³ COP Gene Disturb Drosophila melanogaster Innate Immune Response to Pseudomonas aeruginosa. International Journal of Molecular Sciences, 2022, 23, 6499.	1.8	1
75	Enteric bacterial infection in <i>Drosophila</i> induces whole-body alterations in metabolic gene expression independently of the Immune Deficiency (Imd) signalling pathway. G3: Genes, Genomes, Genetics, 0, , .	0.8	0
76	Bacteria-derived peptidoglycan triggers a non-canonical NF-κB dependent response in <i>Drosophila</i> gustatory neurons. Journal of Neuroscience, 0, , JN-RM-2437-21.	1.7	1
77	Transient Receptor Potential (TRP) Family of Channel Proteins. Russian Journal of Developmental Biology, 2022, 53, 309-320.	0.1	0
78	Sensing of a spore surface protein by a Drosophila chemosensory protein induces behavioral defense against fungal parasitic infections. Current Biology, 2023, 33, 276-286.e5.	1.8	20
79	Use of <i>Apis mellifera</i> Honey to Predict Heavy Metal Loads in African Fruit Crops? – A Proof of Concept. Bee World, 2023, 100, 31-36.	0.3	0
81	The Phytopathogen Fusarium verticillioides Modifies the Intestinal Morphology of the Sugarcane Borer. Pathogens, 2023, 12, 443.	1.2	1
83	Chemosensory Coding in <i>Drosophila </i> Single Sensilla. Cold Spring Harbor Protocols, 2023, 2023, pdb.top107803.	0.2	1