Neural population dynamics in human motor cortex du

ELife 4, e07436 DOI: 10.7554/elife.07436

Citation Report

#	Article	IF	CITATIONS
1	Single-trial dynamics of motor cortex and their applications to brain-machine interfaces. Nature Communications, 2015, 6, 7759.	5.8	148
2	Motor Planning, Not Execution, Separates Motor Memories. Neuron, 2016, 92, 773-779.	3.8	113
3	Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future. Brain-Computer Interfaces, 2017, 4, 3-36.	0.9	24
4	Review: Human Intracortical Recording and Neural Decoding for Brain–Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1687-1696.	2.7	80
5	Active lead-in variability affects motor memory formation and slows motor learning. Scientific Reports, 2017, 7, 7806.	1.6	16
6	Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces. Scientific Reports, 2017, 7, 7395.	1.6	33
7	The need for calcium imaging in nonhuman primates: New motor neuroscience and brain-machine interfaces. Experimental Neurology, 2017, 287, 437-451.	2.0	45
8	Neural Population Dynamics Underlying Motor Learning Transfer. Neuron, 2018, 97, 1177-1186.e3.	3.8	100
9	Single Neuron Firing Rate Statistics in Motor Cortex During Execution and Observation of Movement. , 2018, 2018, 981-986.		0
10	Implantable Neural Probes for Brain-Machine Interfaces ? Current Developments and Future Prospects. Experimental Neurobiology, 2018, 27, 453-471.	0.7	45
11	Imagery of movements immediately following performance allows learning of motor skills that interfere. Scientific Reports, 2018, 8, 14330.	1.6	30
12	Latent Factors and Dynamics in Motor Cortex and Their Application to Brain–Machine Interfaces. Journal of Neuroscience, 2018, 38, 9390-9401.	1.7	81
13	Inferring single-trial neural population dynamics using sequential auto-encoders. Nature Methods, 2018, 15, 805-815.	9.0	388
14	A useful communication in brain-computer interfaces. Neurology, 2018, 91, 109-110.	1.5	3
15	Different population dynamics in the supplementary motor area and motor cortex during reaching. Nature Communications, 2018, 9, 2754.	5.8	77
16	State-aware detection of sensory stimuli in the cortex of the awake mouse. PLoS Computational Biology, 2019, 15, e1006716.	1.5	25
17	Accurate Estimation of Neural Population Dynamics without Spike Sorting. Neuron, 2019, 103, 292-308.e4.	3.8	195
18	Dynamics of motor cortical activity during naturalistic feeding behavior. Journal of Neural Engineering, 2019, 16, 026038.	1.8	13

CITATION REPORT

#	Article	IF	CITATIONS
19	Wireless resonant circuits for the minimally invasive sensing of biophysical processes in magnetic resonance imaging. Nature Biomedical Engineering, 2019, 3, 69-78.	11.6	20
20	Multiscale modeling and decoding algorithms for spike-field activity. Journal of Neural Engineering, 2019, 16, 016018.	1.8	22
21	Deep Learning Neural Encoders for Motor Cortex. IEEE Transactions on Biomedical Engineering, 2020, 67, 2145-2158.	2.5	7
22	Long-term stability of cortical population dynamics underlying consistent behavior. Nature Neuroscience, 2020, 23, 260-270.	7.1	204
23	Estimating Risk for Future Intracranial, Fully Implanted, Modular Neuroprosthetic Systems: A Systematic Review of Hardware Complications in Clinical Deep Brain Stimulation and Experimental Human Intracortical Arrays. Neuromodulation, 2020, 23, 411-426.	0.4	40
24	Structure in Neural Activity during Observed and Executed Movements Is Shared at the Neural Population Level, Not in Single Neurons. Cell Reports, 2020, 32, 108006.	2.9	30
25	The Discriminative Kalman Filter for Bayesian Filtering with Nonlinear and Nongaussian Observation Models. Neural Computation, 2020, 32, 969-1017.	1.3	13
26	Computation Through Neural Population Dynamics. Annual Review of Neuroscience, 2020, 43, 249-275.	5.0	319
27	Neural decoding of electrocorticographic signals using dynamic mode decomposition. Journal of Neural Engineering, 2020, 17, 036009.	1.8	19
28	Extracting single-trial neural interaction using latent dynamical systems model. Molecular Brain, 2021, 14, 32.	1.3	0
29	Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface. Nature Communications, 2021, 12, 3689.	5.8	38
30	The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews, 2022, 102, 551-604.	13.1	32
37	Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning. PLoS Computational Biology, 2016, 12, e1005175.	1.5	128
38	Asymmetry in kinematic generalization between visual and passive lead-in movements are consistent with a forward model in the sensorimotor system. PLoS ONE, 2020, 15, e0228083.	1.1	17
39	Neural ensemble dynamics in dorsal motor cortex during speech in people with paralysis. ELife, 2019, 8,	2.8	64
40	Neural population dynamics in motor cortex are different for reach and grasp. ELife, 2020, 9, .	2.8	46
45	Implicit mechanisms of intention. Current Biology, 2022, 32, 2051-2060.e6.	1.8	15
46	Sensory feedback can give rise to neural rotations. ELife, 2021, 10, .	2.8	3

c =	TION	D	
			กมา
	VIION	I CLI	

#	Article	IF	CITATIONS
49	Towards clinical application of implantable brain–computer interfaces for people with late-stage ALS: medical and ethical considerations. Journal of Neurology, 2023, 270, 1323-1336.	1.8	11
50	Neural manifold analysis of brain circuit dynamics in health and disease. Journal of Computational Neuroscience, 2023, 51, 1-21.	0.6	10
51	Cortico-cortical drive in a coupled premotor-primary motor cortex dynamical system. Cell Reports, 2022, 41, 111849.	2.9	3
55	How Does Artificial Intelligence Contribute to iEEG Research?. Studies in Neuroscience, Psychology and Behavioral Economics, 2023, , 761-802.	0.1	2