Ribosome structures to near-atomic resolution from th

ELife 2, e00461 DOI: 10.7554/elife.00461

Citation Report

CITATION DEDODT

#	Article	IF	CITATIONS
1	Optimod – An automated approach for constructing and optimizing initial models for single-particle electron microscopy. Journal of Structural Biology, 2013, 184, 417-426.	1.3	22
2	Determination of protein structure at 8.5 Ã resolution using cryo-electron tomography and sub-tomogram averaging. Journal of Structural Biology, 2013, 184, 394-400.	1.3	85
3	Molecular Architecture of a Eukaryotic Translational Initiation Complex. Science, 2013, 342, 1240585.	6.0	120
4	Ion channel seen by electron microscopy. Nature, 2013, 504, 93-94.	13.7	27
5	Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature, 2013, 504, 107-112.	13.7	1,451
6	Golgi apparatus analyzed by cryo-electron microscopy. Histochemistry and Cell Biology, 2013, 140, 369-381.	0.8	20
7	Invited Review Article: Methods for imaging weak-phase objects in electron microscopy. Review of Scientific Instruments, 2013, 84, 111101.	0.6	117
8	Using cryoEM Reconstruction and Phase Extension to Determine Crystal Structure of Bacteriophage ϕ6 Major Capsid Protein. Protein Journal, 2013, 32, 635-640.	0.7	4
9	Electron microscopy analysis of a disaccharide analog complex reveals receptor interactions of adeno-associated virus. Journal of Structural Biology, 2013, 184, 129-135.	1.3	15
10	The ArrayGrid: A methodology for applying multiple samples to a single TEM specimen grid. Ultramicroscopy, 2013, 135, 105-112.	0.8	10
11	Stroboscopic imaging of macromolecular complexes. Nature Methods, 2013, 10, 475-476.	9.0	15
12	Noise models and cryo-EM drift correction with a direct-electron camera. Ultramicroscopy, 2013, 131, 61-69.	0.8	21
13	Replication and validation of cryo-EM structures. Journal of Structural Biology, 2013, 184, 379-380.	1.3	3
14	Likelihood-based classification of cryo-EM images using FREALIGN. Journal of Structural Biology, 2013, 183, 377-388.	1.3	241
15	Macromolecular assemblies. Current Opinion in Structural Biology, 2013, 23, 224-228.	2.6	0
16	Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Current Opinion in Structural Biology, 2013, 23, 771-777.	2.6	179
17	Maximizing the potential of electron cryomicroscopy data collected using direct detectors. Journal of Structural Biology, 2013, 184, 193-202.	1.3	30
18	Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods, 2013, 10, 584-590.	9.0	1,707

#	Article	IF	CITATIONS
19	Quantitative characterization of electron detectors for transmission electron microscopy. Journal of Structural Biology, 2013, 184, 385-393.	1.3	183
20	Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise. Proceedings of the United States of America, 2013, 110, 18037-18041.	3.3	177
21	From lows to highs: using low-resolution models to phase X-ray data. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2257-2265.	2.5	11
22	Story in a sample—the potential (and limitations) of cryoâ€electron microscopy applied to molecular machines. Biopolymers, 2013, 99, 832-836.	1.2	23
23	Orientation Determination of Cryo-EM Images Using Least Unsquared Deviations. SIAM Journal on Imaging Sciences, 2013, 6, 2450-2483.	1.3	37
24	Direct detection pays off for electron cryo-microscopy. ELife, 2013, 2, e00573.	2.8	53
25	Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector. ELife, 2014, 3, e01963.	2.8	132
26	Cryo-EM enters a new era. ELife, 2014, 3, e03678.	2.8	214
27	Large, dynamic, multi-protein complexes: a challenge for structural biology. Journal of Physics Condensed Matter, 2014, 26, 463103.	0.7	24
28	Phageââ,¬â€œhost interplay: examples from tailed phages and Gram-negative bacterial pathogens. Frontiers in Microbiology, 2014, 5, 442.	1.5	119
29	New advances in imaging polymers at near-atomic resolution. , 2014, , .		0
30	An atomic model of brome mosaic virus using direct electron detection and real-space optimization. Nature Communications, 2014, 5, 4808.	5.8	105
31	Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130318.	1.8	53
32	Lessons from yeast: the spindle pole body and the centrosome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130456.	1.8	54
33	Structural Changes Enable Start Codon Recognition by the Eukaryotic Translation Initiation Complex. Cell, 2014, 159, 597-607.	13.5	173
34	The Ribosome Emerges from a Black Box. Cell, 2014, 159, 979-984.	13.5	104
35	Ultrastable gold substrates for electron cryomicroscopy. Science, 2014, 346, 1377-1380.	6.0	346
36	Controlled Bacterial Lysis for Electron Tomography of Native Cell Membranes. Structure, 2014, 22, 1875-1882.	1.6	34

#	ARTICLE	IF	CITATIONS
37	Structure of Î ² -galactosidase at 3.2-Ã resolution obtained by cryo-electron microscopy. Proceedings of the United States of America, 2014, 111, 11709-11714.	3.3	184
38	Single-step antibody-based affinity cryo-electron microscopy for imaging and structural analysis of macromolecular assemblies. Journal of Structural Biology, 2014, 187, 1-9.	1.3	35
39	Web server for tilt-pair validation of single particle maps from electron cryomicroscopy. Journal of Structural Biology, 2014, 186, 122-131.	1.3	18
40	Progress in the direct structural characterization of fibrous amphiphilic supramolecular assemblies in solution by transmission electron microscopic techniques. Advances in Colloid and Interface Science, 2014, 208, 279-292.	7.0	14
41	Structure of the Yeast Mitochondrial Large Ribosomal Subunit. Science, 2014, 343, 1485-1489.	6.0	521
42	Unified Polymerization Mechanism for the Assembly of ASC-Dependent Inflammasomes. Cell, 2014, 156, 1193-1206.	13.5	1,035
43	Initiation of Translation by Cricket Paralysis Virus IRES Requires Its Translocation in the Ribosome. Cell, 2014, 157, 823-831.	13.5	211
44	The dynamic duo: Combining NMR and small angle scattering in structural biology. Protein Science, 2014, 23, 669-682.	3.1	45
45	Structural studies of the spliceosome: zooming into the heart of the machine. Current Opinion in Structural Biology, 2014, 25, 57-66.	2.6	51
46	Single-particle electron cryomicroscopy. Nature Methods, 2014, 11, 30-30.	9.0	8
47	Uncertainty in integrative structural modeling. Current Opinion in Structural Biology, 2014, 28, 96-104.	2.6	91
48	Near-atomic resolution reconstructions using a mid-range electron microscope operated at 200kV. Journal of Structural Biology, 2014, 188, 183-187.	1.3	16
49	Progress and outlook in structural biology of large viral RNAs. Virus Research, 2014, 193, 24-38.	1.1	17
50	A comparative cross-linking strategy to probe conformational changes in protein complexes. Nature Protocols, 2014, 9, 2224-2236.	5.5	93
51	Robust evaluation of 3D electron cryomicroscopy data using tilt-pairs. Journal of Structural Biology, 2014, 187, 112-118.	1.3	16
52	Î ³ -Secretase: A Horseshoe Structure Brings Good Luck. Cell, 2014, 158, 247-249.	13.5	6
53	Quantifying resolution limiting factors in subtomogram averaged cryo-electron tomography using simulations. Journal of Structural Biology, 2014, 187, 103-111.	1.3	19
54	Architecture of mammalian respiratory complex I. Nature, 2014, 515, 80-84.	13.7	350

	CITATION RI	EPORT	
#	Article	IF	CITATIONS
55	Structure of the large ribosomal subunit from human mitochondria. Science, 2014, 346, 718-722.	6.0	260
56	Ribosome revelations. Nature, 2014, 513, 491-492.	13.7	1
57	Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas. Nature Methods, 2014, 11, 649-652.	9.0	172
58	Gold Nanoparticles for High Resolution Imaging in Modern Immunocytochemistry. Fundamental Biomedical Technologies, 2014, , 189-206.	0.2	0
59	Quantifying the local resolution of cryo-EM density maps. Nature Methods, 2014, 11, 63-65.	9.0	1,691
60	Molecular Architecture of the Bacterial Flagellar Motor in Cells. Biochemistry, 2014, 53, 4323-4333.	1.2	124
61	Three-dimensional structure of human \hat{I}^3 -secretase. Nature, 2014, 512, 166-170.	13.7	317
62	The subtle allostery of microtubule dynamics. Nature Structural and Molecular Biology, 2014, 21, 505-506.	3.6	7
63	Single particle 3D reconstruction for 2D crystal images of membrane proteins. Journal of Structural Biology, 2014, 185, 267-277.	1.3	17
64	Automated particle correspondence and accurate tilt-axis detection in tilted-image pairs. Journal of Structural Biology, 2014, 187, 66-75.	1.3	4
65	Choice of operating voltage for a transmission electron microscope. Ultramicroscopy, 2014, 145, 85-93.	0.8	114
66	CTER—Rapid estimation of CTF parameters with error assessment. Ultramicroscopy, 2014, 140, 9-19.	0.8	65
67	Single particle electron cryo-microscopy of a mammalian ion channel. Current Opinion in Structural Biology, 2014, 27, 1-7.	2.6	79
69	Structure of the Mammalian Ribosome-Sec61 Complex to 3.4ÂÃ Resolution. Cell, 2014, 157, 1632-1643.	13.5	302
70	NMR approaches for structural analysis of multidomain proteins and complexes in solution. Progress in Nuclear Magnetic Resonance Spectroscopy, 2014, 80, 26-63.	3.9	164
71	Towards an integrative structural biology approach: combining Cryo-TEM, X-ray crystallography, and NMR. Journal of Structural and Functional Genomics, 2014, 15, 117-124.	1.2	19
72	Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy. Journal of Visualized Experiments, 2014, , e51087.	0.2	60
73	Visualization of ATP Synthase Dimers in Mitochondria by Electron Cryo-tomography. Journal of Visualized Experiments, 2014, , 51228.	0.2	26

	CITATION	Report	
#	Article	IF	CITATIONS
74	Beam-induced motion correction for sub-megadalton cryo-EM particles. ELife, 2014, 3, e03665.	2.8	298
75	Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. ELife, 2014, 3, .	2.8	274
76	Membrane protein structures without crystals, by single particle electron cryomicroscopy. Current Opinion in Structural Biology, 2015, 33, 103-114.	2.6	49
77	Evaluation of super-resolution performance of the K2 electron-counting camera using 2D crystals of aquaporin-0. Journal of Structural Biology, 2015, 192, 163-173.	1.3	26
78	Electron Microscopy and Image Processing: Essential Tools for Structural Analysis of Macromolecules. Current Protocols in Protein Science, 2015, 82, 17.2.1-17.2.61.	2.8	9
79	Do's and Don'ts of Cryo-electron Microscopy: A Primer on Sample Preparation and High Quality Data Collection for Macromolecular 3D Reconstruction. Journal of Visualized Experiments, 2015, , 52311.	0.2	12
80	A posteriori correction of camera characteristics from large image data sets. Scientific Reports, 2015, 5, 10317.	1.6	22
81	Electron microscopy and three-dimensional single-particle analysis as tools for understanding the structural basis of mechanobiology. , 0, , 15-31.		0
82	Probe current determination in analytical <scp>TEM/STEM</scp> and its application to the characterization of large area <scp>EDS</scp> detectors. Microscopy Research and Technique, 2015, 78, 886-893.	1.2	11
83	Cryoâ€EM structure of fatty acid synthase (FAS) from <i>Rhodosporidium toruloides</i> provides insights into the evolutionary development of fungal FAS. Protein Science, 2015, 24, 987-995.	3.1	28
84	Singleâ€Particle Cryoâ€EM and 3D Reconstruction of Hybrid Nanoparticles with Electronâ€Đense Components. Small, 2015, 11, 5157-5163.	5.2	6
85	Electron Tomography: A Threeâ€Dimensional Analytic Tool for Hard and Soft Materials Research. Advanced Materials, 2015, 27, 5638-5663.	11.1	152
86	Single-particle cryo-EM of the ryanodine receptor channel. European Journal of Translational Myology, 2015, 25, 35.	0.8	34
87	Single-particle cryo-EM of the ryanodine receptor channel. European Journal of Translational Myology, 2015, 25, 35-48.	0.8	11
88	Structural and functional studies of membrane remodeling machines. Methods in Cell Biology, 2015, 128, 165-200.	0.5	7
89	Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Science, 2015, 348, 581-585.	6.0	126
90	Cryo-EM: A Unique Tool for the Visualization of Macromolecular Complexity. Molecular Cell, 2015, 58, 677-689.	4.5	300
91	Cryo-electron microscopy for structural biology: current status and future perspectives. Science China Life Sciences, 2015, 58, 750-756.	2.3	8

#	Article	IF	CITATIONS
92	Advances in electron microscopy: A qualitative view of instrumentation development for macromolecular imaging and tomography. Archives of Biochemistry and Biophysics, 2015, 581, 25-38.	1.4	34
93	Progress and Development of Direct Detectors for Electron Cryomicroscopy. Advances in Imaging and Electron Physics, 2015, 190, 103-141.	0.1	7
94	Dynamical features of the <i>Plasmodium falciparum</i> ribosome during translation. Nucleic Acids Research, 2015, 43, gkv991.	6.5	48
95	Integrative Modeling of Macromolecular Assemblies from Low to Near-Atomic Resolution. Computational and Structural Biotechnology Journal, 2015, 13, 492-503.	1.9	21
96	Structural Biology: A Century-long Journey into an Unseen World. Interdisciplinary Science Reviews, 2015, 40, 308-328.	1.0	25
97	Semi-automated selection of cryo-EM particles in RELION-1.3. Journal of Structural Biology, 2015, 189, 114-122.	1.3	346
98	Structure and Assembly Pathway of the Ribosome Quality Control Complex. Molecular Cell, 2015, 57, 433-444.	4.5	165
99	Structural Plasticity of Helical Nanotubes Based on Coiled-Coil Assemblies. Structure, 2015, 23, 280-289.	1.6	107
100	Alignment of direct detection device micrographs using a robust Optical Flow approach. Journal of Structural Biology, 2015, 189, 163-176.	1.3	59
101	Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from <i>Drosophila</i> . Genes and Development, 2015, 29, 277-287.	2.7	55
102	Near-Atomic Resolution for One State of F-Actin. Structure, 2015, 23, 173-182.	1.6	121
103	Collaborative Computational Project for Electron cryo-Microscopy. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 123-126.	2.5	84
104	Quantitative studies of mRNA recruitment to the eukaryotic ribosome. Biochimie, 2015, 114, 58-71.	1.3	28
105	De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nature Methods, 2015, 12, 335-338.	9.0	172
106	Transmission electron microscopy and the molecular structure of icosahedral viruses. Archives of Biochemistry and Biophysics, 2015, 581, 59-67.	1.4	6
107	Atomic structure of the APC/C and its mechanism of protein ubiquitination. Nature, 2015, 522, 450-454.	13.7	208
108	Structural basis for stop codon recognition in eukaryotes. Nature, 2015, 524, 493-496.	13.7	237
109	Supporting Biomedical Research. JAMA - Journal of the American Medical Association, 2015, 313, 133.	3.8	6

7

#	Article	IF	CITATIONS
110	Overview and future of single particle electron cryomicroscopy. Archives of Biochemistry and Biophysics, 2015, 581, 19-24.	1.4	89
111	Cryo-Electron Microscopy and the Amazing Race to Atomic Resolution. Biochemistry, 2015, 54, 3133-3141.	1.2	44
112	Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 136-153.	2.5	537
113	Tools for the Study of Nanostructures. Food Engineering Series, 2015, , 5-38.	0.3	0
114	Developments in cryo-electron tomography for in situ structural analysis. Archives of Biochemistry and Biophysics, 2015, 581, 78-85.	1.4	22
115	The 55S mammalian mitochondrial ribosome and its tRNA-exit region. Biochimie, 2015, 114, 119-126.	1.3	18
116	A Primer to Single-Particle Cryo-Electron Microscopy. Cell, 2015, 161, 438-449.	13.5	478
117	Single-Particle Cryo-EM at Crystallographic Resolution. Cell, 2015, 161, 450-457.	13.5	481
118	Structure of the human 80S ribosome. Nature, 2015, 520, 640-645.	13.7	406
119	Efficient Estimation of Three-Dimensional Covariance and its Application in the Analysis of Heterogeneous Samples in Cryo-Electron Microscopy. Structure, 2015, 23, 1129-1137.	1.6	35
120	Cryogenic Electron Microscopy and Single-Particle Analysis. Annual Review of Biochemistry, 2015, 84, 499-517.	5.0	52
121	Multicolor Fluorescence-Based Screening Toward Structural Analysis of Multiprotein Membrane Complexes. Methods in Enzymology, 2015, 557, 3-26.	0.4	1
122	2.2 à resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science, 2015, 348, 1147-1151.	6.0	440
123	The structure of the human mitochondrial ribosome. Science, 2015, 348, 95-98.	6.0	432
124	From high symmetry to high resolution in biological electron microscopy: a commentary on Crowther (1971) †Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140345.	1.8	6
125	Signalling scaffolds and local organization of cellular behaviour. Nature Reviews Molecular Cell Biology, 2015, 16, 232-244.	16.1	245
126	Hybrid methods for macromolecular structure determination: experiment with expectations. Current Opinion in Structural Biology, 2015, 31, 20-27.	2.6	37
127	Asynchronous data acquisition and on-the-fly analysis of dose fractionated cryoEM images by UCSFImage. Journal of Structural Biology, 2015, 192, 174-178.	1.3	92

#	Article	IF	CITATIONS
128	Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex. Molecular Cell, 2015, 59, 399-412.	4.5	195
129	No longer â€~blob-ology': Cryo-EM is getting into molecular details. Science China Life Sciences, 2015, 58, 1154-1156.	2.3	2
130	Mechanism of elF6 release from the nascent 60S ribosomal subunit. Nature Structural and Molecular Biology, 2015, 22, 914-919.	3.6	168
131	Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem. SIAM Journal on Imaging Sciences, 2015, 8, 126-185.	1.3	59
132	Advances in Single-Particle Electron Cryomicroscopy Structure Determination applied to Sub-tomogram Averaging. Structure, 2015, 23, 1743-1753.	1.6	189
133	The Diamond Light Source and the challenges ahead for structural biology: some informal remarks. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20130156.	1.6	3
134	Three-dimensional reconstruction of helical polymers. Archives of Biochemistry and Biophysics, 2015, 581, 54-58.	1.4	30
135	A new protocol to accurately determine microtubule lattice seam location. Journal of Structural Biology, 2015, 192, 245-254.	1.3	60
136	Single-particle cryoEM analysis at near-atomic resolution from several thousand asymmetric subunits. Journal of Structural Biology, 2015, 192, 235-244.	1.3	9
137	Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature, 2015, 517, 50-55.	13.7	391
138	Seeing tobacco mosaic virus through direct electron detectors. Journal of Structural Biology, 2015, 189, 87-97.	1.3	82
139	Isotope Substitution Extends the Lifetime of Organic Molecules in Transmission Electron Microscopy. Small, 2015, 11, 622-629.	5.2	39
140	How cryo-EM is revolutionizing structural biology. Trends in Biochemical Sciences, 2015, 40, 49-57.	3.7	709
141	Structural modeling from electron microscopy data. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2015, 5, 62-81.	6.2	20
142	Testing the Validity of Single-Particle Maps at Low and High Resolution. Methods in Enzymology, 2016, 579, 227-253.	0.4	9
143	Identifying and Visualizing Macromolecular Flexibility in Structural Biology. Frontiers in Molecular Biosciences, 2016, 3, 47.	1.6	49
144	Development of STEM-Holography. Microscopy and Microanalysis, 2016, 22, 506-507.	0.2	5
145	Structural characterization of ribosome recruitment and translocation by type IV IRES. ELife, 2016, 5, .	2.8	82

#	Article	IF	CITATIONS
146	The molecular choreography of protein synthesis: translational control, regulation, and pathways. Quarterly Reviews of Biophysics, 2016, 49, e11.	2.4	14
147	Nucleotideâ€dependent conformational changes of the AAA+ ATPase p97 revisited. FEBS Letters, 2016, 590, 595-604.	1.3	35
148	Fusion to a homo-oligomeric scaffold allows cryo-EM analysis of a small protein. Scientific Reports, 2016, 6, 30909.	1.6	35
149	Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate. Nature Communications, 2016, 7, 10708.	5.8	109
150	Tor forms a dimer through an N-terminal helical solenoid with a complex topology. Nature Communications, 2016, 7, 11016.	5.8	76
151	Single-Particle CryoEM of Macromolecular Complexes. , 2016, , 5-13.		0
152	Cryo-electron Microscopy Analysis of Structurally Heterogeneous Macromolecular Complexes. Computational and Structural Biotechnology Journal, 2016, 14, 385-390.	1.9	27
153	The cryo-EM structure of a ribosome–Ski2-Ski3-Ski8 helicase complex. Science, 2016, 354, 1431-1433.	6.0	108
154	Single particle electron cryomicroscopy: trends, issues and future perspective. Quarterly Reviews of Biophysics, 2016, 49, e13.	2.4	163
155	Record-breaking protein images have applications for drug discovery. Physics Today, 2016, 69, 13-15.	0.3	4
156	Methods to account for movement and flexibility in cryo-EM data processing. Methods, 2016, 100, 35-41.	1.9	25
157	Gctf: Real-time CTF determination and correction. Journal of Structural Biology, 2016, 193, 1-12.	1.3	3,244
158	Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens. Journal of Structural Biology, 2016, 193, 33-44.	1.3	78
159	Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography. Journal of Structural Biology, 2016, 194, 383-394.	1.3	42
160	An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods, 2016, 100, 3-15.	1.9	178
161	Recent technical advancements enabled atomic resolution CryoEM. Chinese Physics B, 2016, 25, 018710.	0.7	1
162	High resolution single particle refinement in EMAN2.1. Methods, 2016, 100, 25-34.	1.9	163
163	Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature, 2016, 533, 260-264.	13.7	159

#	Article	IF	CITATIONS
164	Whither Ribosome Structure and Dynamics Research? (A Perspective). Journal of Molecular Biology, 2016, 428, 3565-3569.	2.0	11
165	WD40 domain of Apc1 is critical for the coactivator-induced allosteric transition that stimulates APC/C catalytic activity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10547-10552.	3.3	16
166	Cryo-EM Structure Determination Using Segmented Helical Image Reconstruction. Methods in Enzymology, 2016, 579, 307-328.	0.4	18
167	Direct Electron Detectors. Methods in Enzymology, 2016, 579, 1-17.	0.4	158
168	Recent advances in the structural biology of the 26S proteasome. International Journal of Biochemistry and Cell Biology, 2016, 79, 437-442.	1.2	34
169	Processing of Structurally Heterogeneous Cryo-EM Data in RELION. Methods in Enzymology, 2016, 579, 125-157.	0.4	502
170	Large-Scale Movements of IF3 and tRNA during Bacterial Translation Initiation. Cell, 2016, 167, 133-144.e13.	13.5	135
171	Molecular basis of APC/C regulation by the spindle assembly checkpoint. Nature, 2016, 536, 431-436.	13.7	178
172	Long shelf-life streptavidin support-films suitable for electron microscopy of biological macromolecules. Journal of Structural Biology, 2016, 195, 238-244.	1.3	58
173	Resolution advances in cryo-EM enable application to drug discovery. Current Opinion in Structural Biology, 2016, 41, 194-202.	2.6	95
174	Unravelling biological macromolecules with cryo-electron microscopy. Nature, 2016, 537, 339-346.	13.7	352
175	Cryo-EM structure of respiratory complex I reveals a link to mitochondrial sulfur metabolism. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1935-1942.	0.5	27
176	Foil-hole and data image quality assessment in 3DEM: Towards high-throughput image acquisition in the electron microscope. Journal of Structural Biology, 2016, 196, 515-524.	1.3	4
177	Cryo-EM study of start codon selection during archaeal translation initiation. Nature Communications, 2016, 7, 13366.	5.8	25
178	Structures and stabilization of kinetoplastid-specific split rRNAs revealed by comparing leishmanial and human ribosomes. Nature Communications, 2016, 7, 13223.	5.8	48
179	An efficient method for validating protein models using electron microscopy data. , 2016, , .		1
180	The principle of conformational signaling. Chemical Society Reviews, 2016, 45, 4252-4284.	18.7	46
181	Toward a structural understanding of co-translational protein translocation. Current Opinion in Cell Biology, 2016, 41, 91-99.	2.6	97

#	Article	IF	CITATIONS
182	Progress towards an optimal specimen support for electron cryomicroscopy. Current Opinion in Structural Biology, 2016, 37, 81-89.	2.6	73
183	Towards an optimum design for thin film phase plates. Ultramicroscopy, 2016, 160, 1-6.	0.8	5
184	3DIANA: 3D Domain Interaction Analysis: A Toolbox for Quaternary Structure Modeling. Biophysical Journal, 2016, 110, 766-775.	0.2	15
185	The development of cryo-EM into a mainstream structural biology technique. Nature Methods, 2016, 13, 24-27.	9.0	340
186	Generalized single-particle cryo-EM – a historical perspective. Microscopy (Oxford, England), 2016, 65, 3-8.	0.7	38
187	Cryo electron microscopy to determine the structure of macromolecular complexes. Methods, 2016, 95, 78-85.	1.9	82
188	Single-particle cryo-EM data acquisition by using direct electron detection camera. Microscopy (Oxford, England), 2016, 65, 35-41.	0.7	46
189	Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature, 2016, 531, 114-117.	13.7	453
190	A Guided Tour of Selected Image Processing and Analysis Methods for Fluorescence and Electron Microscopy. IEEE Journal on Selected Topics in Signal Processing, 2016, 10, 6-30.	7.3	52
191	Structure of the Sec61 channel opened by a signal sequence. Science, 2016, 351, 88-91.	6.0	198
192	A local-optimization refinement algorithm in single particle analysis for macromolecular complex with multiple rigid modules. Protein and Cell, 2016, 7, 46-62.	4.8	13
193	Structures of the Carbon-Phosphorus Lyase Complex Reveal the Binding Mode of the NBD-like PhnK. Structure, 2016, 24, 37-42.	1.6	15
194	Soft matter perspective on protein crystal assembly. Colloids and Surfaces B: Biointerfaces, 2016, 137, 22-31.	2.5	55
195	Single-particle cryo-electron microscopy of macromolecular complexes. Microscopy (Oxford,) Tj ETQq1 1 0.7843	14 _{0.9} BT/C	verlock 10 T
196	Two promising future developments of cryo-EM: capturing short-lived states and mapping a continuum of states of a macromolecule. Microscopy (Oxford, England), 2016, 65, 69-79.	0.7	44
197	In Situ Cryo-Electron Tomography: A Post-Reductionist Approach to Structural Biology. Journal of Molecular Biology, 2016, 428, 332-343.	2.0	160
198	Structural Heterogeneity in Pre-40S Ribosomes. Structure, 2017, 25, 329-340.	1.6	60
199	Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2. Nature Structural and Molecular Biology, 2017, 24, 123-130.	3.6	105

#	Article	IF	Citations
200	Vitrification after multiple rounds of sample application and blotting improves particle density on cryo-electron microscopy grids. Journal of Structural Biology, 2017, 198, 38-42.	1.3	68
201	MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nature Methods, 2017, 14, 331-332.	9.0	6,166
202	cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nature Methods, 2017, 14, 290-296.	9.0	5,371
203	Future Prospects for Biomolecular, Biomimetic, and Biomaterials Research Enabled by New Liquid Cell Electron Microscopy Techniques. , 0, , 476-500.		0
204	Structures of closed and open conformations of dimeric human ATM. Science Advances, 2017, 3, e1700933.	4.7	91
205	Microscopes and technologies for imaging cells and their protein networks: From nano to atomic scale resolution. Technology, 2017, 05, 61-73.	1.4	1
206	Improved metrics for comparing structures of macromolecular assemblies determined by 3D electron-microscopy. Journal of Structural Biology, 2017, 199, 12-26.	1.3	56
207	Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nature Microbiology, 2017, 2, 17031.	5.9	128
208	A coarse-grained model for assisting the investigation of structure and dynamics of large nucleic acids by ion mobility spectrometry–mass spectrometry. Physical Chemistry Chemical Physics, 2017, 19, 14937-14946.	1.3	7
209	Advances in the field of single-particle cryo-electron microscopy over the last decade. Nature Protocols, 2017, 12, 209-212.	5.5	127
210	Structural studies of RNA-protein complexes: A hybrid approach involving hydrodynamics, scattering, and computational methods. Methods, 2017, 118-119, 146-162.	1.9	39
211	Molecular architecture of the Nâ€ŧype <scp>ATP</scp> ase rotor ring from <i>Burkholderia pseudomallei</i> . EMBO Reports, 2017, 18, 526-535.	2.0	39
212	The ribosome and its role in protein folding: looking through a magnifying glass. Acta Crystallographica Section D: Structural Biology, 2017, 73, 509-521.	1.1	32
213	RNA Regulations and Functions Decoded by Transcriptome-wide RNA Structure Probing. Genomics, Proteomics and Bioinformatics, 2017, 15, 267-278.	3.0	34
214	Focused classification and refinement in high-resolution cryo-EM structural analysis of ribosome complexes. Current Opinion in Structural Biology, 2017, 46, 140-148.	2.6	53
215	Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy. Nature Communications, 2017, 8, 629.	5.8	175
216	Low-dose cryo electron ptychography via non-convex Bayesian optimization. Scientific Reports, 2017, 7, 9883.	1.6	59
217	Genome packaging of reovirus is mediated by the scaffolding property of the microtubule network. Cellular Microbiology, 2017, 19, e12765.	1.1	25

#	Article	IF	CITATIONS
218	Advances in high-resolution cryo-EM of oligomeric enzymes. Current Opinion in Structural Biology, 2017, 46, 48-54.	2.6	26
219	Visualizing the Assembly Pathway of Nucleolar Pre-60S Ribosomes. Cell, 2017, 171, 1599-1610.e14.	13.5	162
220	How Cryo-EM Became so Hot. Cell, 2017, 171, 1229-1231.	13.5	60
221	Cryo-EM: beyond the microscope. Current Opinion in Structural Biology, 2017, 46, 71-78.	2.6	76
222	Particle segmentation algorithm for flexible single particle reconstruction. Biophysics Reports, 2017, 3, 43-55.	0.2	9
223	The integrative role of cryo electron microscopy in molecular and cellular structural biology. Biology of the Cell, 2017, 109, 81-93.	0.7	58
224	Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryoâ€electron microscopy. Protein Science, 2017, 26, 113-121.	3.1	31
225	BioEM: GPU-accelerated computing of Bayesian inference of electron microscopy images. Computer Physics Communications, 2017, 210, 163-171.	3.0	27
226	A pipeline approach to single-particle processing in <i>RELION</i> . Acta Crystallographica Section D: Structural Biology, 2017, 73, 496-502.	1.1	262
227	The impact of recent improvements in cryo-electron microscopy technology on the understanding of bacterial ribosome assembly. Nucleic Acids Research, 2017, 45, 1027-1040.	6.5	19
228	Expression, Purification, and Enzymatic Characterization of Intramembrane Proteases. Methods in Enzymology, 2017, 584, 127-155.	0.4	2
229	Alternative Mode of E-Site tRNA Binding in the Presence of a Downstream mRNA Stem Loop at the Entrance Channel. Structure, 2018, 26, 437-445.e3.	1.6	30
230	Cryo-EM Studies of Pre-mRNA Splicing: From Sample Preparation to Model Visualization. Annual Review of Biophysics, 2018, 47, 175-199.	4.5	23
231	Software electron counting for low-dose scanning transmission electron microscopy. Ultramicroscopy, 2018, 188, 1-7.	0.8	18
232	Yeast Inner-Subunit PA–NZ-1 Labeling Strategy for Accurate Subunit Identification in a Macromolecular Complex through Cryo-EM Analysis. Journal of Molecular Biology, 2018, 430, 1417-1425.	2.0	17
233	Development of a yeast internal-subunit eGFP labeling strategy and its application in subunit identification in eukaryotic group II chaperonin TRiC/CCT. Scientific Reports, 2018, 8, 2374.	1.6	17
234	Cryo-tomography tilt-series alignment with consideration of the beam-induced sample motion. Journal of Structural Biology, 2018, 202, 200-209.	1.3	43
235	The 2017 Nobel Prize in Chemistry: cryo-EM comes of age. Analytical and Bioanalytical Chemistry, 2018, 410, 2053-2057.	1.9	29

#	Article	IF	CITATIONS
236	Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 927-942.	1.4	8
237	Binding of ISRIB reveals a regulatory site in the nucleotide exchange factor eIF2B. Science, 2018, 359, 1533-1536.	6.0	157
238	Experimental Characterization of Protein Complex Structure, Dynamics, and Assembly. Methods in Molecular Biology, 2018, 1764, 3-27.	0.4	4
239	Rapid increase of near atomic resolution virus capsid structures determined by cryo-electron microscopy. Journal of Structural Biology, 2018, 201, 1-4.	1.3	10
240	Building the atomic model of a boreal lake virus of unknown fold in a 3.9â€ [−] à cryo-EM map. Journal of Structural Biology, 2018, 202, 94-99.	1.3	3
241	The complex structure and function of Mediator. Journal of Biological Chemistry, 2018, 293, 13778-13785.	1.6	65
242	Guidelines for using Bsoft for high resolution reconstruction and validation of biomolecular structures from electron micrographs. Protein Science, 2018, 27, 159-171.	3.1	99
243	X-rays in the Cryo-Electron Microscopy Era: Structural Biology's Dynamic Future. Biochemistry, 2018, 57, 277-285.	1.2	78
244	Profile of Joachim Frank, Richard Henderson, and Jacques Dubochet, 2017 Nobel Laureates in Chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 441-444.	3.3	6
245	Exploratory Studies Detecting Secondary Structures in Medium Resolution 3D Cryo-EM Images Using Deep Convolutional Neural Networks. , 2018, , .		4
246	Analyzing the Level of Accessibility of Public Urban Green Spaces to Different Socially Vulnerable Groups of People. Sustainability, 2018, 10, 3917.	1.6	60
247	emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nature Methods, 2018, 15, 955-961.	9.0	206
248	Membrane protein structural biology in the era of single particle cryo-EM. Current Opinion in Structural Biology, 2018, 52, 58-63.	2.6	122
249	Single-particle cryo-EM—How did it get here and where will it go. Science, 2018, 361, 876-880.	6.0	291
250	Towards dynamic structure of biological complexes at atomic resolution by cryo-EM. Chinese Physics B, 2018, 27, 066801.	0.7	0
251	Orienting the future of bio-macromolecular electron microscopy. Chinese Physics B, 2018, 27, 063601.	0.7	14
252	Ribosomes and cryo-EM: a duet. Current Opinion in Structural Biology, 2018, 52, 1-7.	2.6	24
253	Cryo-ET bridges the gap between cell biology and structural biophysics. Chinese Physics B, 2018, 27,	0.7	О

#	Article	IF	CITATIONS
254	Recent Advances in Single Particle Cryo-electron Microscopy and Cryo-electron Tomography to Determine the Structures of Biological Macromolecules. Journal of the Indian Institute of Science, 2018, 98, 231-245.	0.9	2
255	Image processing techniques for high-resolution structure determination from badly ordered 2D crystals. Journal of Structural Biology, 2018, 203, 120-134.	1.3	9
256	Structure, mechanism, and regulation of the chloroplast ATP synthase. Science, 2018, 360, .	6.0	308
257	Cryo-EM in drug discovery: achievements, limitations and prospects. Nature Reviews Drug Discovery, 2018, 17, 471-492.	21.5	304
258	Structural insights into coronavirus entry. Advances in Virus Research, 2019, 105, 93-116.	0.9	669
259	Is radiation damage the limiting factor in high-resolution single particle imaging with X-ray free-electron lasers?. Structural Dynamics, 2019, 6, 044103.	0.9	14
260	Retroviral integration into nucleosomes through DNA looping and sliding along the histone octamer. Nature Communications, 2019, 10, 4189.	5.8	43
261	Structural basis for the inhibition of translation through $eIF2\hat{l}\pm$ phosphorylation. Nature Communications, 2019, 10, 2640.	5.8	62
262	Subtomogram averaging from cryo-electron tomograms. Methods in Cell Biology, 2019, 152, 217-259.	0.5	38
263	Challenges and opportunities in cryo-EM single-particle analysis. Journal of Biological Chemistry, 2019, 294, 5181-5197.	1.6	273
264	Tightly-orchestrated rearrangements govern catalytic center assembly of the ribosome. Nature Communications, 2019, 10, 958.	5.8	51
265	How Good Can Single-Particle Cryo-EM Become? What Remains Before It Approaches Its Physical Limits?. Annual Review of Biophysics, 2019, 48, 45-61.	4.5	67
266	In situ Microfluidic Cryofixation for Cryo Focused Ion Beam Milling and Cryo Electron Tomography. Scientific Reports, 2019, 9, 19133.	1.6	18
267	Damage in electron cryomicroscopy: Lessons from biology for materials science. MRS Bulletin, 2019, 44, 935-941.	1.7	15
268	Visualization of biological macromolecules at near-atomic resolution: cryo-electron microscopy comes of age. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 3-11.	0.4	22
269	Electron cryo-microscopy for elucidating the dynamic nature of live-protein complexes. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129436.	1.1	5
270	Measuring local-directional resolution and local anisotropy in cryo-EM maps. Nature Communications, 2020, 11, 55.	5.8	28
271	Developments, applications, and prospects of cryoâ€electron microscopy. Protein Science, 2020, 29, 872-882.	3.1	68

#	Article	IF	CITATIONS
272	Using modern approaches to sedimentation velocity to detect conformational changes in proteins. European Biophysics Journal, 2020, 49, 729-743.	1.2	7
274	Structural analysis of 70S ribosomes by cross-linking/mass spectrometry reveals conformational plasticity. Scientific Reports, 2020, 10, 12618.	1.6	27
275	The diversity of Shine-Dalgarno sequences sheds light on the evolution of translation initiation. RNA Biology, 2021, 18, 1489-1500.	1.5	14
276	Simulation-Based Methods for Model Building and Refinement in Cryoelectron Microscopy. Journal of Chemical Information and Modeling, 2020, 60, 2470-2483.	2.5	25
277	Cryo-EM structures of tau filaments. Current Opinion in Structural Biology, 2020, 64, 17-25.	2.6	165
278	Beyond protein structure determination with MicroED. Current Opinion in Structural Biology, 2020, 64, 51-58.	2.6	15
279	Smart Molecular Nanosheets for Advanced Preparation of Biological Samples in Electron Cryo-Microscopy. ACS Nano, 2020, 14, 9972-9978.	7.3	14
280	Reducing bias and variance for CTF estimation in single particle cryo-EM. Ultramicroscopy, 2020, 212, 112950.	0.8	7
281	What Could Go Wrong? A Practical Guide to Single-Particle Cryo-EM: From Biochemistry to Atomic Models. Journal of Chemical Information and Modeling, 2020, 60, 2458-2469.	2.5	25
282	Research journey of respirasome. Protein and Cell, 2020, 11, 318-338.	4.8	22
284	Simplified geometric representations of protein structures identify complementary interaction interfaces. Proteins: Structure, Function and Bioinformatics, 2021, 89, 348-360.	1.5	7
285	Sparseness and Smoothness Regularized Imaging for improving the resolution of Cryo-EM single-particle reconstruction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
286	Setting up and operating a cryo-EM laboratory. Quarterly Reviews of Biophysics, 2021, 54, e2.	2.4	10
287	An RNA-centric historical narrative around the Protein Data Bank. Journal of Biological Chemistry, 2021, 296, 100555.	1.6	17
288	Large-scale movement of eIF3 domains during translation initiation modulate start codon selection. Nucleic Acids Research, 2021, 49, 11491-11511.	6.5	14
289	Linker histone defines structure and self-association behaviour of the 177Âbp human chromatosome. Scientific Reports, 2021, 11, 380.	1.6	16
290	Current limitations to high-resolution structure determination by single-particle cryoEM. Quarterly Reviews of Biophysics, 2021, 54, e4.	2.4	21
291	Preparation of Sample Support Films in Transmission Electron Microscopy using a Support Floatation Block. Journal of Visualized Experiments, 2021, , .	0.2	0

#	Article	IF	CITATIONS
292	Preparing Better Samples for Cryo–Electron Microscopy: Biochemical Challenges Do Not End with Isolation and Purification. Annual Review of Biochemistry, 2021, 90, 451-474.	5.0	33
294	An Overview of Microcrystal Electron Diffraction (MicroED). Annual Review of Biochemistry, 2021, 90, 431-450.	5.0	14
295	Structural studies of elastic fibre and microfibrillar proteins. Matrix Biology Plus, 2021, 12, 100078.	1.9	2
296	Cryo-EM Techniques to Resolve the Structure of HSV-1 Capsid-Associated Components. Methods in Molecular Biology, 2014, 1144, 265-281.	0.4	4
306	Colloidal hydrodynamics of biological cells: A frontier spanning two fields. Physical Review Fluids, 2019, 4, .	1.0	14
307	Thresholding of cryo-EM density maps by false discovery rate control. IUCrJ, 2019, 6, 18-33.	1.0	34
308	A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ, 2019, 6, 5-17.	1.0	696
309	Electron-event representation data enable efficient cryoEM file storage with full preservation of spatial and temporal resolution. IUCrJ, 2020, 7, 860-869.	1.0	71
310	Cog-Wheel Octameric Structure of RS1, the Discoidin Domain Containing Retinal Protein Associated with X-Linked Retinoschisis. PLoS ONE, 2016, 11, e0147653.	1.1	17
311	Structure of Alcohol Oxidase from Pichia pastoris by Cryo-Electron Microscopy. PLoS ONE, 2016, 11, e0159476.	1.1	28
312	Structure Sorting of Multiple Macromolecular States in Heterogeneous Cryo-EM Samples by 3D Multivariate Statistical Analysis. Open Journal of Statistics, 2015, 05, 820-836.	0.3	27
313	Advancing research. ELife, 2014, 3, e03980.	2.8	1
314	High-resolution structures of kinesin on microtubules provide a basis for nucleotide-gated force-generation. ELife, 2014, 3, e04686.	2.8	131
315	Ambiguities in helical reconstruction. ELife, 2014, 3, .	2.8	44
316	2.8 Ã resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy. ELife, 2015, 4, .	2.8	156
317	Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud. ELife, 2015, 4, .	2.8	35
318	Structures of the scanning and engaged states of the mammalian SRP-ribosome complex. ELife, 2015, 4, .	2.8	109
319	Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. ELife, 2016, 5, .	2.8	116

#	ARTICLE	IF	CITATIONS
320	Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. ELife, 2016, 5, .	2.8	407
321	Model-based local density sharpening of cryo-EM maps. ELife, 2017, 6, .	2.8	200
322	Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition. ELife, 2018, 7, .	2.8	76
323	Protein denaturation at the air-water interface and how to prevent it. ELife, 2019, 8, .	2.8	196
324	Mechanism of completion of peptidyltransferase centre assembly in eukaryotes. ELife, 2019, 8, .	2.8	49
333	Workflw of Cryo-Electron Microscopy and Status of Domestic Infrastructure. Applied Microscopy, 2018, 48, 6-10.	0.8	0
343	Conquer by cryo-EM without physically dividing. Biochemical Society Transactions, 2021, 49, 2287-2298.	1.6	4
344	Extended supercomplex contains type-II NADH dehydrogenase, cytochrome bcc complex, and aa3 oxidase in the respiratory chain of Corynebacterium glutamicum. Journal of Bioscience and Bioengineering, 2021, , .	1.1	1
345	Application of Cryo-EM for Visualization of Mitoribosomes. Methods in Molecular Biology, 2021, 2192, 197-210.	0.4	1
347	Application of Homology Modeling by Enhanced Profile–Profile Alignment and Flexible-Fitting Simulation to Cryo-EM Based Structure Determination. International Journal of Molecular Sciences, 2022, 23, 1977.	1.8	1
348	Single Particle Cryo-EM of Ribosomal Complexes: Visualization of How Ribosome Works in Translation. Seibutsu Butsuri, 2022, 62, 28-31.	0.0	0
349	High-throughput cryo-EM structure determination of amyloids. Faraday Discussions, 0, 240, 243-260.	1.6	19
350	Annealing synchronizes the 70 <i>S</i> ribosome into a minimum-energy conformation. Proceedings of the United States of America, 2022, 119, .	3.3	2
351	Recent Technical Advances in Sample Preparation for Single-Particle Cryo-EM. Frontiers in Molecular Biosciences, 0, 9, .	1.6	8
352	Cryo-electron Microscopic Analysis of Single-Pass Transmembrane Receptors. Chemical Reviews, 2022, 122, 13952-13988.	23.0	7
353	Single-Particle Cryo-EM Data Collection with Stage Tilt using Leginon. Journal of Visualized Experiments, 2022, , .	0.2	3
354	Cryo-electron Tomography Remote Data Collection and Subtomogram Averaging. Journal of Visualized Experiments, 2022, , .	0.2	0
355	Developing Graphene Grids for Cryoelectron Microscopy. Frontiers in Molecular Biosciences, 0, 9, .	1.6	3

#	Article	IF	CITATIONS
356	Emerging Themes in CryoEM─Single Particle Analysis Image Processing. Chemical Reviews, 2022, 122, 13915-13951.	23.0	12
357	Cryo-electron tomography related radiation-damage parameters for individual-molecule 3D structure determination. Frontiers in Chemistry, 0, 10, .	1.8	8
359	Protein Data Bank: A Comprehensive Review of 3D Structure Holdings and Worldwide Utilization by Researchers, Educators, and Students. Biomolecules, 2022, 12, 1425.	1.8	24
360	Progress in special resolution of structural analysis by cryo-EM. Microscopy (Oxford, England), 0, , .	0.7	1
361	Single-Particle CryoEM of Macromolecular Complexes. , 2016, , 152-160.		0
362	EMPIAR: the Electron Microscopy Public Image Archive. Nucleic Acids Research, 2023, 51, D1503-D1511.	6.5	50
364	Integrating model simulation tools and <scp>cryoâ€electron</scp> microscopy. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	8
365	Biochemistry and pathophysiology of the Transient Potential Receptor Vanilloid 6 (TRPV6) calcium channel. Advances in Clinical Chemistry, 2023, , 43-100.	1.8	3
366	Integration of an Event-driven Timepix3 Hybrid Pixel Detector into a Cryo-EM Workflow. Microscopy and Microanalysis, 2023, 29, 352-363.	0.2	5
367	Applications and prospects of cryo-EM in drug discovery. Military Medical Research, 2023, 10, .	1.9	2
368	Big data in contemporary electron microscopy: challenges and opportunities in data transfer, compute and management. Histochemistry and Cell Biology, 0, , .	0.8	2
376	An introduction to principles of virus structure. , 2024, , 2073-2084.		0