The cation channel TRPA1 tunes mosquito thermotaxis

ELife 4, DOI: 10.7554/elife.11750

Citation Report

#	Article	IF	CITATIONS
1	Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence. ELife, 2016, 5, .	2.8	29
2	Mosquito Sensory Systems. Advances in Insect Physiology, 2016, , 293-328.	1.1	53
3	TRPA5, an Ankyrin Subfamily Insect TRP Channel, is Expressed in Antennae of <i>Cydia pomonella</i> (Lepidoptera: Tortricidae) in Multiple Splice Variants. Journal of Insect Science, 2016, 16, 83.	0.6	13
4	Organization of olfactory centres in the malaria mosquito Anopheles gambiae. Nature Communications, 2016, 7, 13010.	5.8	127
5	What does heat tell a mosquito? Characterization of the orientation behaviour of Aedes aegypti towards heat sources. Journal of Insect Physiology, 2017, 100, 9-14.	0.9	32
6	Genetic analysis of mosquito detection of humans. Current Opinion in Insect Science, 2017, 20, 34-38.	2.2	69
7	Characterization of TRPA channels in the starfish Patiria pectinifera: involvement of thermally activated TRPA1 in thermotaxis in marine planktonic larvae. Scientific Reports, 2017, 7, 2173.	1.6	15
8	An inside look at the sensory biology of triatomines. Journal of Insect Physiology, 2017, 97, 3-19.	0.9	57
9	Insect TRP channels as targets for insecticides and repellents. Journal of Pesticide Sciences, 2017, 42, 1-6.	0.8	35
10	Deciphering the olfactory repertoire of the tiger mosquito Aedes albopictus. BMC Genomics, 2017, 18, 770.	1.2	30
11	TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflugers Archiv European Journal of Physiology, 2018, 470, 745-759.	1.3	48
12	Comparisons of behavioural and TRPA1 heat sensitivities in three sympatric Cuban <i>Anolis</i> lizards. Molecular Ecology, 2018, 27, 2234-2242.	2.0	14
13	Dehydration prompts increased activity and blood feeding by mosquitoes. Scientific Reports, 2018, 8, 6804.	1.6	69
14	Effects of the Environmental Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review. Insects, 2018, 9, 158.	1.0	222
15	Living in a trash can: turbulent convective flows impair <i>Drosophila</i> flight performance. Journal of the Royal Society Interface, 2018, 15, 20180636.	1.5	9
16	Bioinspired Infrared Sensing Materials and Systems. Advanced Materials, 2018, 30, e1707632.	11.1	36
17	A natural agonist of mosquito TRPA1 from the medicinal plant Cinnamosma fragrans that is toxic, antifeedant, and repellent to the yellow fever mosquito Aedes aegypti. PLoS Neglected Tropical Diseases, 2018, 12, e0006265.	1.3	23
18	Progress in the use of genetic methods to study insect behavior outside Drosophila. Current Opinion in Insect Science, 2019, 36, 45-56.	2.2	11

CITATION REPORT

#	Article	IF	CITATIONS
19	Visual-Olfactory Integration in the Human Disease Vector Mosquito Aedes aegypti. Current Biology, 2019, 29, 2509-2516.e5.	1.8	64
20	General Visual and Contingent Thermal Cues Interact to Elicit Attraction in Female Aedes aegypti Mosquitoes. Current Biology, 2019, 29, 2250-2257.e4.	1.8	50
21	Insecticidal and Antifeedant Activities of Malagasy Medicinal Plant (Cinnamosma sp.) Extracts and Drimane-Type Sesquiterpenes against Aedes aegypti Mosquitoes. Insects, 2019, 10, 373.	1.0	17
22	Sex and age modulate antennal chemosensory-related genes linked to the onset of host seeking in the yellow-fever mosquito, Aedes aegypti. Scientific Reports, 2019, 9, 43.	1.6	49
23	The thermal sense of blood-sucking insects: why physics matters. Current Opinion in Insect Science, 2019, 34, 112-116.	2.2	16
24	Aedes aegypti Mosquitoes Use Their Legs to Sense DEET on Contact. Current Biology, 2019, 29, 1551-1556.e5.	1.8	79
25	Aedes aegypti Mosquitoes Detect Acidic Volatiles Found in Human Odor Using the IR8a Pathway. Current Biology, 2019, 29, 1253-1262.e7.	1.8	135
26	Molecular bases of sensory processes in kissing bugs, vectors of Chagas disease. Current Opinion in Insect Science, 2019, 34, 80-84.	2.2	7
27	Vector cognition and neurobiology. Current Opinion in Insect Science, 2019, 34, 68-72.	2.2	7
28	Diverse sensitivities of TRPA1 from different mosquito species to thermal and chemical stimuli. Scientific Reports, 2019, 9, 20200.	1.6	14
29	Varroa chemosensory proteins: some are conserved across Arthropoda but others are arachnid specific. Insect Molecular Biology, 2019, 28, 321-341.	1.0	12
30	Determination of human identity from Anopheles stephensi mosquito blood meals using direct amplification and massively parallel sequencing. Forensic Science International: Genetics, 2020, 48, 102347.	1.6	6
31	How to turn an organism into a model organism in 10 â€~easy' steps. Journal of Experimental Biology, 2020, 223, .	0.8	73
32	The Role of Antennae in Heat Detection and Feeding Behavior in the Bed Bug (Hemiptera: Cimicidae). Journal of Economic Entomology, 2020, 113, 2858-2863.	0.8	6
33	Semi-synthetic cinnamodial analogues: Structural insights into the insecticidal and antifeedant activities of drimane sesquiterpenes against the mosquito Aedes aegypti. PLoS Neglected Tropical Diseases, 2020, 14, e0008073.	1.3	6
34	Mosquito heat seeking is driven by an ancestral cooling receptor. Science, 2020, 367, 681-684.	6.0	79
35	In the heat of the night. Science, 2020, 367, 628-629.	6.0	7
36	Temperature Sensation: From Molecular Thermosensors to Neural Circuits and Coding Principles. Annual Review of Physiology, 2021, 83, 205-230.	5.6	47

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
37	Olfactory systems across mosquito species. Cell and Tissue Research, 2021, 383, 75-90.	1.5	41
38	Differential Gene Expression in the Heads of Behaviorally Divergent Culex pipiens Mosquitoes. Insects, 2021, 12, 271.	1.0	4
39	Multimodal synergisms in host stimuli drive landing response in malaria mosquitoes. Scientific Reports, 2021, 11, 7379.	1.6	8
40	Ionotropic Receptor-dependent cool cells control the transition of temperature preference in Drosophila larvae. PLoS Genetics, 2021, 17, e1009499.	1.5	14
41	The irritant receptor TRPA1 mediates the mosquito repellent effect of catnip. Current Biology, 2021, 31, 1988-1994.e5.	1.8	33
42	Synchronous and opponent thermosensors use flexible cross-inhibition to orchestrate thermal homeostasis. Science Advances, 2021, 7, .	4.7	16
43	Sensory Biology of Triatomines. True Bugs (Heteroptera) of the Neotropics, 2021, , 197-214.	1.2	0
49	Some like it hot, but not too hot. ELife, 2015, 4, .	2.8	3
50	BiteOscope, an open platform to study mosquito biting behavior. ELife, 2020, 9, .	2.8	31
51	Fruitless mutant male mosquitoes gain attraction to human odor. ELife, 2020, 9, .	2.8	39
54	Human attractive cues and mosquito host-seeking behavior. Trends in Parasitology, 2022, 38, 246-264.	1.5	29
56	Dengue Infection Model with Temperature and the biting of Aedes Aegypti and Ades Albopictus in Thailand. , 2020, , .		0
57	Multimodal mechanisms of repellency in arthropods. , 2022, , 113-130.		2
60	Dengue virus infection modifies mosquito blood-feeding behavior to increase transmission to the host. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
61	Species-Specificity in Thermopreference and CO2-Gated Heat-Seeking in Culex Mosquitoes. Insects, 2022, 13, 92.	1.0	14
62	The closer the better: Sensory tools and host-association in blood-sucking insects. Journal of Insect Physiology, 2022, 136, 104346.	0.9	3
63	Responses of different <i>Drosophila</i> species to temperature changes. Journal of Experimental Biology, 2022, , .	0.8	2
64	Opsin1 regulates light-evoked avoidance behavior in Aedes albopictus. BMC Biology, 2022, 20, 110.	1.7	2

	CHATION R		
#	Article	IF	CITATIONS
65	Stimuli Followed by Avian Malaria Vectors in Host-Seeking Behaviour. Biology, 2022, 11, 726.	1.3	3
66	A persistent behavioral state enables sustained predation of humans by mosquitoes. ELife, 2022, 11, .	2.8	17
67	Single amino acids set apparent temperature thresholds for heat-evoked activation of mosquito transient receptor potential channel TRPA1. Journal of Biological Chemistry, 2022, 298, 102271.	1.6	4
68	A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness. Cell, 2022, 185, 2510-2522.e16.	13.5	36
69	Humidity response in Drosophila olfactory sensory neurons requires the mechanosensitive channel TMEM63. Nature Communications, 2022, 13, .	5.8	13
70	Molecular basis of somatosensation in insects. Current Opinion in Neurobiology, 2022, 76, 102592.	2.0	2
71	Temperature acclimation in hot-spring snakes and the convergence of cold response. Innovation(China), 2022, 3, 100295.	5.2	5
72	Application of reaction-diffusion equations for modeling human and breeding site attraction movement behavior of <i>Aedes aegypti</i> mosquito. Mathematical Biosciences and Engineering, 2022, 19, 12915-12935.	1.0	0
73	The scent of a microbe: how host viral infection increases mosquito attraction. Cell Research, 0, , .	5.7	0
76	Technological advances in mosquito olfaction neurogenetics. Trends in Genetics, 2023, 39, 154-166.	2.9	4
77	Chapter 30: Sensory neurophysiology and integration in mosquitoes. , 2022, , 773-799.		2
78	Chapter 23: The thermal sense of kissing bugs. , 2022, , 621-637.		4
80	Chapter 22: Mosquito heat seeking: the molecular and cellular basis of a key driver of blood-feeding behaviour. , 2022, , 605-619.		7
81	RNA In Situ Hybridization and Immunohistochemistry to Visualize Gene Expression in Peripheral Chemosensory Tissues of Mosquitoes. Cold Spring Harbor Protocols, 2023, 2023, pdb.top107700.	0.2	0
82	The antennal transcriptome of Triatoma infestans reveals substantial expression changes triggered by a blood meal. BMC Genomics, 2022, 23, .	1.2	2
98	An update and review of arthropod vector sensory systems: Potential targets for behavioural manipulation by parasites and other disease agents. Advances in Parasitology, 2024, , .	1.4	0